CLASS 10 MATHS

POLYNOMIALS

RELATION BETWEEN ZEROS OF POLYNOMIAL

EXERCISE

- **Q.1** Find the zeroes of the quadratic polynomial $6x^2 13x + 6$ and verify the relation between the zeroes and its coefficients.
- Q.2 Find the zeroes of the quadratic polynomial $4x^2 9$ and verify the relation between the zeroes and its coefficients.
- Q.3 Find the zeroes of the quadratic polynomial $9x^2 5$ and verify the relation between the zeroes and its coefficients.
- Q.4 If α and β are the zeroes of $ax^2 + bx + c$, $a \ne 0$ then verify the relation between the zeroes and its coefficients.
- Q.5 Prove relation between the zeroes and the coefficient of the quadratic polynomial $ax^2 + bx + c$.
- **Q.6** find the zeroes of the quadratic polynomial $x^2 2x 8$ and verify a relationship between zeroes and its coefficients.
- Q.7 Verify that the numbers given along side of the cubic polynomials are their zeroes. Also verify the relationship between the zeroes and the coefficients. $2x^3 + x^2 5x + 2$; $\frac{1}{2}$, 1, 2
- Q.8 If α and β are the zeroes of the quadratic polynomial $ax^2 + bx + c$. Find the value of (i) $\alpha^2 \beta^2$ (ii) $\alpha^3 + \beta^3$.
- Q.9 Find a cubic polynomial with the sum of its zeroes, sum of the products of its zeroes taken two at a time, and product of its zeroes as 2, 7 and –14, respectively.

Q.10 Find the cubic polynomial with the sum, sum of the product of its zeroes taken two at a time and product of its zeroes as 0, –7 and –6 respectively.

ANSWER KEY

1.
$$\frac{2}{3}$$
 and $\frac{3}{2}$.

Sum of the zeroes =
$$\frac{-(-13)}{6} = \frac{-\text{coefficitenf } x}{\text{coefficitenf } x^2}$$

Product of the zeroes
$$=\frac{6}{6} = \frac{\text{contsant term}}{\text{coefficienf } x^2}$$

2. are
$$\frac{3}{2}$$
 & $-\frac{3}{2}$.

Sum of the zeroes
$$=\frac{-(0)}{4} = \frac{-\text{coefficitenf } x}{\text{coefficitenf } x^2}$$

Product of the zeroes
$$=\frac{-9}{4} = \frac{\text{contant term}}{\text{coefficienf } x^2}$$

3. when
$$x = \frac{\sqrt{5}}{3}$$
 or $x = \frac{-\sqrt{5}}{3}$.

Sum of the zeroes =
$$\frac{-(0)}{9} = \frac{-\text{coefficitenf } x}{\text{coefficitenf } x^2}$$

Product of the zeroes
$$=\frac{-5}{9} = \frac{\text{contant term}}{\text{coefficienf } x^2}$$

4. Sum of the zeroes =
$$\frac{-b}{a} = \frac{-\text{coefficienf } x}{\text{coefficienf } x^2}$$

Product of the zeroes =
$$\frac{c}{a} = \frac{\text{consant term}}{\text{coefficienf } x^2}$$

5.
$$\alpha\beta = \frac{c}{a} = \frac{\text{constant term}}{\text{coefficienf } x^2}$$

CLASS 10

6. 4, – 2.

Sum of the zeroes =
$$\frac{-(-2)}{1} = \frac{-\text{coefficitenf } x}{\text{coefficitenf } x^2}$$

Product of the zeroes
$$=\frac{-8}{1} = \frac{\text{contant term}}{\text{coefficienf } x^2}$$

7.
$$\frac{1}{2}$$
, 1, -2

Sum of the zeroes of
$$p(x) = -\frac{1}{2} = \frac{-\text{coefficienf } x^2}{\text{coefficienf } x^3}$$

Sum of the products of two zeroes taken at a time =
$$-\frac{5}{2} = \frac{\text{coefficienf } x}{\text{coefficienf } x^3}$$

Product of all the three zeroes
$$=\frac{-(2)}{2} = \frac{-\text{contsant term}}{\text{coefficienf } x^3}$$

8. (i) =
$$-\frac{b\sqrt{b^2-4ac}}{a^2}$$

$$(ii) = \frac{-b^3 + 3abc}{a^3}$$

9.
$$\frac{b}{a}$$
, $\frac{c}{a}$ and $\frac{d}{a}$

$$x^3 - 2x^2 - 7x + 14$$

10.
$$\frac{b}{a}$$
, $\frac{c}{a}$ and $\frac{d}{a}$

$$x^3 - 7x + 6$$