# MATHEMATICAL REASONING

# **HINTS & SOLUTIONS**

#### EXERCISE - 1 Single Choice

6.

| р | q | ~p | $p \leftrightarrow q$ | ~(p↔q) | ~p↔ q |
|---|---|----|-----------------------|--------|-------|
| Т | Т | F  | Т                     | F      | F     |
| Т | F | F  | F                     | Т      | Т     |
| F | Т | Т  | F                     | Т      | Т     |
| F | F | Т  | Т                     | F      | F     |

- 7. Both statements p and q are true so  $p \Rightarrow q$  and  $q \Rightarrow p$  $\therefore p \Leftrightarrow q$
- 8. When p and q both are true then
  - $\sim$ (p  $\rightarrow$  q) and ( $\sim$ p  $\vee \sim$ q) both are false

i.e.  $\sim (p \rightarrow q) \leftrightarrow (\sim p \lor \sim q)$  is true

when p and q both are false then

 $\sim$ (p  $\rightarrow$  q) is false and ( $\sim$ p  $\vee \sim$ q) is true

i.e.  $\sim (p \rightarrow q) \leftrightarrow (\sim p \lor \sim q)$  is false

Hence  $\sim (p \rightarrow q) \leftrightarrow (\sim p \lor \sim q)$  is neither tautology nor contradiction.

- **10.**  $\rightarrow$  p  $\rightarrow$  (q  $\vee$  r) is false
  - $\Rightarrow$  p is true and (q  $\vee$  r) is false
  - $\Rightarrow$  p is true, q and r both are false
  - i.e.  $p \rightarrow (q \lor r)$  is false when truth values of p, q, r are T, F, F resp. otherwise it is true.
- **11.** Let p, q, r be the three statements such that

p: x = 5, q: y = -2 and r: x - 2y = 9

Here given statement is  $(p \land q) \rightarrow r$  and its contrapositive is  $\sim r \rightarrow \sim (p \land q)$ 

i.e.  $\neg r \rightarrow (\neg p \lor \neg q)$  i.e. if  $x - 2y \neq 9$  then  $x \neq 5$ or  $y \neq -2$ 

12. Let  $S(p, q) \equiv (p \lor \neg q) \land \neg p$   $\Rightarrow S(\neg p, \neg q) \equiv (\neg p \lor q) \land p$ Now  $S^*(\neg p, \neg q) \equiv (\neg p \land q) \lor p$ and  $\neg S(p, q) \equiv \neg [(p \lor \neg q) \land \neg p] \equiv \neg (p \lor \neg q) \lor p$   $\equiv (\neg p \land q) \lor p$ Hence  $S^*(\neg p, \neg q) \equiv \neg S(p, q)$ 

- 17.  $\rightarrow$   $(p \land q) \lor (q \land r)$  is false
  - $\Rightarrow$  (p  $\land$  q) and (q  $\land$  r) both are false
  - $\Rightarrow$  p and r both are false or q is false.

otherwise  $(p \land q) \lor (q \land r)$  is true

 The negation of "Everyone in Germany speaks German" is - there is at least one person in Germany who does not speak German.

20. 
$$\sim (p \rightarrow (q \land r)) \equiv p \land \sim (q \land r)$$
  
 $(\therefore \sim (p \rightarrow q) \equiv p \land \sim q)$   
 $\equiv p \land (\sim q \lor \sim r)$ 

21.  $\Rightarrow \neg q \Rightarrow \neg p \equiv \neg(\neg q) \lor \neg p$  ( $\Rightarrow p \Rightarrow q \equiv \neg p \lor q$ )  $\equiv q \lor \neg p$   $\equiv \neg p \lor q$  (by commutative law)  $\equiv p \Rightarrow q$  ( $\Rightarrow p \Rightarrow q = \neg p \lor q$ )

Hence 
$$p \rightarrow q \equiv \sim q \rightarrow \sim p$$

- 26. Let p, q, r three statement defined as
  - p : a number N is divisible by 15

q : number N is divisible by 5

r : number N is divisible by 3

Here given statement is  $p \rightarrow (q \lor r)$ 

Here negative of above statement is

 $\sim\!\!(p \rightarrow (q \lor r)) \equiv p \land (\sim\!\!(q \lor r)$ 

$$\equiv p \land (\sim q \land \sim r)$$

i.e. A number is divisible by 15 and it is not divisible by 5 and 3.

**31.** (~ T  $\lor$  F)  $\land$  ~T Т  $\Rightarrow$  $\therefore$  (F  $\lor$  F)  $\land$  F  $\Rightarrow$  T  $\therefore$  F  $\wedge$  F  $\Rightarrow$  T .. F  $\rightarrow$ T 35.  $\rightarrow$  (~p  $\vee$  ~q)  $\vee$  (p  $\vee$  ~q) =  $(\sim p \lor \sim q) \lor (\sim q \lor p)$  (by commutative law)  $= \sim p \vee [\sim q \vee (\sim q \vee p)]$  (by Associative law)  $\equiv -p \vee [(\neg q \vee \neg q) \vee p] \text{ (by Associative law)}$  $\equiv -p \lor (p \lor -q)$ (by commutative law)  $\equiv$  (~p  $\lor$  p)  $\lor$  ~q (by Associative law)  $\equiv$  t  $\lor \sim q \equiv t$  t is a tautology Hence  $(\sim p \lor \sim q) \lor (p \lor \sim q)$  is a tautology.

- **37.**  $\rightarrow$  (p  $\land$  q)  $\rightarrow$  p is false
  - $\Rightarrow$  (p  $\land$  q) is true and p is false

which is not possible

- so  $(p \land q) \rightarrow p$  is always true i.e. it is a tautology.
- **39.**  $\rightarrow$  [(p $\land$ p)  $\rightarrow$  q] $\rightarrow$  p  $\equiv$ (p $\rightarrow$ q) $\rightarrow$ p ( $\rightarrow$  p  $\land$  p  $\equiv$  p)

when p is false and q is true (or false) then

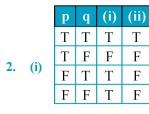
 $(p \rightarrow q)$  is true i.e.  $(p \rightarrow q) \rightarrow p$  is false

Hence  $[(p \land p) \rightarrow q] \rightarrow p$  is not a tautology.

# EXERCISE - 2 Part # II : Comprehension

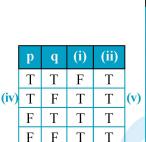
- 1. If p then q means p only if q
- 2. If p then q  $\Rightarrow$  p is sufficient for q
- 3. p is false, q is false so  $p \rightarrow q$  is true.

EXERCISE - 3 Subjective Type



|      | р | q | (i) | <b>(ii</b> ) |
|------|---|---|-----|--------------|
|      | Т | Τ | Т   | F            |
| (1)  | Т | F | F   | F            |
| (ii) | F | T | F   | F            |
|      | F | F | Т   | Τ            |

| р | q                               | r                                                                                                                       | (i)                                                                                                                                                                                                                                                                                                                                                                                                                                           | (ii)                                                                                                                                                                                                                                      | (iii)                                                                                                                                                                                                                                                                                                             | (iv)                                                                                                                                                                                                                                                                                                                                                      |
|---|---------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Т | Т                               | Т                                                                                                                       | Т                                                                                                                                                                                                                                                                                                                                                                                                                                             | F                                                                                                                                                                                                                                         | F                                                                                                                                                                                                                                                                                                                 | F                                                                                                                                                                                                                                                                                                                                                         |
| Т | Т                               | F                                                                                                                       | F                                                                                                                                                                                                                                                                                                                                                                                                                                             | Т                                                                                                                                                                                                                                         | Т                                                                                                                                                                                                                                                                                                                 | F                                                                                                                                                                                                                                                                                                                                                         |
| Т | F                               | T                                                                                                                       | Т                                                                                                                                                                                                                                                                                                                                                                                                                                             | F                                                                                                                                                                                                                                         | F                                                                                                                                                                                                                                                                                                                 | Т                                                                                                                                                                                                                                                                                                                                                         |
| F | Т                               | Т                                                                                                                       | Т                                                                                                                                                                                                                                                                                                                                                                                                                                             | Т                                                                                                                                                                                                                                         | F                                                                                                                                                                                                                                                                                                                 | Т                                                                                                                                                                                                                                                                                                                                                         |
| Т | F                               | F                                                                                                                       | Т                                                                                                                                                                                                                                                                                                                                                                                                                                             | F                                                                                                                                                                                                                                         | Т                                                                                                                                                                                                                                                                                                                 | F                                                                                                                                                                                                                                                                                                                                                         |
| F | Τ                               | F                                                                                                                       | F                                                                                                                                                                                                                                                                                                                                                                                                                                             | Т                                                                                                                                                                                                                                         | Т                                                                                                                                                                                                                                                                                                                 | F                                                                                                                                                                                                                                                                                                                                                         |
| F | F                               | Т                                                                                                                       | Т                                                                                                                                                                                                                                                                                                                                                                                                                                             | Т                                                                                                                                                                                                                                         | Т                                                                                                                                                                                                                                                                                                                 | Т                                                                                                                                                                                                                                                                                                                                                         |
| F | F                               | F                                                                                                                       | F                                                                                                                                                                                                                                                                                                                                                                                                                                             | Т                                                                                                                                                                                                                                         | Т                                                                                                                                                                                                                                                                                                                 | F                                                                                                                                                                                                                                                                                                                                                         |
|   | T<br>T<br>T<br>F<br>F<br>F<br>F | T     T       T     T       T     F       F     T       T     F       F     T       F     F       F     F       F     F | I         I           T         T           T         T           T         T           T         T           T         T           T         T           T         T           T         T           T         T           T         T           T         T           T         T           T         T           T         T           T         T           T         T           T         T           T         T           T         T | T     T     T       T     T     F       T     F     T       T     F     T       T     F     T       T     F     F       T     F     F       T     F     F       T     F     T       T     F     T       T     F     F       T     F     T | T     T     T     F       T     T     F     F       T     F     F     T       T     F     T     T       T     F     T     T       T     F     T     T       T     F     T     T       T     F     T     T       T     F     F     T       T     F     F     T       T     F     F     T       F     T     F     T | T     T     T     F     F       T     T     T     F     F       T     T     F     F     T       T     F     T     T     F       T     F     T     T     F       T     F     T     T     F       T     F     T     T     F       T     F     T     T     F       T     F     T     T     T       T     F     F     T     T       F     F     T     T     T |



т

|   |   | _ |                                   |
|---|---|---|-----------------------------------|
| р | q | r | $(p \rightarrow q) \rightarrow r$ |
| Т | Т | Т | Т                                 |
| Т | Т | F | F                                 |
| Т | F | Т | Т                                 |
| F | Т | Т | Т                                 |
| Т | F | F | Т                                 |
| F | Т | F | F                                 |
| F | F | Т | Т                                 |
| F | F | F | F                                 |

|     | р | q | r | $(p \lor q) \leftrightarrow r$ |
|-----|---|---|---|--------------------------------|
|     | Т | Т | Т | Т                              |
|     | Т | Т | F | F                              |
|     | Т | F | Т | Т                              |
|     | F | Т | T | Т                              |
| vi) | Т | F | F | F                              |
|     | F | Т | F | F                              |
|     | F | F | Т | F                              |
|     | F | F | F | Т                              |

### Fallacy

4.

5.

Let p be the statement "Traders do not reduce the prices" and q be the statement "Government takes action against them"

The first statement in symbolic form is  $p \rightarrow q$  and the second statement is  $\sim (p \land \sim q)$ .

In order to check the equivalence of the above statements let us prepare the following truth table.

| р | q | ~ q | $p \wedge \sim q$ | $\sim (p \land \sim q)$ | $\textbf{p} \rightarrow \textbf{q}$ |
|---|---|-----|-------------------|-------------------------|-------------------------------------|
| Т | Т | F   | F                 | Т                       | Т                                   |
| Т | F | Т   | Т                 | F                       | F                                   |
| F | Т | F   | F                 | Т                       | Т                                   |
| F | F | Т   | F                 | Т                       | Т                                   |

Clearly,  $\sim q \rightarrow \sim p$  and  $\sim (p \land \sim q)$  have same truth values for all the values of p and q. Hence, the two statements are equivalent.

Aliter: We have,  $\sim (p \land \sim q) \equiv (\sim p \lor q) \equiv (p \rightarrow q)$ Hence the two statements are equivalent.

6. True



7.

| р | q | ~p | ~q | ~q ^ p | p∨~p | $(\sim q \land p) \lor (p \lor \sim p)$ |
|---|---|----|----|--------|------|-----------------------------------------|
| Т | Т | F  | F  | F      | Т    | Т                                       |
| Т | F | F  | Т  | Т      | Т    | Т                                       |
| F | Т | Т  | F  | F      | Т    | Т                                       |
| F | F | Т  | Т  | F      | Т    | Т                                       |

8. Given Statement is

 $(\Delta ABC \text{ is right angled at } B) \implies (AB^2 + BC^2 = AC^2)$ 

- (A) Its converse is : (In  $\triangle ABC$ ,  $AB^2 + BC^2 = AC^2$ )  $\implies \triangle ABC$  is right angled at B.
- (B) Its contradiction is :  $(In \ \Delta ABC, AB^2 + BC^2 = AC^2) \implies \Delta ABC$  is not right angled at B.
- (C) Its contrapositive is : (In  $\triangle ABC$ ,  $AB^2 + BC^2 \neq AC^2$ )  $\Rightarrow \triangle ABC$  is not right angled at B.
- 10. The compound statement is :
  - "25 is a multiple of 5 or 8"

Let us assume that the statement q is false i.e. 25 is

not a multiple of 8. Clearly, p is true.

Thus, if we assume that q is false, then p is true.

Hence, the compound statement is true i.e. valid.

- 11. Let q and r be the statements given by
  - q: If x is an integer and  $x^2$  is even
  - **r** : x is an even integer

```
p: "If q, then r"
then
```

If possible, let r be false then r is false

- x is not an even integer  $\Rightarrow$
- $\Rightarrow$ x is an odd integer
- x = (2n + 1) for some integer n  $\Rightarrow$
- $x^2 = 4n^2 + 4n + 1$  $\Rightarrow$
- $x^2 = 4n(n+1) + 1$  $\Rightarrow$
- $\Rightarrow$  $x^2$  is an odd integer
- $\Rightarrow$ q is false

## [ $\therefore$ 4n(n + 1) is even]

r is false  $\Rightarrow$  q is false Thus,

Hence, p: "If q, then r" is a true statement.

 $(p \land q) \lor [\sim p \lor (p \land \sim q)]$ 

```
= (p \land q) \lor [(\sim p \lor p) \land (\sim p \lor \sim q)] = (p \land q) \lor
[t \land (\sim p \lor \sim q)] = (p \land q) \lor (\sim p \lor \sim q)
= (p \land q) \lor [\sim (p \land q)] = t
also (~p \land q) \lor t = t
```

- **p**: it rains tomorrow
  - q: I shall carry my umbrella
  - r: cloth is mended

 $P: p \rightarrow (r \rightarrow q)$ 

 $Q: p \land \sim r$ 

**S**:~q

13.

14.

- $P:T,Q:T \Rightarrow S:T$
- : S not valid

| р           | q      | r           | Р           | Q           | S           |
|-------------|--------|-------------|-------------|-------------|-------------|
| Т           | Т      | Т           | Т           | F           | F           |
| Т           | Т      | F           | Т           | Т           | F           |
| Т           | F      | Т           | F           | F           | Т           |
| Т           | F      | F           | Т           | Т           | Т           |
| F           | Т      | Т           | Т           | F           | F           |
| F           | Т      | F           | Т           | F           | F           |
| F           | F      | Т           | Т           | F           | Т           |
| F           | F      | F           | Т           | F           | Т           |
| F<br>F<br>F | F<br>F | r<br>T<br>F | T<br>T<br>T | F<br>F<br>F | г<br>Т<br>Т |

Consider the following statements :

p: Hema is not in team A

q: Rita is not in team B.

r : Mamta is in team A.

We have,  $S_1 : p \to \neg q, S_2 : q \to r, S : r \lor q$ 

In order to test the validity of the given argument, let us first prepare the truth table for  $S_1 \wedge S_2 \rightarrow S$  as given below.

Truth table for  $S_1 \land S_2 \rightarrow S$ 

| р | q | r | ~q | $S_1:p \rightarrow \sim q$ | S₂:q→r | $S_1 \land S_2$ | $S:q \lor r$ | $S_1 \land S_2 \rightarrow S$ |
|---|---|---|----|----------------------------|--------|-----------------|--------------|-------------------------------|
| Т | Т | Т | F  | F                          | Т      | F               | Т            | Т                             |
| Т | Т | F | F  | F                          | F      | F               | Т            | Т                             |
| Т | F | Т | Т  | Т                          | Т      | Т               | Т            | Т                             |
| Т | F | F | Т  | Т                          | Т      | Т               | F            | F                             |
| F | Т | Т | F  | Т                          | Т      | Т               | Т            | Т                             |
| F | Т | F | F  | Т                          | F      | F               | Т            | Т                             |
| F | F | Т | Т  | Т                          | Т      | Т               | Т            | Т                             |
| F | F | F | Т  | Т                          | Т      | Т               | F            | F                             |

We observe that the last column of the truth table contains F also. Thus  $S_1 \wedge S_2 \rightarrow S$  is not a tautology hence argument is invalid.



12.

15. The truth table showing the truth values of hypotheses and conclusion is as given below :

|   |   |   |    |       | Hypot                                | heses     |                              | Conclusion |            |
|---|---|---|----|-------|--------------------------------------|-----------|------------------------------|------------|------------|
| р | q | r | ~q | p∧ ~q | $S_1 (p \land \sim q) \rightarrow r$ | S₂<br>p∨q | $S_{3}$<br>q $\rightarrow$ p | S<br>r     |            |
| Т | Т | Т | F  | F     | Т                                    | Т         | Т                            | Т          | ←ı         |
| Т | Т | F | F  | F     | Т                                    | Т         | Т                            | F          | ← Critical |
| Т | F | Т | Т  | Т     | Т                                    | Т         | Т                            | Т          | ← Rows     |
| Т | F | F | Т  | Т     | F                                    | Т         | Т                            | F          |            |
| F | Т | Т | F  | F     | Т                                    | Т         | F                            | Т          |            |
| F | Т | F | F  | F     | Т                                    | Т         | F                            | F          |            |
| F | F | Т | Т  | F     | Т                                    | F         | Т                            | Т          |            |
| F | F | F | Т  | F     | Т                                    | F         | Т                            | F          |            |

We observe that there are three critical rows, namely I, II, & III such that the conclusion is not true in the II<sup>nd</sup> row. Hence the given argument is invalid.

#### **EXERCISE - 4** Part # I : AIEEE/JEE-MAIN

- 1. +  $p \rightarrow (q \rightarrow p)$  is false
  - $\Rightarrow$  p is true and  $(q \rightarrow p)$  is false. which is not possible.

So  $p \rightarrow (q \rightarrow p)$  is always true i.e. it is a tautology.

again  $p \rightarrow (p \lor q)$  is false

p is true and  $(p \lor q)$  is false. Which is not possible.

So  $p \rightarrow (p \lor q)$  is always true i.e. it is a tautology.

Hence  $p \rightarrow (q \rightarrow p) \equiv p \rightarrow (p \lor q)$ 

2. Given

3.

T

 $r: \sim p \leftrightarrow q$ statement-I  $r \equiv q \lor p$ 

statement-II  $r \equiv (p \leftrightarrow \sim q)$ 

| р | q | ~ p | ~ q | $(\sim p \leftrightarrow q)$ | $\mathbf{q} \vee \mathbf{p}$ | $(p \leftrightarrow \sim q)$ |
|---|---|-----|-----|------------------------------|------------------------------|------------------------------|
| Т | Т | F   | F   | F                            | Т                            | F                            |
| Τ | F | F   | Т   | Т                            | Т                            | Т                            |
| F | Т | Т   | F   | Т                            | Т                            | Т                            |
| F | F | Т   | Т   | F                            | F                            | F                            |

Hence Statement-I is false and Statement-II is true.

statement-I :  $\sim$ (p $\leftrightarrow$   $\sim$ q) is equivalent to p $\leftrightarrow$ q  $\sim$ (p $\leftrightarrow$   $\sim$ q) is a tautology. statement-II :

| р | q | ~ q | $(p \leftrightarrow q)$ | $(\mathbf{p}\leftrightarrow\sim\mathbf{q})$ | $\sim (p \leftrightarrow \sim q)$ |
|---|---|-----|-------------------------|---------------------------------------------|-----------------------------------|
| Т | Т | F   | Т                       | F                                           | Т                                 |
| Т | F | Т   | F                       | Т                                           | F                                 |
| F | Т | F   | F                       | Т                                           | F                                 |
| F | F | Τ   | Т                       | F                                           | Т                                 |

Hence statement-1 is true, statement-2 is false.

4. Given  $S \subseteq R$  and

p = There is a rational number  $x \in S$  such that x > 0then  $\sim p$ : Any rational number  $x \in S$  such that  $x \neq 0$ i.e.  $\sim p$ : Every rational number  $x \in S$  satisfy  $x \le 0$ 5. Given Statement :





- $= [(p \lor q \lor \sim p) \land (p \lor q \lor q)]$
- $= (t \lor q) \land (p \lor q) = t \land (p \lor q) = p \lor q$
- $= (p \lor q) \lor (\sim p \land q)$
- **10.**  $(p \land \neg q) \lor q \lor (\neg p \land q)$  $= [(p \lor q) \land (\sim q \lor q)] \lor (\sim p \land q)$  $= [(p \lor q) \land t] \lor (\sim p \land q)$

F

F

Т

F

Т

F Т F F Т F F Т F Т

F

Т

Т

Т F

Т

6.  $[p \land (p \rightarrow q)] \rightarrow q$  $[p \land (\sim p \lor q)] \to q$  $[(p \land \sim p) \lor (p \land q)] \to q$  $[\mathsf{c} \lor (\mathsf{p} \land \mathsf{q})] \to \mathsf{q}$ 

 $\Rightarrow (p \land q) \rightarrow q$ 

|    | $\Rightarrow$ | ~(p /         | $(q) \vee q$      |       |                     |                                 |           |                     |
|----|---------------|---------------|-------------------|-------|---------------------|---------------------------------|-----------|---------------------|
|    | $\Rightarrow$ | (~p \         | √~q) ∨ q          |       |                     |                                 |           |                     |
|    | $\Rightarrow$ | $\sim p \lor$ | (q ∨~ q)          |       |                     |                                 |           |                     |
|    | $\Rightarrow$ | $\sim p \lor$ | $(t) \equiv taut$ | ology |                     |                                 |           |                     |
| 9. | $\sim S$      | ∨ (~          | $r \wedge S$ )    |       |                     |                                 |           |                     |
| S  | r             | ~r            | $\sim r \wedge S$ | ~ S   | $\sim S \vee (\sim$ | $-\mathbf{r} \wedge \mathbf{S}$ | ~ (~ \$ \ | $(\sim r \wedge S)$ |

 $\int p \wedge \sim p \equiv c \equiv contradiction$ 

 $c \lor p \!\equiv\! p$ 

F

Т

Т

Т

F

F

F

$$\begin{array}{l} (p \wedge \sim r) \Leftrightarrow q \\ \text{Negations of } p \Leftrightarrow q \text{ are} \\ \sim (p \Leftrightarrow q), \sim (q \Leftrightarrow p), \\ \sim p \Leftrightarrow q \quad \text{and} \quad \sim q \Leftrightarrow p \\ \text{Hence negations of given statement} \\ \text{are} \quad \sim (q \Leftrightarrow (p \wedge \sim r)) \quad \text{and} \quad \sim (p \wedge \sim r) \Leftrightarrow q \end{array}$$