COMPLEX NUMBERS AND QUADRATIC EQUATIONS

INTRODUCTION OF COMPLEX NUMBER

EXERCISE

- **Q.1** Write the following as complex number
 - (i) $\sqrt{-16}$
 - (ii) \sqrt{x} , (x > 0)
 - (iii) $-b + \sqrt{-4ac}$, (a, c> 0)
- **Q.2** Write the following as complex number
 - (i) \sqrt{x} (x < 0)
 - (ii) roots of $x^2 (2\cos\theta) x + 1 = 0$
- **Q.3** Find multiplicative inverse of 3 + 2i.
- $\mbox{Q.4} \quad \mbox{Simplify } i^{n+100} + i^{n+50} + i^{n+48} + i^{n+46} \mbox{ , } n \in I \,.$
- Q.5 Find the value of x and y for which $(2 + 3i) x^2 (3 2i) y = 2x 3y + 5i$ where $x, y \in R$.
- **Q.6** Find square root of 5 + 12i
- **Q.7** Solve for $z : z^2 (3 2i)z = 5i 5$
- **Q.8** Given that $x, y \in R$, solve: $4x^2 + 3xy + (2xy 3x^2)i = 4y^2 (x^2/2) + (3xy 2y^2)i$

ANSWER KEY

1. (i)
$$0 + 4i$$

(ii)
$$\sqrt{x} + 0i$$

(iii)
$$-b + i \sqrt{4ac}$$

2. (i)
$$0 + i\sqrt{-x}$$

(ii)
$$\cos \theta + i \sin \theta$$
, $\cos \theta - i \sin \theta$

$$3. \qquad \left(\frac{3}{13} - \frac{2}{13}i\right)$$

5.
$$x = 0, y = \frac{5}{2}$$
 and $x = 1, y = 1$

6.
$$\sqrt{5+12i} = \pm (3+2i)$$

7.
$$z = (2 + i)$$
 and $(1 - 3i)$

8.
$$x = K, y = \frac{3K}{2} K \in R$$