SOLVED EXAMPLES

P 4	F/ 1											
Ex. 1	$\sim [(p \land q] -$	→(~p	v q)] 1s									
	(A) tautol	ogy		(B) cont	radictio	n	(C) 1	neither A no	or B	(D) e	either A or B	
					1		- A	I (mark)				
	p q	~q	$\mathbf{p} \wedge \mathbf{q}$	$\sim p \lor q$	$(\mathbf{p} \wedge \mathbf{q})$) → (~p	$(\mathbf{q}) \vee \mathbf{q}$	$\sim [(\mathbf{p} \wedge \mathbf{q})]$	\rightarrow (~p \vee	(q)]		
	ТТ	F	Т	Т		Т			F			
Sol.	T F	F	F	F		Т			F			
	F T	Т	F	Т		F			Т			
	F F	Т	F	Т		F			Т			
Ex. 2	$\sim (p \Rightarrow q)$	is equi	valent to									
	(A) p ∧ q			(B) ∼pV	′q		(C)	$\sim p \land \sim q$		(D) p	$p \wedge \sim q$	
	n o	0	$n \rightarrow$	$a \sim (n)$	$\rightarrow a$	$\mathbf{n} \wedge \sim 0$						
		~q	р —/ т	q ~(p	/ 4) E	p/~q						
Sol.		г	Г		г Т	 Т						
	F T	F	F		F	 						
	F F	Т	F		F	F						
	1 1	1	1		-	-	-					
Ex. 3	Choose th	e corre	ct answei	: The stat	tement r	\rightarrow (a \rightarrow	p) is e	equivalent t	o which of	the fc	ollowing ?	
	(A) $p \rightarrow (1)$	$p \rightarrow q$		(B) $n \rightarrow$	$(\mathbf{n} \vee \mathbf{n})$)	$(\mathbf{C})_1$	$n \rightarrow (n \land a)$		$(\mathbf{D})\mathbf{r}$	$r \leftrightarrow (n \rightarrow a)$	
Sol	$n \rightarrow (a \rightarrow$	n) =~1	$a \rightarrow (a \rightarrow$	$(\mathbf{n}) = \mathbf{n}$	$(P \vee q)$	(n)		e v (e v y)	(2) P		
501.	p /(q /	p) = - 1	$(\mathbf{n}, \dots, \mathbf{n})$	(p) = 'p	∨ (°¶` r– т	7 P)						
	=	=~ q ∨	$(\mathbf{p} \lor \sim \mathbf{p})$	$= ~ q \lor$	1 - 1							
	⇒ p	$\rightarrow (q)$	\rightarrow p) is ta	autology.			T	T				
	Also p	\rightarrow (p	∨ q)≡~l	$p \wedge (b \wedge$	$q) \equiv (p$	∨ p) ∨	q ≡ T	$\vee q \equiv T$				
	\Rightarrow p	\rightarrow (p	\vee q) is a	lso tautol	ogy.							
	\Rightarrow t	\rightarrow (q ·	\rightarrow p) \equiv p	$\rightarrow (p \lor q)$	q)							
Ex.4	If t and c	denote	a tautolo	gy and a	contradi	ction res	pective	ely, then for	any state	nent p	$p, p \wedge t$ is equal to	
	(A) c			(B)t			(C) p	5	•	(D) 1	None of these	
	n	6	n A	·								
Sol) F	Т	<u> </u>								
Son	F 1	· · F	F									
Ex. 5	If p, q, r a	re simp	le propos	itions wit	th truth [Γ, F, T the	en the t	ruth value	of [(~pVq)	∧ ~r]⇒pis	
	(A) false			(B) true			(C) t	rue, if r is f	alse	$(\mathbf{D})t$	rue, if q is true	
Sol	(B)						(-)			(-) -		
Son	~nVa mes	ne FVI	$F = F \sim rr$	neans F								
	(mVa)		1, 11	neans r,								
	(~pvq) ^	~r mea			.	Ŧ						
	50,	(~pvq	$\wedge \sim r$	⇒ p me	eans T 1.0	e,. True						
Ex. 6	If p, q, r a	re simp	le propos	itions, th	en (p∧	q) ^ (q	∧ r) is	true, then				
	(A) p, q, r	are all f	alse		-	· 1	(C) 1	p, q are true	and r is fa	ılse		
	(B) n. a. r	are all f	rue					n is true and	l a. r are fa	llse		
	() P, Y, I								,			

Z

Sol.	(B) $(p \land q) \land (q \land r)$ is true me are both true, it implies that p	eans $p \land q, q \land r$, q, r , q, r are all true.						
Ex. 7	If the following statements ar	the true: r, p \rightarrow q and q \rightarrow	r, then :					
	(A) r is true (I	B) p is true	(C) q is true	(D) p is false				
Sol.	\sim r is true \rightarrow r is false. Therefore	ore (\mathbf{A}) is not the answer.						
	Also, $q \rightarrow r$ is true and r is Similarly, since q is false and	false \rightarrow q is false. Then p \rightarrow q is true, p must be	false \rightarrow (D) is the answer, r	not (B).				
Ex. 8	Let $f: R \rightarrow R$ be a function d	efined by $f(x) = \min\{x +$	1, x +1. Then which of th	e following statements is true?				
	(A) $f(x) \ge 1$ for all $x \in R$		(C) f(x) is differentiable ev	erywhere				
	(B) $f(x)$ is not differentiable at	$\mathbf{x} = 1$	(D) $f(x)$ is not differentiable	e at x = 0				
Sol.	(C)							
	$f(x) = min\{x+1, x +1\}$							
	$f(x) = x + 1 \ \forall \ \in \ R$							
Ex. 9	Let S be a non empty subset of	of R. Consider the follow	ing statement : P : There is a	a rational number $x \in S$ such that				
	x > 0. Then, which of the foll	owing statements is the 1	negation of statement P :					
	(A) $x \in and x \le 0 \Rightarrow x$ is not rational							
	(B) Every rational number x e	\equiv satisfies x ≤ 0						
	(C) There is no rational numb	ber $x \in \text{such that } x \leq 0$						
	(D) There is a rational number	$\mathbf{r} \mathbf{x} \in \text{such that } \mathbf{x} \leq 0$						
Sol.	The given statement is P : The	ere is a rational number y	$x \in S$ such that $x > 0$					
	The negation would be : There $y \in S$ actisfy $y \in O$	e is no rational number x	\in S such that $X \ge 0$ which is	equivalent to all rational number				
	$x \in S$ satisfy $x \ge 0$.							
Ex. 10	The statement "If x is divisible	le by <mark>8, then it is d</mark> ivisible	e by 6" is false if x equals					
	(A) 6 (E	B) 14	(C) 32	(D) 48				
Sol.	(C)							
	A sentence in "Ifthen" form is called an implication. The only time when an implication is false is when the "If"							
	part of the sentence is true and the "then" part of the sentence is false. The number 32 makes the first part of the							
	statement true and the second	d part of the statement fa	alse.					
Ex. 11	What is true about the statem	ent "If two angles are ri	ght angles, the angles have	equal measure" and its converse				
	"If two angles have equal measure then the two angles are right angles."?							
	(A) The statement is true but	its converse is false.						
	(B) The statement is false bu	t its converse is true.						
	(C) Both the statement and it	s converse are false.						
	(D) Both the statement and it	s converse are true.						
Sol.	(A)							
	All right angles have 90 deg	rees, therefore they are	all equal in measure. How	ever, two angles can be equal in				
	measure (each being 30 degr	ees), but they are not nee	cessarily right angles.					

Ex. 12	Mary says "The numbe Mary is thinking of is	r I am thinking is div	isible by 2 or it is divisible	by 3". This statement is false if th	e number
	(A) 6	(B) 8	(C) 11	(D) 15	
Sol.	(C) This sentence contains only number that is not	the word "or" (disjundivisible by 2 and is	nction). A disjunction is on not divisible by 3 is 11.	ly false if BOTH conditions are t	false. The
Ex. 13	"If Tom buys a red sk equivalent ?	ateboard, then Ama	nda buys green in-line ska	ates." Which statement below is	logically
	(A) If Amanda does no	t buy green in-line sk	cates, then Tom does not b	uy a red skateboard.	
	(B) If Tom does not bu	y a red skateboard, t	hen Amanda does not buy	green in-line skates.	
	(C) If Amanda buys gro	een in-line skates, the	en Tom buys a red skateboa	ard.	
	(D) If Tom buys a red s	skateboard, then Ama	anda does not buy green in	-line skates.	
Sol.	(A)				
Ex. 14	Which statement repres	sents the inverse of the	he statement "If it is snowi	ng, then Skeeter wears a sweater.	." ?
	(A) If Skeeter wears a s	weater, then it is snow	wing.		
	(B) If Skeeter does not	wear a sweater, then	it is not snowing.		
	(C) If it is not snowing	, then Skeeter does no	ot wear a sweater.		
C.I	(D) If it is not snowing,	then Skeeter wears a	a sweater.		
501.	(C) Remember : to form the	INVERSE of a state	ment_insert "NOT" into the	"If" and the "then" sections of the	sentence
					sentence.
Ex. 15	Which of the following (A) If $x + 2 \le 5$ then a s	is the converse of the	e statement: "If $x > 4$, then	x + 2 > 5"?	
	(A) If $x + 2 < 5$, then $x <$	4. $(1 + 1) = 1$	t greater than 5		
	(C) If $x + 2 > 5$ then $x > 2$	an 4, then $x + 2$ is no 4	t greater than 5.		
	(b) If $x + 2$ is not great	er than 5, then x is no	t greater than 4.		
Sol.	(C)				
	Remember: to form the	CONVERS <mark>E of a sta</mark>	atement, the "If" and the "th	ien" sections of the statement swite	ch places.
Ex. 16	Which statement is log battle."	cically equivalent to	"If Yoda cannot use a lig	htsaber, then he cannot help Luk	e win the
	(A) Yoda cannot use a l	ightsaber and he will	help Luke win the battle.		
	(B) If Yoda can help Lu	ike win the battle, the	en he can use a lightsaber.		
	(C) Yoda can use a ligh	tsaber if and only if h	ne can help Luke win the ba	attle.	
	(D) Yoda cannot use a l	ightsaber and will no	ot help Luke win the battle.		
Sol.	(B)				
	A statement is logically	y equivalent to its co	ontrapositive. To form the	contrapositive, switch the "If" and	nd "then"
	sections of the stateme	nt AND insert "NO	Is" into each section. Noti	ice in this situation, that inserting	g "NOTs"
	turns the thoughts posi-	tive (you are negatii	ng negative thoughts).		
Ex. 17	If Shelly does not like .	ohn, what is the trut	h value of the statement "S	helly likes Mike and she likes Joh	ın."?
	(A) True		(B) False	abovo	
Sol	(C) Sherry fixes Peter.		(D) none of the	above	
	The statement in questi	on contains the word	"AND" A statement with '	"AND" is only true when BOTH c	onditions

The statement in question contains the word "AND". A statement with "AND" is only true when BOTH conditions are true. The section "she likes John" is false, so the entire statement is false.

Ex. 18 Sol.	 Which is logically equiv. (A) Today is Sunday and (B) If Matt plays hockey (C) Today is Sunday and (D) Today is not Sunday (B) Statements are logically 	alent to "If today I Matt can play he to then today is no I Matt cannot pla if and only if Ma equivalent to thei	is Sunday, Ma ockey. ot Sunday. y hockey. utt plays hocke ir contrapositiv	att cannot play hockey." ey. ves.	?
Ex. 19	The sentence " if an (A) $x+x=2x$ (C) both 1 and 2 could be (P)	d only if $x + x = 3$ e used	x" is TRUE. V (I (I	Which of the following c B) $2x - x = 2x$ D) neither 1 nor 2 could	could be used to fill in the blank ? be used
501.	"if and only if" is TRUE w must also be false. $2x - x$	when both condition $= 2x$ is false.	ons are the SAM	ME truth value. Since "x -	+x = 3x" is false, the first condition
Ex. 20	The inverse of the conve (A) converse (C) contrapositive	erse of a conditio	nal statement	is the B) inverse D) none of the above	
Sol.	(C) The inverse will insert Nor The converse will switch The contrapositive does	OT into the stater the IF and THEN both. The contra	ment. J. positive is the	inverse of the converse	e of the conditional statement.
Ex. 21	"If Deb and Sam go to th (A) If Deb and Sam do n (B) If Deb and Sam do no (C) If it is snowing, then (D) If it is not snowing, t	te mall, then it is s ot go to the mall, ot go to the mall, Deb and Sam go hen Deb and Sam	snowing." What then it is not so them it is snow them it is snow to the mall.	ich statement below is lo snowing. ving. the mall.	ogically equivalent ?
Sol.	(D) A statement is logically of	equivalent <mark>to its c</mark>	ontrapositive.		
Ex. 22	$S_1 : \sim (p \leftrightarrow \sim q) \text{ is equiva}$ $S_2 : \sim (p \leftrightarrow \sim q) \text{ is a tautol}$ (A) S_1 is true, S_2 is true, S_2 (B) S_1 is true, S_2 is true, S_2 (C) S_1 is true, S_2 is false	lent to $p \leftrightarrow q$. logy. $_{2}$ is a correct explanation S_{2} is not a correct of	anation for S ₁ explanation fo	or S_1 D) S_1 is false, S_2 is true	
Sol.	(C)				
	$\begin{array}{c c} p & q & p \leftrightarrow q \\ \hline T & T & T \\ \hline T & F & F \\ \end{array}$	$\begin{array}{c} \sim q & p \leftrightarrow \sim q \\ F & F \\ T & T \end{array}$	$\frac{(p \leftrightarrow \neg q)}{T}$		
	I F F F T F F F T	T T F F	F T	-	
Ex. 23	The proposition $p \Rightarrow \sim (p$ (A) contradiction	$p \land \sim q$) is (C) either A or	В (І	B) tautology	(D) None of these
301.					

р	р	~q	(p ∧ ~q)	~(p ^~q)	$p \Rightarrow \sim (p \land \sim q)$
Т	Т	F	F	Т	Т
Т	F	Т	Т	F	F
F	Т	F	F	Т	Т
F	F	Т	F	Т	Т

It is clear from the table that given proposition is neither tautology nor contradiction.

- **Ex.24** The proposition $(P \lor Q) \lor (\sim P \land \sim Q)$ is a;
 - (A) contradiction

- (B) tautology
- (D) both a contradiction nor a tautology
- (C) neither a contradiction nor a tautologySol. Let us construct the truth table for this proposition :

Р	Q	$P \lor Q$	~ P	~ Q	~P ^~Q	$(\mathbf{P} \lor \mathbf{Q}) \lor (\sim \mathbf{P} \land \sim \mathbf{Q})$
Т	Т	Т	F	F	F	Т
F	Т	Т	Т	F	F	Т
Т	F	Т	F	Т	F	Т
F	F	F	Т	Т	Т	Т

Since the proposition is True for every assignment of truth values to its components, it is a tautology.

Ex.25 Which of the following are tautologies and which are contradictions ?

(1) $(p \land q) \rightarrow (p \lor q)$ (2) $(p \land (\sim p)) \land ((\sim q) \land p)$ (3) $q \lor (p \lor (\sim q))$

(A) All are contradictions. (B) All are tautologies.

(C) Only Statement (2) is a contradiction, (1) and (3) are tautologies.

(D) Only Statement (1) is a tautology, (2) and (3) are contradictions

- Sol. Let us construct the truth tables for the statements :
- (1) $(p \land q) \rightarrow (p \lor q)$

р	q	p∧q	$\mathbf{p} \lor \mathbf{q}$	$\mathbf{p} \land \mathbf{q} \rightarrow \mathbf{p} \lor \mathbf{q}$
Т	Т	Т	Т	Т
Т	F	F	Т	Т
F	Т	F	F	Т
F	F	F	F	Т

р	q	~p	~q	p ∨ (~q)	(~q) ∨ p	$(p \land (\sim p)) \land ((\sim q) \land p)$
Т	Т	F	F	F	F	F
Т	F	F	Т	F	Т	F
F	Т	Т	F	F	F	F
F	F	Т	Т	F	F	F

Therefore, this is a contradiction.

 $(3) \qquad q \lor (p \lor (\sim q))$

р	q	~q	p ∨ (~q)	$q \lor (p \lor (\sim q))$
Т	Т	F	Т	Т
Т	F	Т	Т	Т
F	Т	F	F	Т
F	F	Т	Т	Т

Therefore, this is a tautology.

Therefore the correct answer is (C) Only Statement (2) is a contradiction, (1) and (3) are tautologies.

If the compound state	ment $p \rightarrow (\sim p \lor q)$ is false (B) T F	then the truth value of $p = (C) F T$	and q are respectively-
(A) I, I Consider the statemer (A) New Delhi is not a	nt p : "New Delhi is a city"	. Which of the following i (B) It is false that No	is not negation of p ? ew Delhi is a city
(C) It is not the case t	hat New Delhi is not a city	(D) None of these	
If p is any statement,	t is a tautology and c is a co	ontradiction then which of	f the following is not correct-
(A) $p \land (\sim c) \equiv p$	$(\mathbf{B}) \mathbf{p} \lor (\sim \mathbf{t}) \equiv \mathbf{p}$	(C) $t \lor c \equiv p \lor t$	(D) $(p \land t) \lor (p \lor c) \equiv (t \land d)$
Which of the followin	g is not a component stater	nent of the statement '100	is divisible by 5, 10 and 11'?
(A) 100 is divisible by	5	(B) 100 is divisible b	by 10
(C) 100 is not divisible	e by 11	(D) 100 is divisible b	y 11
The inverse of the sta	tement $(p \land \sim q) \rightarrow r$ is-		
$\textbf{(A)} \sim (p \lor \sim q) \rightarrow \sim r$		$(\mathbf{B}) (\sim p \land q) \to \sim r$	
$(\mathbf{C}) (\sim p \lor q) \to \sim r$		(D) None of these	
Which of the followin	g is logically equivalent to	$\sim (p \leftrightarrow q)$	
$(\mathbf{A}) (\sim \mathbf{p}) \leftrightarrow \mathbf{q}$	(B) $(\sim p) \leftrightarrow (\sim q)$	(C) $p \rightarrow (\sim q)$	(D) $p \rightarrow q$
Suppose that x and y	are positive real numbers.		
Let $p: x < y \implies x^2 < y^2$	and $q: x^2 < y^2 \Longrightarrow x < y$. Th	en	
(A) $p \Rightarrow q \text{ and } q \Rightarrow p$	(B) $p \Rightarrow q$ and $q \Rightarrow p$	(C) $p \Leftrightarrow q$	(D) $p \Rightarrow q$ and $\sim q \Rightarrow p$
The statement ~(p \rightarrow	q) \leftrightarrow (~p \vee ~q) is-		
(A) a tautology		(B) a contradiction	
(C) neither a tautolog	y nor a contradiction	(D) None of these	
Which of the followir	ng statements is using an 'ir	nclusive Or"?	
(A) A number is either	rational or irrational	(B) All integers are	positive or negative
(C) The office is close	ed if it is a holiday or a Sun	day (D) Sum of two inte	gers is odd or even
If statement $p \rightarrow (q \lor$	r) is true then the truth val	ues of statements p, q, r r	espectively-
(A) T, F, T	(B) F, T, F	(C) F, F, F	(D) All of these
If $x = 5$ and $y = -2$ the	x - 2y = 9. The contrapose	sitive of this statement is	
(A) If $x - 2y = 9$ then y	x = 5 and $y = -2$	(B) If $x - 2y \neq 9$ then	$n x \neq 5 and y \neq -2$
(C) If $x - 2y \neq 9$ then $z \neq 1$	$x \neq 5$ or $y \neq -2$	(D) If $x - 2y \neq 9$ then	n either $x \neq 5$ or $y = -2$
If S*(p, q) is the dual	of the compound statement	t S(p, q) then S*(\sim p, \sim q) is	s equivalent to-
(A) $S(\sim p, \sim q)$	(B) \sim S(p, q)	(C) $\sim S^{*}(p,q)$	(D) None of these

13.	Which of the followin	g is a logical statement?		
	(A) Open the door		(B) What an intellige	nt student !
	(C) Are you going to	Delhi	(D) All prime number	rs are odd numbers
14.	$(\sim p \lor \sim q)$ is logically	equivalent to-		
	(A) $p \land q$	$(\mathbf{B}) \sim \mathbf{p} \rightarrow \mathbf{q}$	(C) $p \rightarrow \sim q$	(D) $\sim p \rightarrow \sim q$
15.	If p is true and q is fa	lse, then which of the follow	ving statement is not true?	
	(A) p∨q	(B) $p \Rightarrow q$	(C) p∧(~q)	(D) $q \Rightarrow p$
16.	 The contrapositive of (A) If something does (B) If something does (C) Something is not of (D) If something have 	statement "Something is co not have low temperature, not have low temperature cold implies that it has low t low temperature, then it is	old implies that it has low to then it is not cold. then it is cold temperature not cold.	emperature" is
17.	For any three simple	statement p, q, r the stateme	ent $(p \land q) \lor (q \land r)$ is true	when-
	(A) p and r true and q	is false	(B) p and r false and	q is true
	(C) p, q, r all are false		(C) q and r true and p	is false
18.	 Consider the statemen (A) not everyone in G (B) no one in German (C) there are persons (D) There is atleast on 	t p : ''Everyone in Germany ermany speaks German y speaks German in Germany who do not spe ne person in Germany who o	speaks German" which of t ak German does not speak German.	he following is not negation of p"
19.	If p is any statement, correct- (A) $n \land t = n$	t and c are a tautology and (B) $\mathbf{p} \wedge \mathbf{c} = \mathbf{c}$	a contradiction respective	ely then which of the following is not (D) $\mathbf{n} \lor \mathbf{c} = \mathbf{n}$
• •			$(\mathbf{C}) \mathbf{p} \vee \mathbf{c} = \mathbf{C}$	$(\mathbf{D}) \mathbf{p} \vee \mathbf{c} - \mathbf{p}$
20.	Negation of the stater (A) $\sim p \rightarrow \sim (q \land r)$	nent $p \rightarrow (q \land r)$ is (B) ~p $\lor (q \land r)$	$(\mathbb{C}) (q \wedge r) \to p$	(D) $p \land (\sim q \lor \sim r)$
21.	Which of the followin	g is correct-		
	(A) $(\sim p \lor \sim q) \equiv (p \land q)$)	$(\mathbf{B}) (\mathbf{p} \to \mathbf{q}) \equiv (\sim \mathbf{q} \to \sim$	~p)
	$(\mathbf{C}) \sim (\mathbf{p} \rightarrow \sim \mathbf{q}) \equiv (\mathbf{p} \land \mathbf{q})$	~q)	(B) \sim (p \leftrightarrow q) \equiv (p \rightarrow	$(q \rightarrow p) \lor (q \rightarrow p)$
22.	 Which one statement "The Banana trees with (A) It stays warm for a (B) If it stays warm for a (C) It stays warm for a (D) None of these 	gives the same meaning of Il bloom if it stays warm for a month and the banana tree r a month, then the Banana a month or the banana trees	statement a month." es will bloom trees will bloom will bloom	
23.	The negation of the st (A) $\sim q \land (p \rightarrow r)$	tatement $q \lor (p \land \neg r)$ is equal (B) $\neg q \land \neg (p \rightarrow r)$	tivalent to- (C) $\sim q \land (\sim p \land r)$	(D) None of these
_	$\mathbf{A} \sim \mathbf{q} \wedge (\mathbf{p} \rightarrow \mathbf{f})$ Add. 41-	$\frac{(\mathbf{D}) \sim \mathbf{q} \wedge \sim (\mathbf{p} \rightarrow \mathbf{r})}{42\mathbf{A}, \mathbf{Ashok Park Mai}}$ $+ 91 - 9$	n, New Rohtak Road,	New Delhi-110035

- 24. Which of the following statement are not logically equivalent-
 - (A) \sim (p $\vee \sim$ q) and (\sim p \wedge q)
 - (C) $(p \rightarrow q)$ and $(\sim q \rightarrow \sim p)$

(B) \sim (p \rightarrow q) and (p $\wedge \sim$ q) (D) (p \rightarrow q) and (\sim p \wedge q)

- 25. The negation of the statement "If a quadrilateral is a square then it is a rhombus".
 - (A) If a quadrilateral is not a square then it is a rhombus
 - (B) If a quadrilateral is a square then it is not a rhombus
 - (C) a quadrilateral is a square and it is not a rhombus
 - **(D)** a quadrilateral is not a square and it is a rhombus
- 26. The negative of the statement "If a number is divisible by 15 then it is divisible by 5 or 3"
 - (A) If a number is divisible by 15 then it is not divisible by 5 and 3
 - (B) A number is divisible by 15 and it is not divisible by 5 or 3
 - (C) A number is divisible by 15 or it is not divisible by 5 and 3
 - (D) A number is divisible by 15 and it is not divisible by 5 and 3
- 27. The statement 'x is an even number implies that x is divisible by 4' means the same as
 - (A) x is divisible by 4 is necessary condition for x to be an even number
 - (B) x is an even number is a necessary condition for x to divisible by 4
 - (C) x is divisible by 4 is a sufficient condition for x to be an even number
 - **(D)** x is divisible by 4 implies that x is not always an even number

28. The negation of the statement "The sand heats up quickly in the sun and does not cool down fast at night"is

- (A) The sand does not heat up quickly in the sun and it does not cool down fast at night
- (B) Either the sand does not heat up quickly in the sun or it cools down fast at night
- (C) The sand heats up quickly in the sun and it cools down fast at night
- (D) The sand heats up quickly in the sun or it cools down fast at night
- 29. The negation of the statement "2 + 3 = 5 and 8 < 10" is-(A) $2+3 \neq 5$ and 8 ≤ 10 (B) $2+3 \neq 5$ or 8 > 10
 - (C) $2+3 \neq 5$ or $8 \ge 10$ (D) None of these
- **30.** The statement "If $2^2 = 5$ then I get first class" is logically equivalent to-
 - (A) $2^2 = 5$ and I don't get first class(B) $2^2 = 5$ or I do not get first class(C) $2^2 \neq 5$ or I get first class(D) None of these
- 31. If p, q, r are simple propositions, with truth values T, F, T respectively then the truth value of $(\sim p \lor q) \land \sim r \Rightarrow p$ is
 - (A) true

- (C) true if r is false
- **(D)** true if q is true
- 32. Which of the following statement convey different meaning from the others?

(B) false

(A) p is a necessary condition for q
(B) p only if q
(C) p implies q
(D) ~ q implies ~ p

33.	Negation of the statement	$t(p \wedge r) \rightarrow (r \vee q)$ is-		
	$(\mathbf{A}) \sim (p \wedge r) \rightarrow \sim (r \lor q)$	(B) $(\sim p \lor \sim r) \lor (r \lor q)$	(C) $(p \land r) \land (r \land q)$	(D) $(p \land r) \land (\sim r \land \sim q)$
34.	The converse of the state	ment 'p implies q' is		
	(A) ~ q implies ~ p	(B) q implies p	(C) p only if q	(D) ~ p implies q
35.	Which of the following s	tatement is a tautology-		
	(A) $(\sim p \lor \sim q) \lor (p \lor \sim q)$		(B) $(\sim p \lor \sim q) \land (p \lor \sim q)$	
	(C) $\sim p \land (\sim p \lor \sim q)$		(D) $\sim q \land (\sim p \lor \sim q)$	
36.	The negation of the stater	nent ' $\sqrt{2}$ is not a complex	number' is	
	(A) $\sqrt{2}$ is a rational number	ber	(B) $\sqrt{2}$ is an irrational nu	umber
	(C) $\sqrt{2}$ is a real number		(D) $\sqrt{2}$ is a complex num	iber
37.	Statement $(p \land q) \rightarrow p$ is			
	(A) a tautology		(B) a contradiction	
	(C) neither (1) nor (2)		(D) None of these	
38.	For the compound statem	nent		
	'All prime numbers are ei	ther even or odd'. Which o	f the following is true?	
	(A) Both component state	ements are false		
	(B) Exactly one of the co	mponent statements is true		
	(C) At least one of the co	omponent statements is true	2	
	(D) Both the component	statements are true		
39.	Which of the following is	wrong-		
	(A) $p \lor \sim p$ is a tautology		(B) \sim (\sim p) \leftrightarrow p is a tauto	logy
	(C) $p \land \neg p$ is a contradict	ion	(D) $((p \land p) \rightarrow q) \rightarrow p$ is	a tautology
40.	Which of the following is	a statement-		
	(A) I am Lion		(B) Logic is an interestin	g subject
	(C) A triangle is a circle an	nd 10 is a prime <mark>nu</mark> mber	(D) None of these	

Exercise # 2 Part # I [Matrix Match Type Questions]

Following question contains statements given in two columns, which have to be matched. The statements in **Column-I** are labelled as A, B, C and D while the statements in **Column-II** are labelled as p, q, r and s. Any given statement in **Column-I** can have correct matching with **one or more** statement(s) in **Column-II**.

1.	Match the	e following	columns :
		0	

	Column - I	Column - II	
(A)	Negation of $(\sim p \rightarrow q)$ is	(p)	$[\sim (p v q)] \land [p v (\sim p)]$
(B)	Negation of $(p \leftrightarrow q)$ is	(q)	$(p \land \sim q) v (\sim p \land q)$
(C)	Negation of $(p v q)$ is	(r)	$(\sim p v q) \land (p v \sim q)$
(D)	$p \leftrightarrow q$ is equivalent to	(s)	$\sim p \land \sim q$

Part # II >> [Comprehension Type Questions]

Comprehension # 1

 $p \rightarrow q$ is called a conditional statement. It is read as "If p then q". It is false only when p is true and q is false.

- Following points may be noted in context of $p \rightarrow q$:
- (i) p is a sufficient condition for q(iii) "If p then q" also means "p only if q"
- (ii) q is a necessary condition for p (iv) $p \rightarrow q$ is equivalent to $\sim q \rightarrow \sim p$
- 1. Consider statement "If you are born in India then you are a citizen of India". Which of the following is logical equivalent to the given statement ?
 - (A) If you are not born in India then you are not a citizen of India
 - (B) If you are a citizen of India then you are not born in India
 - (C) You are born in India only if you are a citizen of India
 - (D) Taking birth in India is not sufficient condition to be a citizen of India
- 2. Consider statement "If there are clouds in the sky then it will rain". Which of the following give same meaning?
 - (A) Having clouds in the sky is sufficient to have rain
 - (B) It is not necessary to have rain if there are clouds in the sky.
 - (C) If it is raining then there are clouds in the sky.
 - (D) All of these

3. If p : Mumbai is in Japan and q : Delhi is in South Africa then

(A) $p \rightarrow q$ is true (B) $p \rightarrow q$ is false (C) $p \rightarrow \sim q$ is false

(D) $\sim q \rightarrow \sim p$ is false

- 11. Show that the following statement is true by the method of contrapositive. p: If x is an integer and x² is even, then x is also even.
- 12. Prove that statements $(p \land q) \lor [\sim p \lor (p \land \sim q)]$ and $(\sim p \land q) \lor t$ where t is tautology are logically equivalent
- 13. Test the validity of the following statement :"If it rains tomorrow, I shall carry my umbrella if its cloth is mended. It will rain tomorrow and the cloth will not be mended. Therefore, I shall not carry my umbrella".
- 14. Examine the validity of the argument $(S_1, S_2; S)$, where S_1 : If Hema is not in team A, then Rita is in team B. S_2 : If Rita is not in team B, then Mamta is in team A. S: Mamta is in team A or Rita is not in team B.
- 15. If p, q, r are three statements, then test the validity of the argument $(S_1, S_2, S_3; S)$, where $S_1 : (p \land \neg q) \rightarrow r$; $S_2 ; p \lor q$; $S_3 ; q \rightarrow p$ and S; r

Add. 41-42A, Ashok Park Main, New Rohtak Road, New Delhi-110035

MATHEMATICAL REASONING

7.	The negation of the state	ement					
	"If I become a teacher, th		[AIEEE-2012]				
	(1) I will not become a to						
	(2) I will become a teacher and I will not open a school.(3) Either I will not become a teacher or I will not open a school.						
	(4) Neither I will become a teacher nor I will open a school.						
8.	The statement \sim (p \leftrightarrow \sim	q) is :			[JEE Main 2014]		
	(1) equivalent to $p \leftrightarrow q$		(2) equivalent to $\sim p \leftrightarrow$	q			
	(3) a tautology		(4) a fallacy				
9.	The negation of $\sim s \vee ($	\sim r \wedge s) is equivalent to :			[JEE Main 2015]		
	(1) $s \lor (r \lor \sim s)$	(2) s ∧ r	(3) s $\wedge \sim r$	(4) s ^ (r /	$\wedge \sim s)$		
10.	The Boolean Expression	$(p \wedge \sim q) \vee q \vee (\sim q \wedge p)$ i	s equivalent to :		[JEE Main 2016]		
	(1) p \land q	(2) p ∨ q	(3) $p \lor \sim q$	(4) ∼ p ∧ q	l		

ANSWER KEY

EXERCISE - 1

 1. B
 2. C
 3. D
 4. C
 5. C
 6. A
 7. C
 8. C
 9. C
 10. D
 11. C
 12. B
 13. D

 14. C
 15. B
 16. A
 17. D
 18. B
 19. C
 20. D
 21. B
 22. B
 23. A
 24. D
 25. C
 26. D

 27. A
 28. B
 29. C
 30. C
 31. A
 32. A
 33. D
 34. B
 35. A
 36. D
 37. A
 38. A
 39. D

 40. C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C</td

EXERCISE - 2 : PART - I

1. $A \rightarrow p, s B \rightarrow q C \rightarrow p, s D \rightarrow r$

PART - II

Comprehension #1: 1. C 2. A 3. A

EXERCISE - 4

1. 2 **2.** 1 **3.** 1 **4.** 3 **5.** 2,4 **6.** 4 **7.** 2 **8.** 1 **9.** 2 **10.** 2

