EXERCISE # 1

A. Very Short Answer Type Questions

- **Q.1** Give the formula to calculate the gravitational force of attraction.
- **Q.2** What is the value of gravitational constant ?
- **Q.3** What is the unit of gravitational constant ?
- **Q.4** Does the gravitational force between two bodies change, if some other material body is placed between them ?
- **Q.5** What is the approximate value of acceleration due to gravity on the surface of earth ?
- **Q.6** What is the unit of acceleration due to gravity?
- **Q.7** State the relation between g and G on earth.
- **Q.8** What is the effect of altitude on the value of g?
- **Q.9** What is the weight of a body at a height equal to the radius of earth above the earth's surface ?
- **Q.10** Is the weight of body more at the equator or at poles ?
- **Q.11** Which force is responsible for the earth revolving round the sun ?
- **Q.12** A stone is released from some height, it moves towards the earth. Does the earth also move towards the stone ?
- **Q.13** A light and a heavy body, both are dropped simultaneously from the same height. Which will strike the ground earlier ?
- Q.14 As we go inside the earth, what is the effect on the value of g?
- Q.15 What is the value of g at the centre of earth?

B. Short Answer Type Questions

- Q.16 How does the gravitational force change between two objects when the distance between them is doubled ?
- Q.17 Why two stones do not come closer, even if there is gravitational force of attraction between them ?
- **Q.18** Under what conditions our weight becomes zero? Give examples.
- Q.19 An astronaut inside a spaceship orbiting round the earth feels weightlessness. Explain.
- **Q.20** The weight of a body is less inside the earth than on the surface. Why?
- Q.21 For two bodies of different masses, acceleration due to gravity is same or different? Explain.
- **Q.22** Newton's law of gravitation states that there is a force of attraction between two bodies. Why do we not observe the motion of two stones lying on the floor moving towards each other ?
- Q.23 Calculate the force of attraction between two bodies of masses 100 kg and 60 kg respectively separated by a distance of 5 m from each other.
- **Q.24** If the distance between two bodies is decreased by a factor of 4, by what factor the force of attraction will change ?
- **Q.25** Calculate force of attraction on a body of mass 50 kg lying on the surface of earth. Given that the mass of earth = 6×10^{24} kg radius of the earth = 6.4×10^{6} m and $G = 6.67 \times 10^{-11}$ Nm²/kg².
- **Q.26** What happens to the weight of a body when it is falling freely under gravity ?

- **Q.27** Although, the value of G is very small, but all the objects near the surface of earth fall towards the earth. Why ?
- **Q.28** Calculate the force of gravitation between two bodies each of mass 80 kg and placed 16 cm apart. (Take $G = 6.67 \times 10^{-11}$ Nm^2/kg^2)
- Q.29 The mass of Mars is $\frac{1}{10}$ th and its radius is half of that of the earth. Calculate value of g on the surface of Mars.
- Q.30 What is the weight of a body whose mass is 25 kg?

C. Long Answer Type Questions

- **Q.31** Discuss the terms gravitation and gravity with suitable examples.
- **Q.32** State Newton's law of gravitation. State the unit and value of gravitational constant.
- **Q.33** Discuss the various factors on which the value of g depends.
- **Q.34** Compare the gravitational attraction on the earth due to the attraction of sun due to attraction of moon. Given mass of sun = 2×10^{30} kg, mass of moon = 7.35×10^{22} kg, distance of sun from earth = 1.5×10^{11} m, distance of moon from earth = 3.84×10^{8} m.
- Q.35 A body weighs 160 N on the surface of the earth. Calculate his weight at a height of 3.6×10^6 m from the surface of the earth. Radius of earth = 6.4×10^6 m.

EXERCISE # 2

Single correct answer type questions

- **Q.1** When an apple falls from a tree:
 - (A) only earth attracts the apple
 - (B) only apple attracts the earth
 - (C) both the earth and the apple attract each other
 - (D) none attracts each other
- **Q.2** Force of attraction between two bodies does not depend upon :
 - (A) the shape of bodies
 - (B) the distance between their centres
 - (C) the magnitude of their masses
 - (D) the gravitational constant
- Q.3 When the medium between two bodies changes, force of gravitation between them : (A) will increase
 - (B) will decrease
 - (C) will change according to the environment
 - (D) remains same
- $\begin{array}{ccc} \textbf{Q.4} & & \text{S.I. unit of G is :} \\ & & (A) \ \text{Nm}^2 \ \text{kg}^{-2} & & (B) \ \text{Nm} \ \text{kg}^{-2} \\ & & (C) \ \text{N} \ \text{kg}^2 M^{-2} & & (D) \ \text{Nkg} \ \text{m}^{-2} \end{array}$
- Q.5 The value of universal gravitational constant:(A) changes with change of place(B) does not change from place to place(C) becomes more at night
 - (D) becomes more during the day
- $\begin{array}{lll} \textbf{Q.6} & \mbox{The value of G in S.I. unit is :} \\ (A) \ 6.67 \times 10^{-9} & (B) \ 6.67 \times 10^{-10} \\ (C) \ 6.67 \times 10^{-11} & (D) \ 6.67 \ x \ 10^{-12} \end{array}$
- Q.7 The gravitational force between two bodies varies with distance *r* as : (A) 1/r (B) $1/r^2$
 - (C) r (D) r^2

- Q.8. The value of G in year 1900 was $6.673 \times 10^{-11} \text{ Nm}^2 \text{ kg}^{-2}$, The value of G in the year 2007 will be : (A) $6.673 \times 10^{-9} \text{ Nm}^2 \text{ kg}^{-2}$ (B) $6.673 \times 10^{-10} \text{ Nm}^2 \text{ kg}^{-2}$ (C) $6.673 \times 10^{-2} \text{ Nm}^2 \text{ kg}^{-2}$
 - (D) $6.673 \times 10^{-11} \text{ Nm}^2 \text{ kg}^{-2}$
- Q.9 Value of G on surface of earth is $6.673 \times 10^{-11} \text{ Nm}^2 \text{ kg}^{-2}$, then value of G on surface of Jupiter is : (A) $12 \times 6.673 \times 10^{-11} \text{ Nm}^2 \text{ kg}^{-2}$ (B) $\frac{6.673}{12} \times 10^{-11} \text{ Nm}^2 \text{ kg}^{-2}$ (C) $6.673 \times 10^{-11} \text{ Nm}^2 \text{ kg}^{-2}$
 - (D) $\frac{6.673}{6} \times 10^{-11} \,\mathrm{Nm^2 \, kg^{-2}}$
- Q.10 The earth attracts the moon with a gravitational force of 10^{20} N. Then the moon attracts the earth with a gravitational force of: (A) 10^{-20} N (B) 10^2 N (C) 10^{20} N (D) 10^{10} N
- Q.11 The orbits of planets around the sun are: (A) circular (B) parabolic
 - (C) elliptical (C) straight
- Q.12 Law of gravitation is applicable for:
 (A) heavy bodies only
 (B) medium sized bodies only
 (C) small sized bodies only
 (D) bodies of any size
- Q.13 The universal law of gravitation was proposed by :
 (A) Copernicus
 (B) Newton
 (C) Galileo
 (D) Archimedes

- Q.14 Choose the correct statement :
 - (A) All bodies repel each other in the universe.
 - (B) Our earth does not behave like a magnet.
 - (C) Acceleration due to gravity is 8.9 ms^{-2}
 - (D) All bodies fall at the same rate in vacuum.
- Q.15 The value of acceleration due to gravity (g) on earth's surface is :
 - (A) $6.67 \times 10^{-11} \text{ Nm}^2 \text{ kg}^2$
 - (B) 8.9 m/sec²
 - (C) 9.8 m/sec^2
 - (D) none of these
- **Q.16** The acceleration due to gravity:
 - (A) has the same value everywhere in space
 - (B) has the same value everywhere on the earth
 - (C) varies with the latitude on the earth
 - (D) is greater on moon because it has smaller diameter
- Q.17 When a space ship is at a distance of two earths radius from the centre of the earth, the gravitational acceleration is :

(A) 19.6 ms ^{-2}	(B) 9.8 m/s^{-2}
(C) 4.9 m/s^2	(D) 2.45 ms^{-2}

Q.18 If planet existed whose mass and radius were both half of the earth, the acceleration due to gravity at the surface would be :

(A)
$$19.6 \text{ m/sec}^2$$
 (B) 9.8 m/s^2
(C) 4.9 ms^{-2} (D) 2.45 m/s^2

Q.19 A stone is dropped from the top of a tower. Its velocity after it has fallen 20 m is

> [Take g = 10 ms⁻²]: (A) 5 ms⁻¹
> (B) 10 m s⁻¹ (C) 15 m s⁻¹
> (D) 20 m s⁻¹

- **Q.20** A ball is thrown vertically upwards. The acceleration due to gravity:
 - (A) is in the direction opposite to the direction of its motion
 - (B) is in the same direction as the direction of its motion
 - (C) increases as it comes down
 - (D) become zero at the highest point.
- Q.21 The acceleration due to gravity on the moon's surface is:
 - (A) approximately equal to that near the earth's surface
 - (B) approximately six times that near the earth's surface
 - (C) approximately one-sixth of that near the earth's surface
 - (D) slightly greater than that near the earth's surface
- Q.22 The force acting on a ball due to earth has a magnitude F_b and that acting on the earth due to the ball has a magnitude F_e Then :
 - (A) $F_b = F_e$ (B) $F_b > F_e$ (C) $F_b < F_e$ (D) $F_e = 0$
- Q.23
 Force of gravitation between two bodies of mass 1 kg each kept at a distance of 1 m is : (A) 6.67 N
 (B) 6.67×10^{-9} N

 (C) 6.67×10^{-11} N
 (D) 6.67×10^{-7} N
- Q.24 The force of gravitation between two bodies does not depend on:
 - (A) their separation
 - (B) the product of their masses
 - (C) the sum of their masses
 - (D) the gravitational constant
- **Q.25** The ratio of the value of g on the surface of moon to that on the earth's surface is :
 - (A) 6 (B) $\sqrt{6}$

(C)
$$\frac{1}{6}$$
 (D) $\frac{1}{\sqrt{6}}$

Q.26	Order of magnitude	of G in S.I. unit is :
	(A) 10^{-11}	(B) 10^{11}
	(C) 10^{-7}	(D) 10^7

- Q.28 If the distance between two masses be doubled then the force between them will become :

(A)
$$\frac{1}{4}$$
 times (B) 4 times
(C) $\frac{1}{2}$ times (D) 2 times

- Q.29 The type of force which exists between charged bodies is
 - (A) only gravitational
 - (B) neither gravitational nor electrical
 - (C) only electrical
 - (D) both electrical and gravitational
- Q.30 The acceleration due to gravity is 9.8 m/s²
 (A) Much above the earth's surface
 (B) Near the earth's surface
 (C) Deep inside the earth
 (D) At the centre of the earth
- Q.31 A particle is taken to a height R above the earth's surface, where R is the radius of the earth. The acceleration due to gravity there is (A) 2.45 m/s² (B) 4.9 m/s^2 (C) 9.8 m/s^2 (D) 19.6 m/s^2
- Q.32 When a body is thrown up, the force of gravity is :
 - (A) in upward direction
 - (B) in downward direction
 - (C) zero
 - (D) in horizontal direction

- Q.33 Mass of an object is :
 - (A) amount of matter present in the object
 - (B) same as weight of an object
 - (C) measure of gravitational pull
 - (D) none of these

Q.34 The weight of an object is :

- (A) the quantity of matter it contains
- (B) refers to its inertia
- (C) same as its mass but is expressed in different units
- (D) the force with which it is attracted towards the earth
- Q.35 Weight of an object depends on :
 - (A) temperature of the place
 - (B) atmosphere of the place
 - (C) mass of an object
 - (D) none of these
- Q.36 The mass of body is measured to be 12 kg on the earth. Its mass on moon will be :
 - (A) 12 kg (B) 6 kg (C) 2 kg (D) 72 kg
- Q.37 A heavy stone falls:
 - (A) faster than a light stone
 - (B) slower than a light stone
 - (C) with same acceleration as light stone
 - (D) none of these
- Q.38 A stone is dropped from the roof of a building takes 4s to reach the ground. The height of the building is :
 - (A) 19.6m
 (B) 39.2 m
 (C) 156.8 m
 (D) 78.4 m

Q.39 A ball is thrown up and attains a maximum height of 19.6 m. Its initial speed was:

(A) 9.8 ms^{-1}	(B) 44.3 ms ⁻¹
(C) 19.6 ms ⁻¹	(D) 98 ms ⁻¹

- Q.40 The value of g at pole is :(A) greater than the value at the equator(B) less than the value at the equator(C) equal to the value at the equator
 - (D) none of these

Q.42 A body is thrown up with a velocity of 20 m/s. The maximum height attained by it is approximately:

(A) 80 m	(B) 60 m
(C) 40 m	(D) 20 m

Q.43 The weight of a body is 120 N on the earth. If it is taken to the moon, its weight will be about:
(A) 120 N
(B) 60 N

(11) 120 11	(B) 00 IV
(C) 20 N	(D) 720 N

Q.44 Two iron and wooden balls identical in size are released from the same height in vacuum. The time taken by them to reach the ground are-

(A) not equal	(B) exactly equal
(C) regularly equal	(D) zero

ANSWER KEY EXERCISE-1

1. $F = G m_1 m_2 / r^2$	2. $6.67 \times 10^{-11} \text{ Nm}^2/\text{kg}^2$	3. Nm^2/kg^2	
4. No	5. 9.8 m/s ²	6. m/s ²	7. $g = \frac{GM}{R^2}$
8. Decreases		9. mg/4	10. poles
11. Gravitational force	13. Both	14. decreases	15. zero
23. 1.6 × 10 ⁻⁸ N	24. 16 times	25. 490 N	28. 1. 6675 × 10 ⁻⁵ N
29. 3.92 m/s ²	30. 245 N	34. 1800 : 1	35. 81.9 N

EXERCISE-2

Ques	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans	С	Α	D	Α	В	С	В	D	С	С	С	D	В	D	С
Ques	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans	С	D	А	D	А	С	А	С	С	С	А	В	А	D	В
Ques	31	32	33	34	35	36	37	38	39	40	41	42	43	44	
Ans	Α	В	Α	D	С	Α	С	D	С	Α	Α	D	С	В	