EXERCISE-I

THERMAL EXPANSION

1. Two large holes are cut in a metal sheet. If this is heated, distances AB and BC, (as shown)

- (A) both will increase
- (B) both will decrease
- (C) AB increases, BC decreases
- (D) AB decreases, BC increases
- 2. A steel scale is to be prepared such that the millimeter intervals are to be accurate within 6×10^{-5} mm. The maximum temperature variation from the temperature of calibration during the reading of the millimeter marks is

 $\begin{array}{ll} (\alpha = 12 \times 10^{-6} \ k^{-1}) \\ (A) \ 4.0^{\circ} C & (B) \ 4.5^{\circ} C \\ (C) \ 5.0^{\circ} C & (D) \ 5.5^{\circ} C \end{array}$

- **3.** Expansion during heating
 - (A) occurs only in a solid
 - (B) increases the density of the material
 - (C) decreases the density of the material

(D) occurs at the same rate for all liquids and solids.

4. If a bimetallic strip is heated, it will.

(A) bend towards the metal with lower thermal expansion coefficient.

(B) bend towards the metal with higher thermal expansion coefficient.

(C) twist itself into helix.

(D) have no bending.

5. A motallic bar is heated from 0°C to 100°C. The coefficient of linear expansion is 10^{-5} K⁻¹. What will be the percentage increase in length

(A) 0.01%	(B) 0.1%
(C) 1%	(D) 10%

6.

8.

9.

A pendulum clock has an iron pendulum 1m long
(α_{iron} = 10⁻⁵/°C). If the temperature rises by 10°C, the clock(A) Will lose 8 seconds per day

(B) Will lose 4.32 seconds per day

- (C) Will gain 8 seconds per day
- (D) Will gain 4.32 seconds per day
- 7. Two rods of lengths ℓ_1 and ℓ_2 are made of materials whose coefficient of linear expansions are α_1 are α_2 . If the difference between two lengths is independent of temperature -

(A)
$$\frac{\ell_1}{\ell_2} = \frac{\alpha_1}{\alpha_2}$$
 (B) $\frac{\ell_1}{\ell_2} = \frac{\alpha_2}{\alpha_1}$
(C) $\ell_2^2 \alpha_1 = \ell_1^2 \alpha_2$ (D) $\frac{\alpha_1^2}{\ell_1} = \frac{\alpha_2^2}{\ell_2}$

The coefficient of linear expansion of steel and brass are 11×10^{-6} °C and 19×10^{-6} °C respectively. If their difference in lengths at all temperatures has to be kept constant at 30cm, their lengths at 0°C should be -

(A) 71.25 cm and 41.25 cm
(B) 82 cm and 52 cm
(C) 92 cm and 62 cm
(D) 62.25 cm and 32.25 cm

A uniform metal rod is used as a bar pendulum. If the room temperature rises by 10°C, and the coefficient of linear expansion of the metal of the rod is 2×10^{-6} per°C, the period of the pendulum will have percentage increase of -

(A)
$$- 2 \times 10^{-3}$$
 (B) $- 1 \times 10^{-3}$
(C) 2×10^{-3} (D) 1×10^{-3}

10. The volume of a solid decreases by 0.6% when it is cooled through 50°C. Its coefficient of linear expansion is -

(A) 4×10^{-6} K	(B) 5×10^{-5} K
(C) 6×10^4 K	(D) 4×10^{-5} K

A bulb made of tungsten filament of surface area 0.5 cm² is heated to a temperature 3000k when

operated at 220V. The emissivity of the filament

is $\epsilon = 0.35$ and take $\sigma = 5.7 \times 10^8$ mks units.

Then the wattage of the bulb is (calculate)

A rectangular block is heated from 0°C to 100°C. The percentage increase in its length is 0.10% What will be the percentage increase in it volume?
(A) 0.02 0′ (D) 0.100′ (D) 0.100° (D) 0.100°

(A) 0.03 %	(B) 0.10%
(C) 0.30%	(D) none of these

12. A thin copper wire of length ℓ increases in lenth by 1% when heated from 0°C to 100°C. If a then cooper plate of area $2 \ell \times \ell$ is heated from 0°C to 100°C, the percentage increase in its area will be

(A) 1%	(B) 2%

(C) 3% (D) 4%

TEMPERATURE

13. A difference of temperature of 25° C is equivalent to a difference of :

(A) 45° F	(B) 72° F
(C) 32° F	(D) 25° F

- **14.** What is the temperature at which we get the same reading on both the centigrade and Fahrenheit scales?
 - (A) -40° C or -40° F
 - (B) -30° C or -30° F
 - (C) -30° C or -40° F
 - (D) -10° C or -10° F

Stefan's law

15. Two copper spheres A and B of the same surface finish are taken. Sphere B weight half as A. Both are heated to the same temperature and let in a room to cool by radiation only. What is the ratio of initial rate of loss of heat of A and B.

(A) 1.59	(B) 15.9
(C) 0.159	(D) 159

 A black body emits 10 watts per cm² at 327°C. The sun radiates 105 watt per cm². Then what is the temperature of the sun ?

(A) 5000K	(B) 6000K
(C) 7000K	(D) 8000K

(A) 81W	(B).81W
(C) 81.2W	(D) 8.12 W
In the above example, filament falls to 2000 voltage, then what will b	if the temperature of the k due to a drop of mains be the wattage of the bulb?
(A) 15W	(B) 16W
(C) 17W	(D) 18W

17.

18.

Newton's law

19. A metal ball cools from 62°C to 50°C in 10min and to 42°C the next to minutes. What will be its temperature at the end of next ten minutes?

(A) 3.67°C	(B) 36.7°C
(C) .376°C	(D) 367°C

20. A liquid takes 30 seconds to cool from 95°C to 90°C and 70 seconds to cool from 55 to 50°C. Find the room temperature and the time it will take to cool from 50°C to 45°C

(A) 81 sec	(B) 82 sec
(C) 83 sec.	(D) 84 sec.

Wien's law

21. A black body at 2000K emits radiation with $\lambda_m = 1250$ nm. if for the radiation coming from the star SIRIUS λ_m is 71 nm, then the temperature of this star is

(A) 3521.1K	(B) 352.11K
(C) 35.21K	(D) 35, 211K

22. When the temperature of the body is increased, the frequency corresponding to maximum emis sion, changes such that :

(A)
$$\frac{\Delta V_m}{V_m} = \frac{\Delta T}{T}$$
 (B) $V_m \Delta V_m = T \Delta T$
(C) $\Delta V_m = \frac{\Delta T}{T}$ (D) $\Delta V_m = T \Delta T$

At 1600K maximum radiation is emitted at a wavelength of 2μm. Then the corresponding wavelength at 2000K will be -

(A) 1.6µm	(B) 16µm
(C) 160µm	(D).16µm

Solar Constant

24. Solar constant for earth is 2 cal/minute/cm² if the distance of the planet mercury from the sun is 0.40 times the distance of the earth from the sun, the Solar constant for the planet mercury in cal/minute/cm² will be -

(A) 12.5	(B) 25
(C) 0.32	(D) 2

25. Earth receive energy at the rate of 2cal/minute/cm² from sun. if angular diameter of sun is 32' and it is assumed as a black body, then the temperature of the surface of sun is

(A) 5723K	(B) 5773K
(C) 5800K	(D) 5925K

Heat conduction

26. Transmission of heat by molecular collisions is-

(A) Conduction	(B) Convection

- (C) Radiation (D) Scattering
- 27. Coefficient of thermal conductivity depends on-
 - (A) Nature of material
 - (B) Heat produced
 - (C) Difference in temperature
 - (D) Atmospheric pressure

28. The state when there is no more absorption of heat by the bar to raise the temperature of any part of it, is called the –

- (A) Variable state
- (B) Steady state
- (C) Both the above
- (D) None of the above

- Miscellaneous Questions
- 29. If I is the moment of inertia of a solid body having α -coefficient of linear expansion then the change in I corresponding to a small change in temperature ΔT is

(A) α I Δ T	(B) $\frac{1}{2} \alpha I \Delta T$
(C) 2 α Ι ΔΤ	(D) $\overline{3} \alpha I \Delta T$

30. A liquid with coefficient of volume expansion γ is filled in a container of a material having the coefficient of linear expansion α . If the liquid overflows on heating, then.

(A) $\gamma > 3\alpha$	(B) $\gamma < 3\alpha$
(C) $\gamma = 3\alpha$	(D) none of these

31.

Two rods having length ℓ_1 and ℓ_2 , made of materials with the linear expansion coefficient α_1 and α_2 , were soldered together. The equivalent coefficients of linear expansion for the obtained rod :-

$$(A) \xrightarrow{\ell_1 \alpha_2 + \ell_2 \alpha_1} (B) \xrightarrow{\ell_1 \alpha_1 + \ell_2 \alpha_2} (C) \xrightarrow{\ell_1 \alpha_1 + \ell_2 \alpha_2} (D) \xrightarrow{\ell_2 \alpha_1 + \ell_1 \alpha_2} (D)$$

32. The volume thermal expansion coefficient of an ideal gas at constant pressure is

(A) T (B)
$$T^2$$

(C) $\frac{1}{T}$ (D) $\frac{1}{T^2}$

(Here T = absolute temperature of gas)

- **33.** Water is used to cool radiators of engines, because
 - (A) Of its lower density
 - (B) It is easily available
 - (C) It is cheap
 - (D) It has high specific heat

34. How much heat energy is gained when 5 kg of 3 water at 20°C is brought to its boiling point (Specific heat of water = $4.2 \text{ kg}^{-1}\text{c}^{-1}$)

(A) 1680 kJ	(B) 1700 kJ
(C) 1720 kJ	(D) 1740 kJ

- **35.** A metallic ball and highly stretched spring are made of the same material and have the same mass. They are heated so that they melt, the latent heat required
 - (A) Are the same for both
 - (B) Is greater for the ball
 - (C) Is greater for the spring

(D) For the two may or may not be the same depending upon the metal

- **36.** Two rigid boxes containing different ideal gases are placed on a table. Box A contains one mole of nitrogen at temperature T_0 , While Box B contains one mole of helium at temperature (7/3) T_0 . The boxes are then put into thermal contact with each other and heat flows between them until the gases reach a common final temperature (lgnore the heat capacity of boxes). Then, the final temperature of the gases, T_e , in term of T_0 is
 - (A) $T_f = \frac{7}{3}T_0$ (B) $T_f = \frac{3}{2}T_0$ (C) $T_f = \frac{5}{2}T_0$ (D) $T_f = \frac{3}{7}T_0$
- **37.** The weight of person is 60 kg. If he gets 10⁵ calories heat through food and the efficiency of his body is 28%, then upto how much height he can climb (approximately)

(A) 100 m	(B) 200 m
(C) 400 m	(D) 1000 m

38. The relative humidity on a day, when partial pressure of water vapour is 0.012×10^5 Pa at 12° C is (take vapour pressure of water at this temperature as 0.016×10^5 Pa)

(A) 70%	(B) 40 %
(C) 75%	(D) 25%

- 39. Compared to a burn due to water at 100°C, a burn due ot stem at 100°C is
 (A) More dangerous
 (B) Less dangerous
 (C) Equally dangerous
 (D) None of these
- 40. Absolute temperature can be calculated by
 (A) Mean square velocity
 (B) Motion of the molecule
 (C) Both (a) and (b)
 (D)None of the above
- 41. 50 gm ice at 0°C in insulator vessel, 50 g water of 100°C is mixed in it, then final temperature of the mixture is (neglect the heat loss): (A) 10°C (B) 0° <<T_m < 20°C
 - (C) 20° C (D) Above 20° C
- **42.** A bottle is filled with water at 30°C. When it is taken on the moon then :
 - (A) water will freeze

(B) water will boil

- (C) water will decompose in hydrogen and oxygen(D) nothing will happen to water
- **43.** The ratio of radii of two spheres of same material is 1 : 4, then the ratio of their heat capacities is

(A) $\frac{1}{4}$	(B) $\frac{1}{16}$
(C) $\frac{1}{32}$	(D) $\frac{1}{64}$

- 44. Heat given to a body which raises its temperature by 1°C is :
 - (A) water equivalent
 - (B) thermal capacity
 - (C) specific heat
 - (D) temperature gradient
- **45.** Work done in converting one gram of ice at 10°C into steam at 100°C is -

(A) 3045 J	(B) 6056 J
(C) 721 J	(D) 616 J

46.	Absolute zero (0K) is that temperature at which (A) Matter ceases to exist (B) Ice melts and water freezes		51.	A 5°C rise in temperature is observed in a conductor by passing a current. When the current is doubled the rise in temperature will be	
				approximately.	in temperature will be
	(C) Volume and pro	essure of a gas becomes zero		$(A) 16^{\circ}C$	$(\mathbf{D}) 10^{\circ}\mathbf{C}$
	(D) None to these			(A) 10 C $(C) 20^{\circ}C$	(B) 10° C
47.	The temperature or is the correspon Fahrenheit scale (A) 40°F	(B) 77°F	52.	If 1g of steam is mix resultant temperature (A) 270°C (C) 100°C	ed with 1 g of ice, then the e of the mixture is : (B) 230°C (D) 50°C
	$(C) 50^{\circ}F$	$(D) 45^{\circ}F$	53.	The coefficients of lin	ear expansions of brass and
48.	One quality of a t capacity should l thermometer, Qis r R thermocouple typ (A) P is best R wo	hermometer is that its heat be small. If P is mercury esistance thermomerter and be then		steel are α_1 and α_2 re a brass rod of length ℓ_2 at 0°C, then the c $(\ell_2 - \ell_1)$ will remain t if:	espectively. When we take ℓ_1 and a steel rod of length lifference in their lengths he same at all temperatures
	(A) I is best, K wo	1St		(A) $\alpha_1 \ell_1 = \alpha_2 \ell_2$	(B) $\alpha_1 \ell_2 = \alpha_2 \ell_1$
	(C) R is best, P worst(D) P is best, Q worst			(C) $\alpha_1^2 \ell_2 = \alpha_2^2 \ell_1$	(D) $\alpha_1 \ell_2^2 = \alpha_2 \ell_1^2$
			54.	The amount of heat required to convert gram of ice at 0°C into steam at 100°C will be -	
49.	Two thermometers are used to record the temperature of a room. If the bulb of one is wrapped in wet hanky (A) The temperature recorded by both will be same		55.	(A) 716 cal	(B) 500 cal
				(C) 180 cal	(D) 100 cal
				10 grams of ice at 0°C is mixed with 10 grams of water at 20°C. The final temperature of mixture	
	(B) The temperat	ure recorded by wet-build		will be-	
	by the other	be greater than that recorded		(A) 50°C	(B) 10°C
				(\mathbf{C}) b \mathbf{C}	$(D) 15^{\circ}C$
	(C) The temperature recorded by dry-bulb thermometer will be greater than that recorded by the other		56.	Value of – 40°C in Fa	ahrenheit scale is :
				$(A) - 40^{\circ} F$	(B) 32°F
	(D) None of the sh	01/0		(C) –32°F	(D) 40°C
50.	A centigrade and a Fahrenheit thermometer are dipped in boiling water. The water temperature is lowered until the Fahrenheit thermometer registers 140°F. What is the fall in temperature as registered by the Centigrade thermometer (A) 30° (B) 40°		57.	The amount of heat (0°C) of ice into wate (A) 716 cal (C) 180 cal	required to change 1 gm er of 100°C, is : (B) 500 cal (D) 100 cal
			58.	If temperature of an temperature in centri (A) 105°C	object is 140° F, then its grade is : (B) 32°C
	(C) 60°	(D) 80°		(C) 140°C	(D) 60°C

59. Latent heat of 1 gm of steam is 536 cal/gm, then 64. its value in joule/kg is:

(A) 2.25×10^{6}	(B) 2.25×10^3
(C) 2.25	(D) none of these

- 60. Volume expansion coefficient of a gas at constant presure equal to :
 - (A) temperature
 - (B) proportional to square root of temperature
 - (C) inversely proportional to square root of temperature
 - (D) inversely proportional to temperature
- **61**. If mass – energy equivalence is taken into account, when water is cooled to form ice, the mass of water should:
 - (A) increase
 - (B) remain unchanged
 - (C) decrease
 - (D) first increase then decrease
- 62. A block of ice at -10°C is slowly heated and converted to steam at 100°C. Which of the following curves represents the phenomenon qualitatively:

63. When a block of iron floats in mercury at 0°C a fraction k₁ of its volume is submerged, while at the temperature 60°C, a fraction k, is seen to be submerged. If the coefficient of volume expansion

> of iron is γ_{Fe} , then the ratio $\frac{k_1}{k_2}$ can be expressed as:

 $(B)\;\frac{1\!-\!60\gamma_{Fe}}{1\!+\!60\gamma_{Hg}}$ (A) $1 + 60\gamma_{Fe}$ 1+60γ_{Hα} (D) $\frac{1+60\gamma_{Hg}}{1+60\gamma_{Hg}}$ $1 + 60\gamma_{Fe}$ (C) $\overline{1-60\gamma_{Hg}}$

Two rods, one of aluminium of length ℓ_1 having coefficient of linear expansion α_a and other of steel is having coefficient of linear expansion α_{c} and length ℓ_2 are joined end to end . The expansion in both the rods is same for same variation of temperature . Then the value of

$$\frac{\ell_1}{\ell_1 + \ell_2}$$
 is

(A)
$$\frac{\alpha_s}{\alpha_a}$$
 (B) $\frac{\alpha_a}{\alpha_s}$

(C)
$$\frac{\alpha_s}{\alpha_a + \alpha_s}$$
 (D) $\frac{\alpha_a}{\alpha_a + \alpha_s}$

65. $2 \text{ kg ice at} - 20 \text{ }^{\circ}\text{C} \text{ is mixed with 5 kg water at}$ 20 °C. Then final amount of water in the mixture would be : Given : specific heat of ice = 0.5 cal/ g °C, specific heat of water = 1 cal/g °C, latent heat of fusion of ice = 80 cal/gm] (A) 6 kg(B) 7 kg

(C) 3.5 kg	(D) 5 kg

- 66. In a solar spectrum dark lines (fraunhofer lines) are obtained due to
 - (A) absorption (B) reflection (C) emission (D) transmission
- 67. Fraunhofer lines are explained by
 - (A) Provosts theory of heat exchanges
 - (B) Newton's law of cooling
 - (C) Stefan's law
 - (D) Kirchoft's law

68. The nature of radiation emitted by a black body depends only on -

(A) the shape of a body

- (B) the nature of a body
- (C) the temperature of a body
- (D) the medium

<u>69.</u>	Two identical balls of wax are attached on the outer surface of two tin sheets. The inner surface of P is coated with lamp black and that of Q is polished. If a source of heat is placed between P and Q then which ball will melt first (A) Q ball		75.	A blackened sphere of radius 10cm at a temperature 227°C is placed in a chamber with blackened wall, maintained at 27°C. Calculate the rate of loss of heat? (A) 9.224 cal/s (B) .9224 cal/s (C) 922.4 cal/s (D) 92.24 cal/s	
	(B) P ball		76.	A blackened metal dise	c is held normal to the sun's
	(C) both simultaneously (D) nothing can be predated			rays, Both of its surfaces are exposed to atmosphere if the distance of earth from sun is 216 times the radius of sun and the temperature of sun is 6000K, the temperature of the disc in steady state will be-	
70.	Energy spectrum of radiations emitted by a black body is				
	(A) line spectrum			(A) 80°C	(B) 70°C
	(B) continuous spect	rum		(C) 60°C	(D) 50°C
	(C) bond spectrum		77.	In the above problem, if the heat capacity (thermal capacity) of the sphere is 1000 cal/°C	
	(D) line and continuous spectrum				
71.	If the rate of emission of radiation from a body is equal to the rate of absorbing, then the temperature of the body will be -			then what is the rate o	f cooling of the sphere?
				(A) 55° C/min	(B) 55° C/min (D) 5.5° C/min
				(C) 550 C/IIIII	(D) 5.5 C/IIIII
	(A) less than the temperature of the surrounding(B) greater than the temperature of the surrounding(C) equal to the temperature of the surrounding(D) nothing can be said		78.	A slab of stone of area 3600 sq cm. and thickens 10cm is exposed on the lower surface to steam at 100°C, block of ice is melted in one hour. The thermal conductivity of stone is (in cal/cm ^{-o} C) given (latent heat of ice = 80 cal/gm)	
				(A) 0.003	(B) 0.03
72.	For the analysis of spectral energy of thermal radiations emitted by a body the prism used made of			(C) 0.3	(D) none of these
			70	Debevie a libe a black hade over agaits movies.	
	(A) quartz	(B) crown glass	19.	Behaving like a black body sun emits maximum radiation at wavelength 0.48µm. The mean radius of the sun is 6.96 x 10 ⁸ m. Stefan's constant is 5.67×10^{-8} wm ⁻² k ⁻⁴ and Wien's constant is	
	(C) flint glass	(D) rock salt			
	(C) Init Stubb	(D) Took Suit			
73.	If the temperature of a body is increased by 50%, then the increase in the amount of radiation			0.293 cm-k. The loss of mass per second by the emission of radiation from sun is -	
	emitted by it will be:			(A) 5.32×10^{9} kg/s	(B) 6.24×10^{10} kg/s (D) 2.46×10^{14} kg/s
	(A) 500%	(B) 400% (D) 100%		(C) 8.65×10^{12} kg/s	(D) 2.46×10^{14} kg/s
	(C) 200%	(D) 100%	80.	Which part of E_{λ} - λ g	aph represents wien's –
74. A blackened plating perimeter 0.02cm is of 300K. Then at wh energy? (Take $\alpha = 5.7 \times 10^{-10}$		Im wire of length 5cm and maintained at atemperature hat rate the wire is losing its ⁸ units)		$ \begin{array}{c} \uparrow \\ \mathbf{E}_{\lambda} \\ \mathbf{Q} \end{array} $	$ \begin{array}{c} \mathbf{D} \mathbf{F} \\ {} & {} & {} & {} & \mathbf{G} \\ {} & {} & {} & {} & \mathbf{G} \\ {} & {} & {} & {} & \mathbf{G} \\ \end{array} $
	$(1ak = 0 - 3.7 \times 10^{\circ} \text{ units})$ $(A) \land 62 \text{ W} \qquad (B) \land 462 \text{ W}$			(A) OA part (B) BC part	
	(A) 4.02 W	(D) 0.402 W		(C) DE part	(D) FG part
	(C) 40.2 W	(D) 4020 W		≜	· •