$\frac{1}{4} \frac{2}{4} \frac{3}{4} \frac{3}{7} = 0$

D < 0

No solution

HINTS & SOLUTIONS

EXERCISE - 1 Single Choice

- 1. Since sum of coefficients = 0
 - \therefore It's one root is 1 and other root is $\frac{a-2b+c}{a+b-2c}$
- 4. For $(p^2 3p + 2)x^2 (p^2 5p + 4)x + p p^2 = 0$ to be an identity

$p^2 - 3p + 2 = 0$	\Rightarrow p = 1, 2	(i)
$p^2 - 5p + 4 = 0$	\Rightarrow p = 1, 4	(ii)
$p - p^2 = 0$	\Rightarrow p = 0, 1	(iii)

- For (i), (ii) & (iii) to hold simultaneously p = 1.
- 5. x = 1 is root Let other root = α
 - \therefore Product of the roots $=(1)(\alpha) = \frac{a-b}{b-c}$
- ⇒ roots are 1, $\frac{a-b}{b-c}$ 6. $q^2 - 4p \ge 0$
 - $q=2 \implies p=1$ $q=3 \implies p=1,2$ $q=4 \implies p=1,2,3,4$
 - Hence 7 values of (p, q)

7 equations are possible.

14. for $x \ge 1$

$$\begin{split} & E = x^5 \, (x^3 - 1) + (x - 1) + 1 > 0 \\ & \text{for } 1 < x < 0 \,, \\ & E = (1 - x) + x^2 \, (1 - x^3) + x^8 > 0 \\ & \text{For } x < 0 \,, \text{ all terms are positive } \Rightarrow > 0 \ \text{Hence A} \end{split}$$

(-1, 3)

- **16.** $x^2 2mx + m^2 1 = 0$ (i) f(-2) > 0
 - (ii) f(4) > 0

iii)
$$D \ge 0$$

(iv)
$$-2 < \frac{-b}{2a} < 4$$

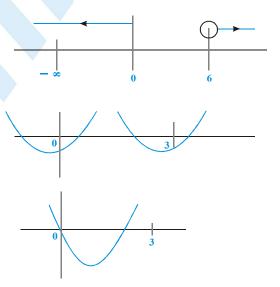
Common solution $m \in$

- 17. $(x^2+4)^2 = (2x-3)^2$ $\Rightarrow x^2+4=\pm(2x-3)$
 - $\Rightarrow x^2 + 2x + 1 = 0 \quad \text{or}$ $\Rightarrow (x+1)^2 = 0 \quad \text{or}$ $\Rightarrow x = -1$

Have only one solution.

$$25. \quad \frac{\sum \alpha \beta \gamma}{\alpha \beta \gamma \delta} = \frac{-4}{10} = \frac{-2}{5}$$

- 26. Let roots of $x^3 Ax^2 + Bx C = 0$ are α, β, γ $\Rightarrow \alpha + \beta + \gamma = A, \ \Sigma \alpha \beta = B, \ \alpha \beta \gamma = C$ & $(\alpha + 1) (\beta + 1) (\gamma + 1) = 19$ $\Rightarrow (\alpha + \beta + \gamma) + (\alpha \beta + \beta \gamma + \gamma \alpha) + \alpha \beta \gamma + 1 = 19$ A + B + C = 18
- **28.** $f(0) \cdot f(3) < 0$ check end points separately



29. For integral roots, D of equation should be perfect sq.
→ 4D=4(1+n) By observation, for n N, D should be perfect sq. of even integer.
So D=4(1+n)=6², 8², 10², 12², 14², 16², 18², 20²

No. of values of n = 8.

Part # II : Assertion & Reason

3.
$$ax^3 + bx + c = 0$$

 $\gamma \geq 0$
 $\beta = 0 \gamma = 0$
 $\beta = 0, \beta \geq 0, \beta \geq$

$$\mathbf{4.} \qquad \mathbf{a_1} + \mathbf{a_2} + \mathbf{a_3} + \mathbf{a_4} + \mathbf{a_5} = \mathbf{0}$$

⇒ 1 is one of the root of the equation & degree of equation is 4 & complex roots occur in conjugate

 \Rightarrow at least 2 real roots.

5. Suppose α , β be non real

$$\overline{\alpha} = \beta$$

 $\alpha = x + iy$

(imaginary roots appear in conjugate pairs) $\beta = x - iy = \overline{\alpha}$

$$\frac{1}{\beta} = \frac{x + iy}{x^2 + y^2}$$

$$\overline{\alpha} = \frac{1}{\beta} \Longrightarrow x - iy = \frac{x + iy}{x^2 + y^2}$$

$$\Rightarrow$$
 x=0 or y=0

- ⇒ either both equation have real root or both imaginary roots
- $\Rightarrow D_1 D_2 \ge 0 \Rightarrow \text{ statement 1 is true} \\ \alpha\beta = q \qquad (\text{from 1}^{\text{st}} \text{ given equation})$

$$\frac{d}{dt} = \frac{c}{a}$$
 (from 2nd given equation)

$$3^2 = \frac{aq}{c}$$
; also $p^2 \neq 1$

 \Rightarrow c \neq aq;

$$\alpha + \beta = -2p;$$
 $\alpha + \frac{1}{\beta} = -\frac{2b}{a}$

$$\frac{2b}{a} - 2p = \beta - \frac{1}{\beta} = \frac{\beta^2 - 1}{\beta} \neq 0$$

 \Rightarrow b \neq pa \Rightarrow statement 2 is true

$$a > b > c \implies a, b, c, are distinct real alsoa3 + b3 + c3 - 3abc = 0$$

$$\left(\frac{a+b+c}{2}\right)[(a-b)^2+(b-c)^2+(c-a)^2]=0$$
 as a, b, c

are distinct

6.

$$a+b+c=0$$

hence
$$x = 1$$
 is a root of $ax^2 + bx + c = 0$

c = b = 0a+b+c=0 and a >b>c \Rightarrow a and c are of opposite sign

otherwise $a+b+c \neq 0$ therefore $\frac{c}{a}$ negative.

9.
$$f(x) = a(x+1)(x-\beta)(as-1 \text{ is root})$$

 $f(1) + f(2) = 2a(1-\beta) + 3a(2-\beta) = 0$

$$= a (8 - 5\beta) = 0 \text{ as } a \neq 0 \implies \beta = \frac{8}{5}$$

$$= \left(x + \frac{1}{x}\right)^3 - \left(x^3 + \frac{1}{x^3}\right) = x^3 + \frac{1}{x^3} + 3\left(x + \frac{1}{x}\right) - \left(x^3 + \frac{1}{x^3}\right)$$
$$= 3\left(x + \frac{1}{x}\right);$$

hence $y_{\min} = 6$ as $x + \frac{1}{x} \ge 2$ for $\forall x > 0$

(C) Since P(x) divides into both of them

hence P(x) also divides

(3x⁴ + 4x² + 28x + 5) - 3(x⁴ + 6x² + 25)= -14x² + 28x - 70 = -14(x² - 2x + 5)

 $-14x^{2}+28x-70=-14(x^{2}-2x+$

which is a quadratic.

Hence
$$P(x) = x^2 - 2x + 5$$

$$\therefore P(1) = 4$$

Alternatively :

 $x^{4} + 6x^{2} + 25 = (x^{4} + 10x^{2} + 25) - 4x^{2}$ $= (x^{2} - 2x + 5)(x^{2} + 2x + 5)$

Hence P (x) can be $x^2 - 2x + 5$ or $x^2 + 2x + 5$

by using long division we find that only $x^2 - 2x + 5$ is a factor of $3x^4 + 4x^2 + 28x + 5$ which is equal to

$$(x^2-2x+5)(3x^2+6x+1)$$

- :. $P(x) = x^2 2x + 5$
- \Rightarrow P(1)=4]

EXERCISE - 4 Subjective Type $x^2 - 3x + 2 = 0$ 1. 3. $x^2 + 18x + 45 - 2\sqrt{x^2 + 18 + 45} + 1 = 16$ $\Rightarrow \left(\sqrt{x^2 + 18x + 45} - 1\right)^2 = 16$ $\Rightarrow \sqrt{x^2 + 18x + 45} - 1 = \pm 4$ $\Rightarrow \sqrt{x^2 + 18x + 45} = \pm 4 + 1 = 5, -3$ \Rightarrow x²+18x+45=25, (Reject-3) \Rightarrow x²+18x+20=0 Product of root = +20. 4. Since the equation has unequal real roots, the discriminant is positive, that is $4(a+b)^2 > 4(a-b+8)$ \Rightarrow $a^2 + 2ab + b^2 > a - b + 8$ $\Rightarrow a^2 + (2b - 1)a + (b^2 + b - 8) > 0$:. Discriminant should be negative $\Rightarrow (2b-1)^2 < 4(b^2+b-8)$ \Rightarrow 4b²-4b+1 < 4b²+4b-32 ⇒ 33<8b $\therefore b > \frac{33}{8}$ Hence, smallest natural number b = 5. $x \le \frac{-2}{3}, \ \frac{1}{2} \le x \le 2$ 5.

6. Considering denominator $x^2 - 8x + 32$

D < 0 and a > 0 So denominator is always positive ⇒ ax²+2(a+1)x+9a+4<0 ⇒ a<0 & 4(a+1)²-4a (9a+4)<0 ⇒ 4(a²+2a+1-9a²-4a)<0 ⇒ 4(-8a²-2a+1)<0 8a²+2a-1>0 (4a-1)(2a+1)>0 ⇒ a ∈ $\left(-\infty, -\frac{1}{2}\right)$

EXERCISE - 5

Part # I : AIEEE/JEE-MAIN

Let other roots be β and δ then $\alpha + \beta = -p$, $\alpha\beta = q$ $\alpha + \delta = -q, \ \alpha \delta = p$ $\beta - \delta = q - p, \quad \frac{\beta}{\delta} = \frac{q}{p} \quad \Rightarrow \quad \frac{\beta - \delta}{\delta} = \frac{q - p}{p}$ $\frac{q-p}{\delta} = \frac{q-p}{p} \qquad \delta = p$ $\beta = q$ Equation having β , δ as roots $x^2 - (\beta + \delta) x + \beta \delta = 0$ $x^2 - (p+q)x + pq = 0$ $x^{2} + x + pq = 0$ [p + q = -1] 25. $x^3 + px^2 + qx + r < \beta_{\gamma}^{\alpha}$ $\alpha\beta\gamma = -r$ $\left(\alpha - \frac{1}{\beta\gamma}\right)\left(\beta - \frac{1}{\gamma\alpha}\right)\left(\gamma - \frac{1}{\alpha\beta}\right) =$ $\left(\alpha + \frac{\alpha}{r}\right) \left(\beta + \frac{\beta}{r}\right) \left(\gamma + \frac{\gamma}{r}\right) = \alpha\beta\gamma \left(1 + \frac{1}{r}\right)^3 = -r\frac{(r+1)^3}{r^3}$ $= -\frac{(r+1)^3}{r^2}$

2.
$$(x-a)(x-b)-c = (x-a)(x-\beta)$$

 $(x-a)(x-\beta)+c = (x-a)(x-b)$
so $(x-a)(x-\beta)+c = 0$ have roots a, 6
4. Let roots $\alpha, 2\alpha$
 $3\alpha = \frac{3a-1}{a^2-5a+3}$
 $2\alpha^2 = \frac{2}{a^2-5a+3}$
 $\frac{2\alpha^2}{9\alpha^2} = \frac{2}{a^2-5a+3} \frac{(a^2-5a+3)^2}{(3a-1)^2}$
 $\frac{2}{9} = \frac{2(a^2-5a+3)}{(3a-1)^2}$
 $9a^2 - 45a + 27 = 9a^2 - 6a + 1$
 $39a = 26$
 $\boxed{a = \frac{2}{3}}$
5. $\alpha + \beta = \frac{1}{\alpha^2} + \frac{1}{\beta^2}$ (given)
 $\alpha + \beta = \frac{(\alpha^2 + \beta^2)}{\alpha^2 \beta^2}$
 $(\alpha + \beta) = \frac{(\alpha + \beta)^2 - 2\alpha\beta}{\alpha^2 \beta^2}$
 $\frac{-b}{a} = \frac{b^2 - 2ac}{c^2}$
 $-bc^2 = ab^2 - 2a^2c \implies bc^2 + ab^2 = 2a^2c$
 $\frac{c}{a} + \frac{b}{c} = \frac{2a}{b}$
So
 $\frac{c}{a}, \frac{a}{b}, \frac{b}{c} = \dots A.P.$
 $\frac{a}{c}, \frac{b}{a}, \frac{c}{b} = \dots H.P.$
7. $x + \frac{1}{x} \ge 2$
 $\Rightarrow AM \ge GM$

 $x + \frac{1}{x}$ is min at x = 1

From (i) q = p + r $(p+r)^2 - 4pr = 0$ $(p-r)^2 = 0$ $\mathbf{p} = \mathbf{r}$ from eq. (i) q = 2rSo from eq. (ii) 4r - 4r + r = 2r=2So 4p + 2q + r = 4r + 4r + r = 9r = 1824. Given $e^{\sin x} - e^{-\sin x} = 4$ let $e^{\sin x} = v$ $y - \frac{1}{y} = 4$ \Rightarrow y² - 4y - 1 = 0 $y = 2 \sqrt{5}$ $e^{sinx} = 2 - \sqrt{5}$ $e^{sinx} = 2 \pm \sqrt{5}$ but we know that $e^{-1} \le e^{\sin x} \le e^{1}$ so $e^{\sin x} \neq 2 + \sqrt{5}$ and $2 - \sqrt{5}$ so No real solution of given equation. **27.** $x^2 - 5x + 5 = 1$ \Rightarrow x=1.4 or $x^2 - 5x + 5 = -1$ \Rightarrow x=2,3 or $x^2 + 4x - 60 = 0$ \Rightarrow x=-10, 6 \therefore x = 3 will be rejected as L.H.S. becomes -1So, sum of value of x = 1 + 4 + 2 - 10 + 6 = 3Part # II : IIT-JEE ADVANCED 2. $x^2 - |x+2| + x > 0$ Case-I: $x + 2 \ge 0 \implies x^2 - x - 2 + x > 0$ \Rightarrow x $\in \left[-2, -\sqrt{2}\right] \cup \left(\sqrt{2}, \infty\right)$ Case-II: x+2 < 0 $x^{2} + x + 2 + x > 0 \implies x^{2} + 2x + 2 > 0$

6. (B) $x^2 - 10 cx - 11d = 0$ $x^2 - 10ax - 11b = 0$ a + b = 10c.....(i) & c + d = 10a.....(ii) add (i) & (ii) \Rightarrow a+b+c+d=10(a+c) subract (i) & (ii) (a-c)+(b-d) = 10(c-a) \Rightarrow b-d=11(c-a)(iii) $also a^2 - 10ca - 11d = 0$(iv) $c^2 - 10ac - 11b = 0$ (v) from (iv) & (v) $\Rightarrow a^2 - c^2 = 11(d - b)$ (a-c)(a+c) = 11(d-b) \Rightarrow (a+c)=121 (from (iii)) and a + b + c + d = 10 (a + c) $= 121 \times 10 = 1210$ 7. (A) $x^2 - px + r = 0$ β $x^2 - qx + r$ 2β $\alpha + \beta = p, \ \frac{\alpha}{2} + 2\beta = q \implies \alpha + 4\beta = 2q$ $\alpha\beta = r$ $\Rightarrow 3\beta = (2q-p)$ $\Rightarrow \beta = \frac{2q-p}{3}$ and $\alpha = p - \frac{(2q-p)}{3} = \frac{4p-2q}{3}$ $r = \alpha\beta = \frac{2}{\alpha} (2p-q)(2q-p)$ 8. $x^2 + 2px + q = 0$ then $\alpha + \beta = -2p \& \alpha\beta = q$ and $ax^2 + 2bx + c = 0$ $\alpha + \frac{1}{\beta} = -\frac{2b}{a} \& \frac{\alpha}{\beta} = \frac{c}{a}$

 \Rightarrow x < -2 is solution

 $\Rightarrow (-\infty, -\sqrt{2}) \cup (\sqrt{2}, \infty)$

Add. 41-42A, Ashok Park Main, New Rohtak Road, New Delhi-110035 +91-9350679141 4. (C)

Given $bx^2 + cx + a = 0$ has imaginary roots

- \Rightarrow c² 4ab < 0
- \Rightarrow c² < 4ab
- \Rightarrow $-c^2 > -4ab$
- Let $f(x) = 3b^2x^2 + 6bcx + 2c^2$

Here, $3b^2 > 0$

So, the given expression has a minimum value

.....**(i)**

:. Minimum value =
$$\frac{-D}{4a}$$

= $\frac{4(3b^2)(2c^2) - 36b^2c^2}{4(3b^2)} = -\frac{12b^2c^2}{12b^2} = -c^2 > -4ab$
[From eq. (i)]

5.
$$(x^2 + bx + c).P(x) = 3x^4 + 18x^2 + 75$$
(i)
 $(x^2 + bx + c).Q(x) = 3x^4 + 4x^2 + 28x + 5$ (ii)
equation (i) – (ii)
 $(x^2 + bx + c)P(x) - Q(x) = 14x^2 - 28x + 70$
 $= 14(x^2 - 2x + 5)$
 $x^2 + bx + c = x^2 - 2x + 5$
hence $f(x) = x^2 - 2x + 5$
 $= (x - 1)^2 + 4$
min $(f(x)) = 4$

$$\frac{ax^{2}}{(1-x)^{2}} + \frac{bx}{1-x} + c = 0$$
(i)
If $t = \alpha$, then $t = \frac{x}{1-x} \Rightarrow \alpha = \frac{x}{1-x}$
 $\Rightarrow x = \frac{\alpha}{\alpha+1}$
 $\Rightarrow \text{ roots of (i) are } \left(\frac{\alpha}{1+\alpha}, \frac{\beta}{1+\beta}\right)$

7. Dis. of $x^2 + px + 3q$ is $p^2 - 12q \equiv D_1$ Dis. of $-x^2 + rx + q$ is $r^2 + 4q \equiv D_2$ Dis. of $-x^2 + sx - 2q$ is $s^2 - 8q \equiv D_3$ Case 1: If q < 0, then $D_1 > 0$, $D_3 > 0$ and D_2 may or may not be positive Case 2: If q > 0, then $D_2 > 0$ and D_1 , D_3 may or may not be positive Case 3: If q = 0, then $D_1 \ge 0$, $D_2 \ge 0$ and $D_3 \ge 0$ from Case 1, Case 2 and Case 3 we can say that the given equation has at least two real roots. 8. (B)

$$\alpha + \beta = -\frac{b}{a}, \alpha\beta = \frac{c}{a}$$

 $x_1 = \frac{\alpha + \beta}{2}, x_2 = \frac{2\alpha\beta}{\alpha + \beta}$

So equation whose roots are x_1 and x_2 is

$$x^{2} - x \left(\frac{\alpha + \beta}{2} + \frac{2\alpha\beta}{\alpha + \beta} \right) + \alpha\beta = 0$$

$$\Rightarrow x^{2} + x \left(\frac{b^{2} + 4ac}{2ab} \right) + \frac{c}{a} = 0$$

$$\Rightarrow 2ab x^{2} + (b^{2} + 4ac) x + 2bc = 0$$

9. Given equation can be written as

$$\frac{x-a}{b} - \frac{b}{x-a} + \frac{x-b}{a} - \frac{a}{x-b} = 0$$

$$\Rightarrow \frac{(x-a)^2 - b^2}{b(x-a)} + \frac{(x-b)^2 - a^2}{a(x-b)} = 0$$

$$\Rightarrow (x-a-b) \left[\frac{x-a+b}{b(x-a)} + \frac{x-b+a}{a(x-b)}\right] = 0$$

$$\Rightarrow (x-a-b) \left[\frac{x^2-bx-ax+ab+bx-b^2}{a(x-b)} + b\left[\frac{x^2-ax-bx+ab+ax-a^2}{a(x-b)}\right]\right]$$

$$= 0$$

$$\Rightarrow (x-a-b) (ax^2-a^2x+a^2b-ab^2+bx^2-b^2x+ab^2-a^2b)$$

$$= 0$$

$$\Rightarrow x(x-a-b) \{x(a+b)-(a^2+b^2)\} = 0$$

$$\therefore \text{ roots will be } x=0, a+b, \frac{a^2+b^2}{a+b}$$

$$\text{Let } x_1 = a+b, x_2 = \frac{a^2+b^2}{a+b} \text{ and } x_3 = 0$$

$$[\Rightarrow x_1 - x_2 - x_3 = c \quad (given)$$

$$\therefore (a+b) - \frac{a^2+b^2}{a+b} - 0 = c$$

$$\Rightarrow \frac{(a+b)^2 - (a^2+b^2)}{a+b} = c$$

$$\Rightarrow \frac{2ab}{a+b} = c$$

i.e. a, c, b are in H.P.

16. **(D**)

Statement-I: Let $f(x) = (x-p)(x-r) + \lambda (x-q)(x-s)$, $f(p) = \lambda (p-q) (p-s)$, f(q) = (q-p) (q-r), f(s) = (s-p) (s-r)and $f(r) = \lambda (r-q) (r-s)$ If $\lambda > 0$ then f(p) > 0, f(q) < 0, f(r) < 0 and f(s) > 0 $\Rightarrow f(x) = 0$ has one real root between p and q and other real root between r and s

Statement-II: Obviously true

17. **(B)**

Statement-I: Given equation $x^2 - bx + c = 0$ Let α , β two roots such that $|\alpha - \beta| = 1$ $\Rightarrow (\alpha + \beta)^2 - 4\alpha\beta = 1$ $\Rightarrow b^2 - 4c = 1$

Statement-II: Given equation

 $4abc x^{2} + (b^{2} - 4ac) x - b = 0$ $D = (b^{2} - 4ac)^{2} + 16 ab^{2}c$ $D = (b^{2} + 4ac)^{2} > 0$

Hence roots are real and unequal

18. (A)

 $x = \sqrt{5} - \sqrt{2}$ squaring both sides

$$x^2 = 5 + 2 - 2\sqrt{10}$$

$$(x^2 - 7)^2 = 40$$

 $x^4 - 14x^2 + 49 = 40$

$$x^4 - 14x^2 + 9 = 0$$

For polynomial equation with rational co-efficients irrational roots occurs in pairs.

19. (A)

In **Statement** -1: a - b + b - c + c - a = 0

- \Rightarrow If quadratic equation $ax^2 + bx + c = 0$ have one root
- x = 1 then a + b + c = 0
- \Rightarrow sum of co-efficients = 0

20. (D)

Statement 1 : $a^2 - 3a + 2 = 0$ $\Rightarrow a = 1, 2, a^2 - 5a + 6 = 0$

$$\Rightarrow$$
 a = 2, 3, a² - 4 = 0

$$\Rightarrow$$
 a = ± 2

a = 2 is the only solution. Hence statement 1 is false

Statement 2 : is true by definition.

21. (A)
$$\rightarrow$$
 (q), (B) \rightarrow (p), (C) \rightarrow (t), (D) \rightarrow (r)

$$y = |x + 1|$$
(A)

$$y = e^{-1}$$
Number of solutions is 3
(B) $2^{x} - x - 1 = 0$

$$y = x + 1$$
 \therefore there are two solutions
 $x = 0, 1$ (both are non-negative)
(C) $p + q = \alpha - 2$
 $pq = -\alpha - 1$
 $\therefore p^{2} + q^{2} = (\alpha - 2)^{2} - 2(-\alpha - 1)$
 $= \alpha^{2} - 4\alpha + 4 + 2\alpha + 2$
 $= \alpha^{2} - 2\alpha + 6 = (\alpha - 1)^{2} + 5$
 \therefore least value of $p^{2} + q^{2} = 5$
(D) $\alpha + \beta = -\frac{7}{2}, \alpha\beta = \frac{c}{2}$
 $\therefore \frac{7}{4} = |\alpha^{2} - \beta^{2}| = |(\alpha + \beta)| \sqrt{(\alpha + \beta)^{2} - 4\alpha\beta} = \frac{7}{2}$
 $\sqrt{\frac{49}{4} - 2c} = \frac{7}{4} \sqrt{49 - 8c}$
 $49 - 8c = 1 \Rightarrow c = 6$
22. (A) \rightarrow (p, q, r, t); (B) \rightarrow (r, t); (C) \rightarrow (p); (D) \rightarrow (p)
(A) Let $f(x) = x^{3} - 6x^{2} + 9x + \lambda$
 $\therefore f(x) = 3x^{2} - 12x + 9 = 3(x - 1)(x - 3)$
 $\overrightarrow{1}$
 $\overrightarrow{1}$

2 (B) Minimum value of $y = \frac{x^2}{2\sqrt{2}} - 2\sqrt{2}$ is at x = 0

i.e
$$-2\sqrt{2}$$

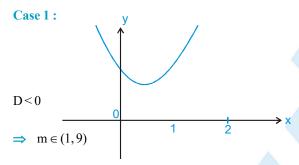
3 (C) roots of f(x) = 0

i.e
$$\frac{x^2}{2\sqrt{2}} - 2\sqrt{2} = 0$$
 are $x = \pm 2\sqrt{2}$

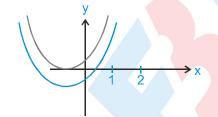
 \therefore number of integral value of k for which $\frac{k}{2}$ lies

in
$$(-2\sqrt{2}, 2\sqrt{2})$$
 are 11.

26. $f(x) = x^2 - (m-3)x + m > 0 \quad \forall x \in [1, 2]$ Here $D = (m-3)^2 - 4m = m^2 - 10m + 9 = (m-1)(m-9)$ All possible graphs are



Case 2 :



(i) $f(1) > 0 \implies 4 > 0$ always true

(ii)
$$-\frac{b}{2a} < 1 \implies m < 5$$

(iii) $D \ge 0 \implies m \in (-\infty, 1] \cup [9, \infty)$

: (i) \cap (ii) \cap (iii), we get $m \in (-\infty, 1]$

