SOLVED EXAMPLES

Ex. 1 Using data given below, predict whether the reduction of MgO with C is spontaneous or not at 1500°C. $2 C + O_2 \longrightarrow 2 CO$ $\Delta G^{\circ} \approx -530 \, \text{kJ}$ $2 \text{ MgO} \longrightarrow 2 \text{ Mg} + \text{O}_2$ $\Delta G^{\circ} \approx +730 \, \text{kJ}$ The positive value of ΔG° indicates that the reduction of MgO with C dose not occur to a significant extent at 1500°C Sol. $2 C + O_2 \longrightarrow 2 CO$ $\Delta G^{\circ} \approx -530 \, \text{kJ}$ $\frac{2 \text{ MgO}^2 \longrightarrow 2 \text{ Mg} + \text{O}_2}{2 \text{ MgO} + 2\text{C} \longrightarrow 2 \text{ Mg} + 2\text{CO}}$ $\frac{2 \text{ MgO} + \text{C} \longrightarrow \text{Mg} + \text{CO}}{\text{MgO} + \text{C}}$ $\Delta G^{\circ} \approx +730 \text{ kJ}$ or ΔG° positive value. Sea water $\xrightarrow{(A)} Mg(OH)_2 \xrightarrow{(B)} MgCl_2 \cdot 6H_2O \xrightarrow{(C)} MgCl_2 \xrightarrow{(D)} Mg + Cl_2\uparrow$ Ex. 2 Identify the reagents and processes (A) to (D) and give the name of this process. MgCl₂ (from sea water) + Ca(OH)₂ (A) \rightarrow Mg(OH)₂ \downarrow + CaCl₂; Mg(OH)₂ + 2HCl (B) \rightarrow MgCl₂ (aq.) + 2H₂O Sol. Crystallisation of MgCl₂(aq) yields MgCl₂.6H₂O $MgCl_{2} 6H_{2}O \xrightarrow{Calcination (C)} MgCl_{2} + 6H_{2}O$ $MgCl_2(\bullet) \xrightarrow{\text{Electrolysis is (D)}} Mg^{2+} + 2Cl^{-}$ $\downarrow +2e^{-} \downarrow Cl_2$ Mg Cl, (cathode) (anode) Name of the process is Dow's process. **Ex.3**

Convert magnesite into anhydrous MgCl₂.

 $Mg CO_3 \longrightarrow MgO + CO_2$. Sol. $MgO + C + Cl_2 \longrightarrow MgCl_2 + CO$

In roasting;

- **Ex.4** At a site, low grade copper ores are available and zinc and iron scraps are also available. Which of the two scraps would be more suitable for reducing the leached copper ore and why?
- Sol. Since zinc lies above iron in electrochemical series, it is more reactive than iron. As a result, if zinc scraps are used the reduction will be faster. However, zinc is a costlier metal than iron. Therefore, it will be advisable and advantageous to use iron scraps.
- Ex. 5 A metal is extracted from its sulphide ore and the process of extraction involves the following steps.

Metal sulphide $\xrightarrow{(A)}$ Concentrated ore $\xrightarrow{(B)}$ Matte $\xrightarrow{(C)}$ Impure metal $\xrightarrow{(D)}$ Pure metal Identify the steps (A), (B), (C) and (D).

Sol. (A) Froth floatation process. Sulphide ores are concentrated by froth-floatation process.

(B) Roasting. Metal sulphides are roasted to convert into metal oxide and to remove impurities.

$$2CuFeS_{2}+O_{2} \longrightarrow Cu_{2}S+2FeS+SO_{2}.$$

$$2FeS+3O_{2} \longrightarrow 2FeO+2SO_{2}.$$

$$2Cu_{2}S+3O_{2} \longrightarrow 2Cu_{2}O+2SO_{2}.$$

$$FeO+SiO_{2} \longrightarrow FeSiO_{3}$$

- (C) Bessemerisation / self reduction. Reduction of metal oxide by its sulphide takes place in Bessemer converter. In Bessemerisation; $2Cu_0 + Cu_2 S \longrightarrow 6Cu + SO_2$ (self - reduction)
- (D) Electro-refining. Pure metal is obtained at cathode.

 $M^{n+} + n e^{-} \longrightarrow m$

- **Ex. 6** Write chemical equations for metallurgical processes to represent :
 - (i) roasting of galena (PbS) in limited supply of air at moderate temperature.
 - (ii) reduction of Cu₂O using coke as a reducing agent.
 - (iii) deposition of pure silver from an aqueous solution of Ag⁺.

 $(i) 2PbS + 3O_2 \longrightarrow 2PbO + 2SO_2$

Sol.

 $PbS + 2O_2 \longrightarrow PbSO_4$

(ii) $Cu_2O + C \longrightarrow 2Cu + CO$

(iii) $Ag^+ + e^- \xrightarrow{\text{Electrolysis}} Ag \checkmark (at cathode)$

- **Ex.7** Which is not the correct process-mineral matching in metallurgical extraction.
 - (A) Leaching : silver (B) Zone refining

(C) Liquation : tin (D) Van Arkel

- Sol. Lead is purified by Electro-refining. Zone refining is used for the purification of Si and Ge. Therefore, (B) option is correct.
- **Ex.8** Tin stone, an oxide or of tin is amphoteric in nature. Explain.
- Sol. Tin stone is cassiterite i.e. SnO₂. SnO₂ dissolves in acid and alkali both, hence amphoteric oxide.

 $SnO_{2} + 4HCl \longrightarrow SnCl_{4} + 2H_{2}O$ $SnO_{2} + 2NaOH \longrightarrow Na_{2}SnO_{3} + H_{2}O$

- **Ex.9** Select the incorrect statement.
 - (A) In the Bayer's Al_2O_3 goes in to solution as soluble $[Al(OH)_4]^-$ while other basic oxides as TiO_2 and Fe_2O_3 remain insoluble

lead.

Zr

- (B) Extraction of zinc from zinc blende is achieved by roasting followed by reduction with carbon.
- (C) The methods chiefly used for the extraction of lead and tin are respectively carbon reduction and electrolytic reduction.
- (D) Extractive metallurgy of magnesium involves fused salt electrolysis.
- Sol. Lead \rightarrow self reduction; 2PbO + PbS \longrightarrow 3Pb + SO₂ Tin \rightarrow carbon reduction; SnO₂ + 2C \longrightarrow Sn + 2CO Therefore, (C) option is correct.
- **Ex.10** Assertion : In froth floatation process sodium ethyl xanthate is used as collector.

Reason : Sulphide ores are water soluble.

- (A) If both Assertion and Reason are true and Reason is a correct explanation of Assertion.
- (B) If both Assertion and Reason are true and Reason is not a correct explanation of Assertion.
- (C) If Assertion is true but Reason is false.
- (D) If Assertion is false but Reason is true.
- Sol. Assertion : Potassium or sodium ethyl xanthate is used as a collector. These get attached with the particles of the sulphide ore and thus make them water-repellant. Consequently the ore particles pass on into the froth. Collectors are always added in small quantity.

Reason : Sulphide ores are water insoluble.

Therefore, (C) option is correct.

Ex.11 Assertion : In the electrolytic reduction of Al_2O_3 , cryolite lowers the melting point of the mixture and brings conductivity.

Reason : Cryolite is an ore of aluminium.

- (A) If both Assertion and Reason are true and Reason is a correct explanation of Assertion.
- (B) If both Assertion and Reason are true and Reason is not a correct explanation of Assertion.
- (C) If Assertion is true but Reason is false.
- (D) If Assertion is false but Reason is true.
- Sol. Assertion : Cryolite as impurity reduces the melting point of Al_2O_3 from 2200 K to approximately 930 K and being ionic compound dissociates to give ions which bring about the conductivity of the electrolyte.

Reason : Cryolite is Na_3AlF_6 and is ore of aluminium.

Therefore, (B) option is correct.

Ex. 12 Assertion : Reduction of ZnO with carbon is done at 1100°C.

Reason : ΔG° is negative at this temperature thus, process is spontaneous.

- (A) If both Assertion and Reason are true and Reason is a correct explanation of Assertion.
- (B) If both Assertion and Reason are true and Reason is not a correct explanation of Assertion.
- (C) If Assertion is true but Reason is false.
- (D) If Assertion is false but Reason is true.
- Ans. All three oxidation curves for the carbon system lie above that for oxidation of zinc, until a temperature of approximately 1000°C is reached. At this point C is thermodynamically capable of reducing ZnO to Zn. Since this temperature is greater than the boiling point of Zn (907°C), it will be formed as a vapour. The overall equation for reduction is

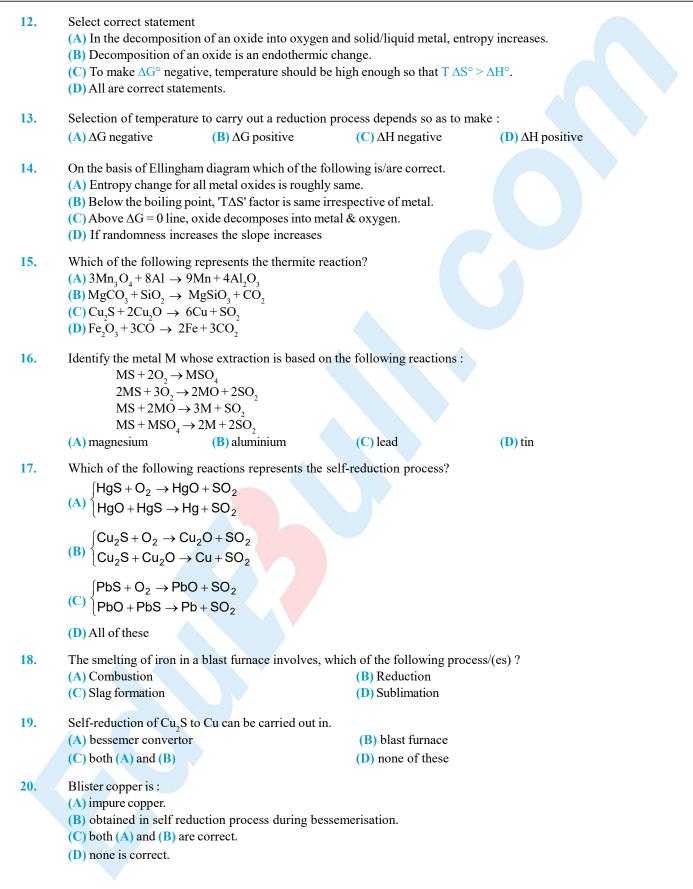
 $ZnO(s) + C(s) \longrightarrow Zn(g) + CO(g)$

Therefore, (A) option is correct.

Ex. 13	Which of the following is not an ore of iron ?				
	(A) limonite	(B) cassiterite	(C) magnetite	(D) none of these	
Sol.	SnO_2 , cassiterite is an or	re of tin.			
	Therefore, (B) option is	correct.			
Ex. 14	In the extraction of copp	er from sulphide ore the me	tal is formed by red	uction of Cu ₂ O with :	
	(A) FeS	(B) CO	$(\mathbf{C}) \operatorname{Cu}_2 \mathbf{S}$	(D) SO_2	
Sol.	$2Cu_2O + Cu_2S \xrightarrow{\Delta} 6Cc$	$u + SO_2$.			
	Therefore, (C) option is	correct.			
Ex. 15	Which of the following i	is a carbonate ore ?			
	(A) pyrolusite	(B) malachite	(C) diaspore	(D) cassiterite	
Sol.	CuCO ₃ .Cu(OH) ₂	Malachite.			
	Therefore, (B) option is	correct.			

Ex. 16 Column-I and column-II contains four entries each. Entries of column-I are to be matched with some entries of column-II. Each entry of column-I may have the matching with one or more than one entries of column-II.

	Column-I	Column-II					
	(A) Pb	(p) Bessemerisation					
	(B) Cu	(q) Roasting					
	(C) Zn	(r) Pyrometallurgy					
	(D) Fe (pig iron)	(s) Self-reduction method					
Ans.	(A) q, r, s; (B) p, q, r, s; (C) q, r; (D) r	;					
Sol.	(A) $2PbS + 3O_2 \longrightarrow 2PbO + 2SO_2$ (Roast	ting)					
	PbS + PbO ₂ $\xrightarrow{\Delta}$ 2Pb + SO ₂ (Self-reduction method) (B) 2Cu ₂ S + 3O ₂ \longrightarrow 2Cu ₂ O + 2SO ₂ (Roasting)						
	$Cu_2S + 2Cu_2O \xrightarrow{\Delta} 6Cu + SO_2 \text{ (Notasting)}$ $Cu_2S + 2Cu_2O \xrightarrow{\Delta} 6Cu + SO_2 \text{ (Self-reduction takes place in Bessemer converter)}$						
	(C) $2ZnS + 3O_2 \longrightarrow 2ZnO + 2SO_2$ (Roasting)						
	$ZnO + C \xrightarrow{\Delta} Zn + CO$ (Carbon reduction)						
	(D) Haematite ore is calcined.						
	$3Fe_2O_3 + CO \xrightarrow{\Delta} 2Fe_3O_4 + CO_2$						


$$Fe_3O_4 + CO \xrightarrow{\Delta} 3FeO + CO_2$$

 $FeO + CO \xrightarrow{\Delta} Fe + CO_2$

E	xercis	se #	1			[Single	e Correc	t C	hoice	Туре	Questions]	7
1.	Which of (A) Zn, C		lowing		tals mostly fo 1, Cu, Pb		ılphide ore C) Fe, Al, T			(D)	Cu, Ag, Au	
2.	Match Column- (A) Tin (B) Zinc (C) Iron (D) Lead Codes :			olumn-II	and select th		answer usir Column-II p) Calamine q) Cassiteri r) Cerussit s) Siderite	(Or e ite		given b	pelow :	
		(A)	(B)	(C)	(D)		(A))	(B)	(C)	(D)	
	(A) (C)	p s	q r	r q	s p		B) q D) q		p p	s r	r s	
3.	(B) Pure (C) Sulp	iterite, c Al ₂ O ₃ is hide ore	chromit s obtain e is cone	e and haer ed from th centrated l	natite are co ne bauxite or by calcinatio e into oxide	e by leach n method.	ning in the l	Baye	er's proc	ess.	g). o act as a reduci	ng agen
	Calamine (A) Zn	e is an oi	re of :	(B) M	g	(C) Ca			(D)]	Pb	
5.	Which of (A) Baux		lowing		ore of alumin orundum		C) Langbei	inite		(D)]	Kaolinite	
.	Which of (A) Mala		lowing	is not an o (B) Ca	ore ? lamine	(C) Salt cake	e		(D)	Cerussite	
7.	Which m (A) Baux (C) Cryo	ite	as beer : :	named in Al ₂ O ₃ 3NaF .	-		B) Corundı D) Feldspar		:	Al ₂ C Be ₃ A	O_3 Al ₂ Si ₆ O ₁₈	
3.	Black tin (A) an al (C) 60-70	loy of S					B) an allotr D) 100 perc	-				
9.	 NaCN is sometimes added in the froth flotation process as a depressant when ZnS and PbS minerals are expected because : (A) Pb(CN)₂ is precipitated while no effect on ZnS. (B) ZnS forms soluble complex Na₂[Zn(CN)₄] while PbS forms froth (C) PbS forms soluble complex Na₂[Pb(CN)₄] while ZnS forms froth. (D) NaCN is never added in froth floatation process. 											
10.	Which or (A) Copp		lowing	manufact (B) So	ured by the e dium	•	is of their f C)Aluminiu		l salts.	(D)]	Platinum	
11.	(A) HgS (B) AgN((C) CuC($+ O_2 \rightarrow O_3 + Na O_3 \cdot Cu(0)$	$Hg + S$ $Cl \rightarrow A$ $OH)_2 \rightarrow Cl$	-	$O_2 + H_2O$	nts a calci	nation reac	tion	?			

21. Main source of lead is PbS. It is converted to Pb by :

Add. 41-42A, Ashok Park Main, New Rohtak Road, New Delhi-110035 +91-9350679141

31.	Silver can be separated from lead by :						
	(A) fractional crystallisatio	on	(B) liquation				
	(C) cupellation		(D) addition of zinc (Parkes method)				
32.	Poling process :						
	(A) reduces SnO_2 to Sn		(B) oxidises impurities lik	e iron and removes as scum			
	(C) uses green poles		(D) all of the above are co	rrect			
33.	Aluminium metal is purific	ed by :					
	(A) Hooper's process	(B) Hall-Heroult process	(C) Serpeck's process	(D) Baeyer's process			
34.	High purity copper metal	is obtained by :					
	(A) carbon reduction	(B) hydrogen reduction	(C) electrolytic reduction	(D) thermite reduction			
35.	The method of zone refini	ng of metals is based on the	e principle of :				
		pure metal than that of imp	-				
		f the impurity than that of the					
		(C) greater noble character of the solid metal than that of the impurity(D) greater solubility of the impurity in the molten state than in the solid					
	(D) greater solubility of th	le impurity in the molten su	ate than in the solid				
36.	Which does not represent						
	(A) $\operatorname{TiCl}_2 + 2Mg \longrightarrow T$	2					
	$(B)\operatorname{Ni}(\operatorname{CO})_4 \longrightarrow \operatorname{Ni}+4$						
	$(\mathbf{C}) \operatorname{Ag}_2 \operatorname{CO}_3 \longrightarrow 2\operatorname{Ag}^+$	$-CO_2 + \frac{1}{2}O_2$: Van A	rkel				
	$\textbf{(D)} \operatorname{ZrI}_4 \longrightarrow \operatorname{Zr} + 2\operatorname{I}_2$: Van A	rkel				
37.	Parting of gold may be do	ne with :					
	(A) Sulphuric acid	(B) Sodium hydroxide	(C) Borax	(D) Chlorine (Cl_2)			
20	In a cline and cost of available	action of Cu. O. avidians fo	llouring anoun of alamanta				
38.	In poling process of purification of Cu, O ₂ oxidises following group of elements : (A) S, Sb, As (B) Sb, As, Fe (C) S, Sb, As (D) As, Ag, Au						
	(11) 5, 50, 115	(b) 50,715,70	(0) 5, 50, 715	(D) 115, 115, 116			
39.	Bauxite is leached with :						
	(A) KCl	(B) NaCN	(C) NaOH	(D) $\operatorname{Na}_2 \operatorname{SO}_4$			
40.	Froth floatation process for	or the concentration of sulp		of the practical application of:			
	(A) adsorption	(B) absorption	(C) sedimentation	(D) coagulation			
41.	Which one of the following	ig is not a method of concer	ntration of ore ?				
	(A) electromagnetic separation (B) smelting						
	(C) gravity separation	(D) froth floatation proces	5S				
42.	The formula of carnallite is	5:					
	(A) LiAl(Si ₂ O ₅),	(B) KCl.MgCl,.6H,O	(C) K,O.Al,O,.6SiO,	(D) KCl.MgCl,.2H,O			
42				2 2			
43.	Dolomite is mineral whose $(A) \subseteq M_{-}(CQ)$		$(\mathbf{C}) \subset \mathbf{C} \to \mathbf{M} \to \mathbf{C} \to \mathbf{M}$	(\mathbf{D}) $(\mathbf{A}) \in (\mathbf{C})$ h \mathbf{A}			
	(A) $CaMg(CO_3)_2$	(B) MgCO ₃	(C) $CaCO_3$.MgCO_3	(D) (A) & (C) both			
44.	Magnetic separation proc	ess may be used for the con	ncentration of :				
	(A) chalcopyrite	(B) bauxite	(C) haematite	(D) calamine			
45.	The metal which mainly o	ccurs as oxide ore in nature	is ·				
	(A) gold	(B) lead	(C) aluminium	(D) magnesium			
		and the second	the state of the s				

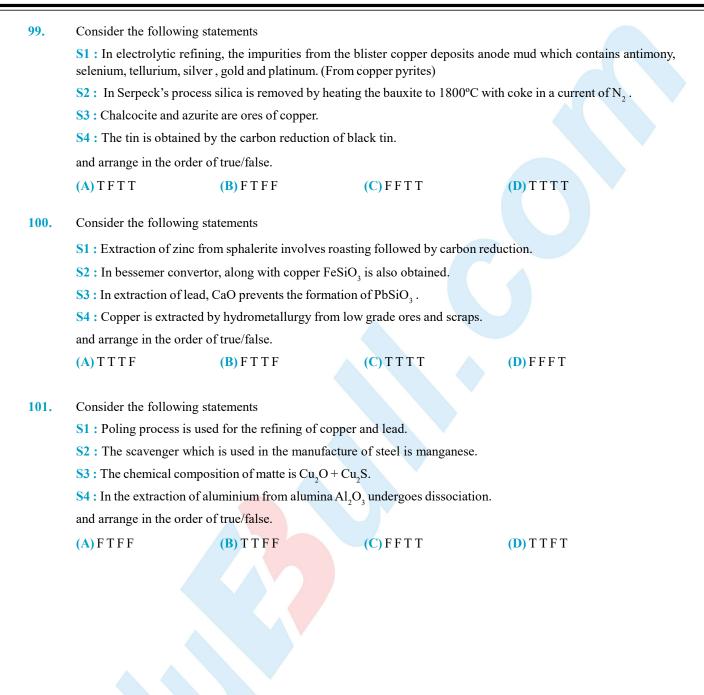
Add. 41-42A, Ashok Park Main, New Rohtak Road, New Delhi-110035 +91-9350679141

METALLURGY

46.	The reason, for floating of ore particles in concentration by(A) they are light(B) they are insoluble(C)	y froth floatation proce they are charged	ess is that : (D) they are hydrophobic			
47.	 Choose the correct option using the code regarding roasting process. (I) It is the process of heating the ore in air in a reverberatory furnace to obtain the oxide. (II) It is an exothermic process. (III) It is used for the concentration of sulphide ore. (IV) It removes easily oxidisable volatile impurities present in the concentrated ore. (A) I, II and III (B) I, II and IV (C) I, III and IV (D) I, II, III and IV 					
48.	The slag consists of molten impurities, generally, in the form of :(A) metal carbonate(B) metal silicate(C) metal oxide					
49.	The process of the isolation of a metal by dissolving the ore in a suitable chemical reagent followed by precipita of the metal by a more electropositive metal is called : (A) hydrometallurgy (B) electrometallurgy (C) zone refining (D) electro-refining					
50.	In the metallurgy of iron, the upper layer obtained in the bo (A) CaSiO ₃ (B) spongy iron (C)	n the bottom of blast furnace mainly contains : (C) Fe ₂ O ₃ (D) FeSiO ₃				
51.	Ellingham diagram represents :(A) change of ΔG with temperature.(B) change of ΔH with temperature.(C) change of ΔG with pressure.(D) change of $(\Delta G - T\Delta S)$ with temperature.					
52.	 A sulphide ore like ZnS is first roasted into its oxide prior to reduction by carbon because : (A) a sulphide ore cannot be reduced to metal at all (B) no reducing agent is found suitable for reducing a sulphide ore. (C) the Gibb's free energy of formation of most sulphides are greater than that for CS₂. (D) a metal oxide is generally less stable than the metal sulphide. 					
53.	 Which of the following statements is correct regarding the slag obtained during the extraction of a metal like copper or iron ? (A) The slag is lighter and has lower melting point than the metal (B) The slag is heavier and has lower melting point than the metal (C) The slag is lighter and has higher melting point than the metal (D) The slag is heavier and has higher melting point than the metal 					
54.	Which one of the following reactions occurs during smelting in the reduction zone at lower temperature (in iron metallurgy)? (A) CaO + SiO ₂ \longrightarrow CaSiO ₃ (slag) (C) 3Fe ₂ O ₃ + CO \longrightarrow 2Fe ₃ O ₄ + CO ₂ (D) CO ₂ + C \longrightarrow 2CO					
55.	In the extraction of aluminium Process X : employed for red bauxite to remove iron oxide (main impurity) Process Y : (Serpeck's process) : used for white bauxite to remove Z (main impurity) then, Select correct option for the process X and impurity Z. (A) X = Hall and Heroult's process and Z = SiO ₂ (C) X = Serpeck's process and Y = iron oxide (D) X = Bayer's process and Y = iron oxide					
56.	 (C) X = Serpeck's process and Y = iron oxide (D) X = Bayer's process and Y = iron oxide Magnesium is extracted by electrolysing fused magnesium chloride containing NaCl & CaCl₂ using : (A) a nickel cathode and a graphite anode. (B) the iron container as anode and a nickel cathode. (C) the iron container as cathode and a graphite rod as anode. (D) X = Bayer's process and Y = iron oxide 					

57.	Formation of volatile $Ni(CO)_4$ and then its subsequent decomposition into Ni and CO makes basis of Mond's process					
	$Ni + 4CO \xrightarrow{T_1} Ni(CO)_4 \xrightarrow{T_2} Ni + 4CO, T_1$ (A) 100°C, 50°C (B) 50°C, 100°C	and T_2 are : (C) 50°C, 200°C	(D) 200°C, 50°C			
58.	Which of the following metals may be present in the anode mud during electrorefining of copper?I. Gold ; II. Iron, III. Silver ; IV Magnesium(A) I and II(B) II and IV(C) I and III(D) III and IV					
59.	Which one of the following processes involves the prir					
	metals?					
		(C) Van Arkel process	(D) Zone refining			
60.	2 3 0	 (B) cryolite undergoes di (D) Neither of the two un 				
61.	Which method of purification is represented by the ed	quations ?				
	$\begin{array}{c} \text{Ti} + 2I_{2} \xrightarrow{500\text{K}} \text{Ti}I_{4} \xrightarrow{1675\text{K}} \text{Ti} + 2I_{2} \\ \text{(Impure)} \end{array}$					
		(C) Van Arkel	(D) Zone refining			
62.	 Select correct statement regarding silver extraction / purification process. (A) When the lead-silver alloy is rich in silver, lead is removed by the cupellation process. (B) Lead is removed from argentiferous lead by Parkes process. (C) Zinc forms an alloy with lead, from which lead is separated by distillation. (D) Zinc forms an alloy with silver, from which zinc is separated by distillation. 					
63.	In Van Arkel method, if I ₂ is introduced at 1800 K over impure zirconium metal, the product will be : (A) iodide of the metal (C) impurities react with iodine (D) none of these					
64.		 inerals the particles float b (B) they are insoluble. (D) they bear an electrost 				
65.	An ore of tin containing $FeCr_2O_4$ is concentrated by (A) magnetic separation (B) froth floatation	: (C) leaching method	(D) gravity separation.			
66.	Process of heating ore in air to remove sulphur is : (A) calcination (B) roasting	(C) smelting	(D) none of these.			
67.	The rocky and silicious matter associated with an ore in (A) slag (B) mineral	s called : (C) matrix or gangue	(D) flux			
68.	The process of removing lighter gangue particles by w (A) levigation (B) liquation	vashing in a current of wate (C) leaching	er is called : (D) cupellation.			
69.	 (A) levigation (B) liquation (C) leaching (D) cupellation. Gravity separation method is based upon : (A) preferential washing of ores and gangue particles. (B) difference in densities of ore particles and impurities. (C) difference in chemical properties of ore particles and impurities. (D) none of these. 					

70.	In roasting : (A) moisture is removed. (C) ore becomes porous.	(B) non-metals as their volatile oxide are removed.(D) all the above.				
71.	Roasting is carried out in case of :(A) galena(B) iron pyrites	(C) copper glance (D) all.				
72.	 Slag is a product of : (A) flux and coke. (C) flux and impurities. 	(B) coke and metal oxide.(D) metal and flux.				
73.	Which one of the following metals cannot be extract (A) Pb (B) Fe	ed by carbon reduction ? (C) Zn (D) Al.				
74.	Among the following groups of oxides, the group that (A) Cu_2O , SnO_2 (B) Fe_2O_3 , ZnO	at cannot be reduced by carbon to give the respective metals. (C) CuO, K_2O (D) PbO, FeO.				
75.		 tion by the action of a suitable chemical reagent followed by suitable precipitating agent i.e. more electropositive metal is (B) hydrometallurgy (D) zone refining. 				
76.	An ore after levigation is found to have basic impurities. Which of the following can be used as flux during smelting? (A) H_2SO_4 (B) CaCO ₃ (C) SiO ₂ (D) Both CaO and SiO ₂ .					
77.	 Among the following statements, the incorrect one is : (A) calamine and siderite are carbonates (C) zinc blende and iron pyrites are sulphides (D) malachite and azurite are ores of copper 					
78.	Electrolytic reduction method is used in the extraction of : (A) highly electronegative elements. (C) transition metals. (D) noble metals.					
79.	 Cryolite is : (A) Na₃AlF₆ and is used in the electrolysis of alumina for decreasing electrical conductivity. (B) Na₃AlF₆ and is used in the electrolysis of alumina for lowering the melting point of alumina. (C) Na₃AlF₆ and is used in the electrolytic purification of alumina. (D) Na₃AlF₆ and is used in the electrolysis of alumina for increasing the melting point and electrical conductivity. 					
80.	In the extraction of Cu the reaction takes place in Bessemer converter is : (A) $2Cu_2O + Cu_2S \rightarrow 6Cu + SO_2$. (B) $2CuFeS_2 + O_2 \rightarrow Cu_2S + FeS + SO_2$. (D) $2FeS + 3O_2 \rightarrow 2FeO + 2SO_2$.					
81.	 Which of the following statement is incorrect about the extractive metallurgy of copper ? (A) Matte chiefly consists of iron sulphide and some ferrous oxide. (B) The impurity of iron sulphide is removed as fusible slag, FeSiO₃ during roasting. (C) The copper pyrite is concentrated by froth floatation process. (D) Copper is obtained by self reduction in bessemer converter. 					
82.	Tin and zinc can be refined by :(A) cupellation(B) liquation	(C) poling (D) bessemerisation.				
83.	Which one of the following reactions is an example of (A) $2 \text{ Ag} + 2\text{HCl} + [O] \rightarrow 2 \text{ AgCl} + \text{H}_2\text{O}$ (C) $2 \text{ ZnS} + 3\text{O}_2 \rightarrow 2 \text{ ZnO} + 2 \text{ SO}_2$	of calcination process ? (B) $2 \operatorname{Zn} + \operatorname{O}_2 \rightarrow 2 \operatorname{ZnO}$. (D) $\operatorname{MgCO}_3 \rightarrow \operatorname{MgO} + \operatorname{CO}_2$.				


84. 85.	 Match column I with column II and select the correct Column I I. Cyanide process. II. Froth floatation process. III. Electrolytic reduction. IV. Zone refining. (A) I–(C), II–(A), III–(D), IV-(B) (C) I–(C), II–(B), III–(D), IV-(A) Van Arkel method of purification of metals involves (A) volatile stable compound. (C) non-volatile stable compound. 					Column II (a) Ultra pure Ge (b) Pine oil. (c) Extraction of Al. (d) Extraction of Au. (B) I–(D), II–(B), III–(C), IV–(A) (D) I–(D), II–(A), III–(C), IV-(B)					
86.	(A) liq	r and tin a uation	re refined	-	oellation	(C) be	ssemeris	ation	(D) pc	oling.	
87.	The provide the provided the pr	ocess of z con	one refin	-	ed for : manium	(C) gal	llium		(D) al	l the above.	
88.	Match (a) Lim (b) Arg (c) Car (d) Cala (A) (B) (C) (D)	Colum nonite. gentite. nallite		(c) (q) (q) (r) (p)	(d) (p) (r) (s) (q)	Col (p) Ca (q) Ha (r) Sul	in colum umn II rbonate c lide ore. phide ore ide ore.	ore.	select the	correct alterr	nate.
89.	Match the method of concentration of the ore in collection Column I (a) Leaching. (b) Calcination. (c) Froth floatation. (d) Magnetic separation. (a) (b) (c) (d) (A) (s) (q) (p) (r) (C) (p) (q) (r) (s)			Colu (p) Co (q) Sid (r) Bau	mn II pper pyri lerite.		n II and s (c) (p) (p)	(d) (s) (s).	ect alternate.		
90.					 th metals listed in column II and choose the correct option. Column II (p) Copper from copper glance (q) Silver from argentite. (r) Aluminium from bauxite. 				option.		

Add. 41-42A, Ashok Park Main, New Rohtak Road, New Delhi-110035 +91-9350679141

91.	 Give the correct order of initials T or F for following statements. Use T if statement is true and F if it is false. (i) In Gold Schmidt thermite process aluminium acts as a reducing agent. (ii) Mg is extracted by electrolysis of aqueous solution of MgCl₂ (iii) Extraction of Pb is possible by carbon reduction of PbO in smelting. (iv) Red bauxite is purified by Serpeck's process (A) TTTF (B) TFFT (C) FTTT (D) TFTF 						
92.	-	ed out by heating it with a d					
	(A) NaCN only	(B) HCl	(C) NaOH	(D) NaCN in presence of O_2			
93.	In which of the following method ?	pair of metals, both are com	mercially extracted from the	ir respective ores by self reduction			
	(A) Zn, Cu	(B) Pb, Cu	(C) Sn, Zn	(D) Al, Ag			
94.	The iron obtained from the	ne blast furnace is called :					
74.	(A) pig iron	(B) cast iron	(C) wrought iron	(D) steel			
		(b) cast non	(C) wrought non				
95.	The extraction of zinc fro	m zinc blende involves :					
	(A) the electrolytic reduc	tion.					
	(B) the roasting followed	by reduction with carbon.					
	(C) the calcination follow	ved by reduction with anoth	er metal.				
	(D) the roasting at molter	n temperature.					
96.	Carbon cannot be used it	n the reduction of Al,O, bec					
J0 .	(A) it is non-metal	I the reduction of AI_2O_3 bee	ause.				
	 (B) the heat of formation of CO₂ is more than that of Al₂O₃ (C) pure carbon is not easily available 						
	(D) the heat of formation of Al ₂ O ₃ is too high						
	(b) the heat of formation						
97.	Consider the following is	solation / p <mark>urification pr</mark> oces	sses.				
	(1) Heating impure metal with I_2 at 150 – 200°C and passing the resulting volatile iodide on hot tungsten filament at 1400°C to get the pure metal.						
	(II) Heating the sulphide ore in air until a part is converted to oxide and then further heating in the absence of air to let the oxide react with unchanged metal sulphide to get the metal.						
	(III) Electrolysis of the m	nolten electrolyte containing	metal oxide and cryolite or	fluorspar to obtain the metal.			
	The processes used for o	btaining aluminium, titaniur	n and lead are respectively	:			
	(A) (I), (II) and (III)	(B) (II), (III) and (I)	(C) (III), (I) and (II)	(D) (II), (I) and (III)			
98.	Consider the following s	tatements					
			ction reactions take place or	nly in the lower temperature range			
	S2 : Calamine is an carbonate ore of zinc.						
	S3 : The principal ore of a	aluminium, bauxite, usually	contains silica, iron oxides a	and titanium oxide as impurities.			
	S4 : Solidified copper obtevolution of SO_2 .	S4 : Solidified copper obtained from silica lined convertor (Bessemer converter) has blistered appearance due to the					
	and arrange in the order of	of true/false.					
	(A) F T T T	(B) F T F F	(C) F F T T	(D) T F F T			

Add. 41-42A, Ashok Park Main, New Rohtak Road, New Delhi-110035 +91-9350679141

I	Exercise # 2 Part # I [Multiple Correct Choice Type Questions]
1.	Liquation process may be applied for the purification of : (A) copper (B) tin (C) iron (D) zinc
2.	Of the following reduction processes, the correct process(es) is/are : (A) $Fe_2O_3 + CO \longrightarrow Fe + CO_2$ (B) $ZnO + C \longrightarrow Zn + CO$ (C) $Cu_2O + Cu_2S \longrightarrow Cu + SO_2$ (D) $PbO + C \longrightarrow Pb + CO$
3.	 Roasting of copper pyrites is done : (A) to remove moisture. (B) to oxidise free sulphur and antimony. (C) to convert pyrites completely into Cu₂O and FeO. (D) to remove volatile organic impurities.
4.	Which of the following process(es) occur(s) during the extraction of copper from chalcopyrites ?(A) Froth floatation(B) Roasting(C) Bessemerisation(D) calcination
5.	 Calcium silicate (slag) formed in the slag formation zone in extraction of iron from haematite ore : (A) does not dissolve in molten iron. (B) being lighter floats on the molten iron . (C) is used in cement industry and as building material. (D) prevents the re-oxidation of molten iron.
6.	 Which of the following statement(s) is (are) incorrect ? (A) In Serpeck's process silica is removed by heating the bauxite to 1800°C with coke in a current of N₂ (B) In extraction of lead from galena roasting and self reduction takes place in the same furnace but under different conditions of temperature and supply of air (C) The tin is obtained by the carbon reduction of black tin. (D) None
7.	 Select the correct statement(s) with respect to the differences between roasting and calcination. (A) In roasting at higher temperature sulphide ores of the some metal like Cu, Pb, Hg etc. are reduced directly to metal but not in calcination. (B) Partial fusion occurs in calcination but not in roasting. (C) Calcination is done in limited supply of air or absence of air but in roasting supply of excess air is required. (D) Combustion reaction occurs in roasting but not in calcination.
8.	In which of the following extraction no reducing agent is required ?(A) Iron from haematite.(B) Aluminium from bauxite.(C) Magnesium from carnallite.(D) Zinc from zinc blende.
9.	The smelting of iron in a blast furnace involves the following processes :(A) combustion(B) reduction(C) slag formation(D) fusion
10.	Out of Cu_2S , HgS , Ag_2S , PbS and ZnS, roasting will convert the minerals into metal in case of :(A) Cu_2S , PbS(B) HgS, ZnS(C) Cu_2S , Ag_2S (D) HgS, Cu_2S .
11.	 Select the correct statement : (A) Dolomite contains both magnesium and calcium. (B) Extraction of lead from galena involves roasting in limited supply of air at moderate temperature followed by self reduction at higher temperature (to melt the charge). (C) Extraction of zinc from zinc blende involves roasting followed by reduction with carbon. (D) The chemical composition of 'slag' formed during the extraction of iron and copper is FeSiO₃.

12. Which of the following statement(s) is/are true for the extraction of tin from ore cassiterite ? (A) Impurity of wolframite is removed by magnetic separation. (B) The concentrated ore containing 60-70% SnO₂ is called as black tin. (C) Tin is obtained by the carbon reduction of SnO_2 . (D) Anglesite is an another ore of tin. 13. Of the following reduction processes, the correct process(es) is/are : (A) $B_2O_3 + Al \xrightarrow{\Delta} B.$ **(B)** $\operatorname{Cr}_2\operatorname{O}_2 + 2\operatorname{Al} \xrightarrow{\Delta} \operatorname{Cr}$. (C) $TiCl_4 + Mg \xrightarrow{\Delta} Ti.$ (**D**) $PbS + PbO \longrightarrow Ph$ 14. Why lime stone is added In the extraction of lead from galena? (A) It prevents the formation of PbSO₄. (B) It remove the impurity of silica as fusible slag. (C) It converts lead silicate to lead oxide. (D) It remove the impurity of iron oxide as fusible slag. 15. Which of the following is / are correctly matched? (B) Iron - Blast furnace (A) Copper - Bessemer converter. (C) Chromium - Aluminothermic process (D) Tin - Electrolytic reduction 16. The reaction(s) which does (do) not occur in the reduction zone in the extraction of iron from haematite ore is (are) (A) $Fe_2O_2 + CO \rightarrow 2FeO + CO_2$ (B) FeO + CO \rightarrow Fe + CO₂ (C) $Fe_2O_3 + 3C \rightarrow 2Fe + 3CO$ **(D)** CaO + SiO₂ \rightarrow CaSiO₃ 17. Froth floatation : (A) is a physical method of separating mineral from the gangue (B) is a method of concentration of ore depending on the difference in wet ability of gangue and the ore particles. (C) is used for the concentration of sulphide ores (D) is a method in which impurities sink to the bottom and ore particles pass on to the surface with froth. 18. Which of the following pair consists of ore of the same metal? (A) Bauxite, Limonite (B) Haematite, Siderite (D) Galena, Cerrusite (C) Cinnabar, Cassiterite 19. Which of the following reduction reactions are actually employed in commercial extraction of metals? (A) $Fe_2O_3 + 2Al \rightarrow Al_2O_3 + 2Fe$ **(B)** $Cr_2O_3 + 2Al \rightarrow Al_2O_3 + 2Cr$ (C) $2Na[Au(CN)_{2}] + Zn \rightarrow Na_{2}[Zn(CN)_{4}] + 2Au$ (D) $Cu_2S + 2CuO \rightarrow 6Cu + SO_2$ 20. Which of the following statement(s) is (are) true? (A) In the process of precipitation of silver from sodium dicyanidoargentate (I), the zinc acts as reducing agent as well as complexing agent. (B) In process of the roasting, the copper pyrite is converted into a mixture of Cu₂S & FeS which, in turn, are partially oxidised (C) Limonite, haematite and magnesite are ores of iron. (D) Tin and lead both are extracted from their ores by self-reduction. 21. Which of the following is a correct statement? (A) Calamine is the ore of zinc. (B) Proustite is the ore of silver. (C) Cassiterite is the ore of tin. (D) Diaspore is the ore of aluminium. The chemical treatment of the ore for concentration is done in the case of : 22. (A) aluminium **(B)** silver (C) copper (D) gold Which of the following reaction (s) occurs during calcination? 23. (A) $CaCO_3 \rightarrow CaO + CO_2$ **(B)** $4\text{FeS}_2 + 11\text{O}_2 \rightarrow 2\text{Fe}_2\text{O}_3 + 8\text{SO}_2$ (C) $2Al(OH)_3 \rightarrow Al_2O_3 + 3H_2O$ (D) $CuS + CuSO_4 \rightarrow 2Cu + 2SO_2$

	Part # II	>>	[Assertion & Reason Type Questions]
	Each questi	on has 5 choice	s (A), (B), (C), (D) and (E) out of which only one is correct.
	(A) Statemer	nt-1 is true, Stat	tement-2 is true and Statement-2 is correct explanation for Statement-1.
	(B) Statemer	nt-1 is true, State	ement-2 is true and Statement-2 is not correct explanation for Statement-1.
	(C) Statemer	nt-1 is true, Stat	tement-2 is false.
	(D) Statemer	nt-1 is false, Sta	tement-2 is true.
	(E) Both Sta	tements are fals	se.
1.	Statement-1		of copper from chalcopyrite after roasting in supply of air at moderate temperature, the of the roasting ore is increased above the fusion temperature and then silica is added in y furnace.
	Statement-2		tion of copper from chalcopyrites during smelting, the impurity of iron oxide is removed $g(FeSiO_3)$ in blast furnace or reverberatory furnace.
2.	Statement-1	: Extraction of	f zinc from sphalerite ore involves the roasting followed by reduction with coke.
			extracted by hydrometallurgy.
3.	Statement-1	: Silica is adde	ed as a flux in reverberatory furnace, in the extraction of copper from copper pyrites.
	Statement-2	: Silica decrea	uses the melting point of the ore and increases the conductivity.
4.	Statement-1	: During calcin of air.	nation the ore is heated well below its melting point in the limited supply of air or absence
	Statement-2	: The process	of calcination is carried out for sulphide ores.
5.	Statement-1	: Electropositi	ive metals like Mg, Al are extracted by electrolysis of their salt solutions.
	Statement-2	: Highly elect	ropositive metals cannot be reduced by chemical reduction methods.
6.	Statement-1		oult process aluminium is extracted by the electrolytic reduction of alumina dissolved in ite or fluorspar.
	Statement-2	: The cryolite	or fluorspar lower the melting point of melt and make it more conducting
7.	Statement-1	: Wolframite i	mpurity is separated from tin stone (SnO_2) by magnetic separation.
	Statement-2	: Tin stone is	ferromagnetic and is attracted by the magnet.
8.	Statement-1	: Wrought iron haematite.	n is prepared from cast iron by oxidising impurities in a reverberatory furnace lined with
	Statement-2	: Haematite ox	xidises carbon to carbon monoxide.
9.	Statement-1	: Sulphide ore	s of Zn and Pb are generally converted into their respective oxides, prior to reduction.
	Statement-2	: The zinc oxi	de and lead oxide are reduced by carbon to their respective free metals.
10.	Statement-1	:CuFeS, is c	oncentrated by froth floatation method

Statement-2 : $CuFeS_2$ is main ore of copper

- Statement-1 : In the smelting of copper ore coke is added in the blast furnace.
 Statement-2 : Coke reduces, CuO into Cu.
- 12. Statement-1: Extraction of iron metal from iron oxide ore is carried out by heating with coke. Statement-2: The reaction $Fe_2O_3(s) \xrightarrow{\Delta} Fe(s) + 3/2O_2(g)$ is a spontaneous process at standard condition.
- Statement-1 : All the ores are mineral
 Statement-2 : Most of the ores contains metals in combined state
- Statement-1 : In the extraction of Ag the complex Na[Ag(CN)₂] is reacted with Zn Statement-2 : Zn is transition metal according to electronic theory
- Statement-1 : Thermite mixture Fe₂O₃+Al (powder) is used in the welding.
 Statement-2 : Al is a good reductant
- Statement-1 : Wolframite impurities are separated from cassiterite by electromagnetic separation.
 Statement-2 : Cassiterite being magnetic is attached by the magnet and forms a separate heap.
- Statement-1 : Lead, tin and bismuth are purified by liquation method.Statement-2 : Lead, tin and bismuth have low m.p. as compared to impurities.

K	Exercise # 3 Part # I	[Matrix Match Type Questions]
1.	Column-I (Ore)	Column-II (Created formula & properties)
	(A) Iron pyrites	(p) FeS_2
	(B) Fool's gold	(q) Sulphide ore
	(C) Galena	$(\mathbf{r}) \operatorname{Fe}_2 O_3$
	(D) Haematite	(s) Concentrated by froth
2.	Column-I (Metal)	Column-II
	(A) Magnesite	(p) Ore of magnesium
	(B) Siderite	(q) Ore of aluminium
	(C) Corundum	(r) Oxide ore
	(D) Bauxite	(s) Carbonate ore
3.	Column-I (Ore)	Column-II
	(A) Iron	(p) Carbon reduction method
	(B) Lead	(q) Self reduction
	(C) Copper	(r) Thermite process
	(D) Chromium	(s) Hydrometallurgical process
4.	Match the ores given in column-I with	typ(s) of processes given in column-II.
	Column – I	Column – II
	(A) Haematite	(p) Slag formation during roasting/smelting and bessemerisation.
	(B) Copper pyrites	(q) Reduction by carbon monoxide / carbon at different temperatures.
	(C) Carnallite	(r) Electrolytic reduction.
	(D) Bauxite	(s) Calcination.
5.	Match the type of processes involved in	the extraction of metal given in column-I with the given ores in column-II.
	Column – I	Column – II
	(A) Slag formation	(p) Extraction of copper from copper pyrites.
	(B) Froth – floatation	(q) Extraction of aluminium form bauxite.
	(C) Leaching	(r) Extraction of iron from haematite.
	(D) Roasting	(s) Extraction of tin from cassiterite
		(t) Extraction of lead from galena.
6.	Match the name of the processes given	in column-I with type(s) of metallurgical methods given in column-II.
	Column – I	Column – II
	(A) Hall – Heroult process	(p) Molten $Al_2O_3 + Na_3AlF_6$ electrolysis.
	(B) Dow's sea water process	(q) Molten $MgCl_2 + CaCl_2 + NaCl$ electrolysis.
	(C) Hoop's process	(r) Molten impure aluminium + fluorides of Na ⁺ , Ba ²⁺ and Al ³⁺ electrolysis.
	(D) Mac-Arthur Forrest process	(s) Complex formation and displacement method.

Add. 41-42A, Ashok Park Main, New Rohtak Road, New Delhi-110035 +91-9350679141

7.	Match the reactions listed in column (I) with processes listed in column	(II).
	Column – I	Column – II
	(reactions)	(processes)
	(A) $4 \operatorname{Au} + 8 \operatorname{NaCN} + 2 \operatorname{H}_2 O + O_2$ (air) $\longrightarrow 4 \operatorname{Na} [\operatorname{Au} (\operatorname{CN})_2] + 4 \operatorname{NaOH}$	(p) Leaching
	(B) $\operatorname{CuFeS}_2 + 2 \operatorname{H}_2 \operatorname{SO}_4 \longrightarrow \operatorname{CuSO}_4 + \operatorname{FeSO}_4 + 2\operatorname{H}_2 \operatorname{SO}_4$	(q) Smelting
	$(\mathbf{C}) \operatorname{CaO} + \operatorname{SiO}_2 \xrightarrow{\Delta} \operatorname{CaSiO}_3$	(r) Hydrometallurgy
	(D) MgCl ₂ . 6 H ₂ O $\xrightarrow{\Delta}$ MgCl ₂ +6 H ₂ O	(s) Calcination
8.	Column – I	Column – II
	(Reaction)	(Process)
	(A) $\operatorname{FeO} + \operatorname{SiO}_2 \longrightarrow \operatorname{FeSiO}_3$	(p) Calcination
	(B) $3Mn_3O_4 + 8A1 \longrightarrow 4Al_2O_3 + 9Mn$	(q) Displacement method
	(C) $\operatorname{Cu}_2 S + 2\operatorname{Cu}_2 O \xrightarrow{\Delta} 6\operatorname{Cu} + SO_2$	(r) Smelting
	(D) $2\text{Al}(\text{OH})_3 \xrightarrow{\Delta} \text{Al}_2\text{O}_3 + 3\text{H}_2\text{O}$	(s) Thermite process
	(E) $2Na[Ag(CN)_2] + Zn \longrightarrow Na_2[Zn(CN)_4] + 2Ag$	(t) Bessemerisation
9.	Match the purification processes given in Column-I with the metal(s) given	

Column-I	Column-II
(A) Poling	(p) Titanium
(B) Cupellation	(q) Copper
(C) Liquation	(r) Silver
(D) Van Arkel method	(s) Tin

Part # II

[Comprehension Type Questions]

Comprehension #1

Amongst the various ores of a metal (M) (sulphide, carbonates, oxides, hydrated or hydroxides) two ores [X] and [Y] show the following reactivity.

- (i) [X] on calcination gives a black solid (S), water and a colourless gas which produces milkyness when passed through lime water. But this colourless gas does not decolourise the acidified KMNO₄.
- (ii) [X] dissolved in dilute HCl on reaction with KI gives a white precipitate (P) and iodine gas.
- (iii) [Y] on roasting at high temperature gives metal (M) and a gas (G_1) which turns starch iodate solution blue.
- (iv) [Y] on reaction with dilute HCl gives a white precipitate (MS) and another gas (G_2) which turns lead acetate solution black and also reacts with gas (G_1) to precipitate colloidal sulphur in presence of moisture.

The M, S, [X] and [Y] gives greenish blue flame.

- 1. The metal ores [X] and [Y] are respectively :
 - (A) Carbonate and sulphide ores

- (B) Sulphide and carbonate ores
- (C) Carbonate and hydroxide ores
- (D) Carbonate and oxide ores
- 2. Which of the following statements is correct about [Y]?
 - (A) [Y] is converted to metal (M) by self reduction.
 - (B) Carbonate extract of [Y] gives yellow precipitate with suspension of CdCO₃.
 - (C) [Y] is copper glance or copper pyrite
 - (D) All of these

3.	The gas (G_1) acts as			
	(A) oxidising agent	(B) reducing agent	(C) oxidising and reduc	cing agent (D) fluxing agent
4.	The white precipitate (P)	is of :		
	(A) Cu_2I_2	(B) CuI_2	(C) $K_2[CuI_4]$	(D) none
5.	Identify the correct state	ment about [X].		
	(A) It is malachite or azur	rite ore	(B) Its solution in dil. H	Cl gives white ppt of Cu ₂ I ₂ with KI
	(C) It on calcination give	es black cupric oxide	(D) All of these	

Comprehension # 2

Metallic gold frequently is found in aluminosilicate rocks and it is finely dispersed among other minerals. It may be extracted by treating the crushed rock with aerated sodium cyanide solution. During this process metallic gold is slowly converted to $[Au(CN)_2]^-$, which is soluble in water. After equilibrium has been reached, the aqueous phase is pumped off and the metallic gold is recovered from it by reacting the gold complex with zinc, which is converted to $[Zn(CN)_4]^2$. Gold in nature is frequently alloyed with silver which is also oxidised by aerated sodium cyanide solution.

1. The correct ionic reaction for the process are

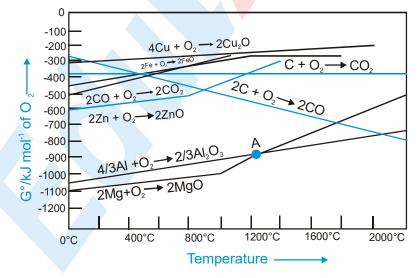
(A) $4Au + 8CN^- + 2H_2O + O_2(air) \rightarrow 4[Au(CN)_2]^-(soluble) + 4OH^-$

(B) Au + 2CN⁻ \longrightarrow Au[(CN)₂]⁻

 $(C) Zn + 2CN^{-} \longrightarrow Zn[(CN)_{2}]^{-}$

(**D**) $Zn + 4CN^{-} \longrightarrow Zn[(CN)_{4}]^{2-}$

- There have been several efforts to develop alternative gold extraction processes which could replace this one. Why ?
 (A) Sodium cyanide solutions corrode mining machinery
 - (B) Sodium cyanide escapes into ground water and produces hydrogen cyanide which is toxic to many animals.
 - (C) Gold obtained by this process is not pure.
 - (D) The amount of gold in aluminosilicate rocks is very less.
- 3. The process described above in the passage is represents :
 - (A) ore concentration


(B) pyrometallurgical extraction

(C) hydrometallurgical extraction

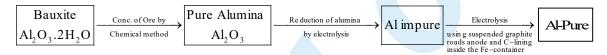
(D) purification of metal

Comprehension #3

Read the following graph and answer the following questions.

1.At what approximate temperature, zinc and carbon have equal affinity for oxygen.(A) 1000°C(B) 1500°C(C) 500°C(D) 1200°C

2. To make the following reduction process spontaneous, temperature should be :


 $ZnO + C \longrightarrow Zn + CO$ (A) < 1000°C (B) > 1000°C (C) < 500°C

(D) > 500° C but < 1000° C

- **3.** Which of the following statement is true ?
 - (A) In the extractive metallurgy of iron, the reduction of calcined / roasted haematite ore in blast furnace takes place in the lower temperature range as well as in the higher temperature range by carbon monoxide and carbon respectively.
 (B) The reduction of zinc oxide by carbon takes place at higher temperature than that in case of copper.
 (C) It is quite easy to reduce oxide ores of copper directly to the metal by heating with coke after 500 600K.
 (D) All of these

Comprehension #4

Extraction of Aluminium can be understand by :

electrolytic reduction of Al_2O_3

Electrolyte	:	$(Al_2O_3 + Cryolite)$
Cathode	:	Graphite inside the Fe container
Anode	:	Graphite rods

1. The purpose of adding cryolite is :

- (A) to increase the electrical conductivity of pure aluminium
- **(B)** to lower the melting point of Al_2O_3
- (C) to remove the impurities as slag
- (D) to increase the Al% in the yield

2. Coke powder is spreaded over the molten electrolyte due to :

- (A) prevent the heat radiation from the surface
- (B) prevent the corrosion of graphite anode
- (C) prevent oxidation of molten aluminium by air
- **(D)** both (A) & (B)
- 3. The function of fluorspar (CaF_2) is :
 - (A) to decrease the melting point of electrolyte
 - (B) to increase electrolytic conductivity power
 - (C) to remove the impurities as slag
 - **(D)** all of the above
- 4. The molten electrolytes contains Na⁺, Al³⁺, Ca²⁺ but only Al gets deposited at cathode because :
 - (A) Standard reduction potential of Al is more than those of Na & Ca
 - (B) Standard oxidation potential of Al is more than those of Na & Ca
 - (C) Discharge potential of Al³⁺ is higher than Na⁺ & Ca²⁺
 - (D) Graphite reacts only with Al^{3+} and not with $Na^+ \& Ca^{2+}$

- What is wrong if anode is made of nickel instead of graphite?
 - (A) Ni is costly
 - (B) Anode will be affected by produced Cl₂
 - (C) Graphite remain unaffected by produced Cl₂
 - (D) Ni may be affected by high temp.

Comprehension #5

Dow's process of extraction of Mg involves extraction of Mg from sea water. Sea water is concentrated in sun light and is then treated with slaked lime. Magnesium hydroxide is heated in a stream of HCl to give MgCl₂ which is electrolysed to discharge Mg. The mixture is in the ratio 35% MgCl₂ + 50% NaCl + 15% CaCl₂. NaCl and CaCl₂ are added to lower the fusion temperature and to increase the conductance.

 $Mg^{2+} + Ca(OH)_2 \longrightarrow Mg(OH)_2 + Ca^{2+}$

 $Mg(OH)_2 + 2HCl \longrightarrow MgCl_2 + 2H_2O$ (liquid)

Electrolysis of fused MgCl₂ \longrightarrow 2Cl⁻ \longrightarrow Cl₂+2₋₁e^o

 $\xrightarrow{\text{Cathode}} Mg^{2+} + 2_{-1}e^{\circ} \longrightarrow Mg$

Mg electrolysed is protected from atmospheric oxidation by a blanket of inert gases.

1. $Mg^{2+} + Ca(OH)_2 \longrightarrow Mg(OH)_2 \downarrow + Ca^{2+}$

This reaction indicates :

(A) $Mg(OH)_2$ is weaker base than $Ca(OH)_2$

(B) Solubility products of $Mg(OH)_2$ is less than that of $Ca(OH)_2$

(C) Polarising power of Mg^{2+} is more than that of Ca^{2+} ion

(D) Both (B) and (C).

2.

3.

In the hydrated chloride of Mg the value of of x is

Molten mixture contains Mg^{2+} , Na^+ and Ca^{2+} but at cathode only Mg is discharged because :

(A) Standard reduction potential of Mg is least among the three

(B)4

- (B) Standard oxidation potential of Mg is least among the three
- (C) Discharge potential of Mg is highest
- (D) None of these

4. Molten mixture of NaCl of CaCl₂ is added to the heated MgCl₂.xH₂O with dry HCl gas because :

(A) $MgCl_2.xH_2O + dry HCl \xrightarrow{973-1023 K}$ Partially dehydrated $MgCl_2$ and molten (NaCl + CaCl₂) makes it fully dehydrated

(C)8

(D) 10

- (B) CaCl₂ is dehydrating agent
- (C) $(CaCl_2 + NaCl)$ lowers the m.pt. of MgCl₂
- (D) None of the above

5.

Ľ	xercise # 4 [Subjective Type Questions]
1.	Coke and flux are used in smelting in the extraction of iron from haematite. Explain giving the relevant chemical reactions.
2.	Copper can be extracted by hydrometallurgy but not zinc. Explain.
3.	The value of $\Delta_f G^o$ for formation of Cr_2O_3 is 540 kJ/mol and that of Al_2O_3 is -827 kJ/mol. Is the reduction of Cr_2O_3 possible with Al ?
4.	Why sulphide ores usually concentrated by froth floatation process ?
5.	Why is the extraction of copper from pyrites more difficult than that from its oxide ore through reduction?
6.	Name two metals which are used for the reduction in metallurgical process. Give one chemical equation for each.
7.	The standard free energy of formation of MgO and CO at temperatures 1000°C and 2000°C are given below (the refer to the reaction involving one mole of oxygen at one atmospheric pressure). Calculate the free energy change to the reaction $2MgO + 2C \longrightarrow 2Mg + 2CO$ at each of the two temperature and comment on your answer. $2Mg + O_2 \longrightarrow 2MgO$ $\Delta G_{1000°C} = -941 \text{ kJ/mol}$ $\Delta G_{200°C} = -314 \text{ kJ/mol}$
	$2C + O_2 \longrightarrow 2CO \qquad \qquad \Delta G_{1000^{\circ}C} = -439 \text{ kJ/mol} \\ \Delta G_{2000^{\circ}C} = -628 \text{ kJ/mol}$
8.	How can you separate alumina in a bauxite ore associated with silica? Give equations, if any.
).	Lead can also be obtained by reduction of roasted ore with coke. Out line the process.
10.	Estimate the minimum potential difference needed to reduce Al_2O_3 at 500°C.
	The reaction for decomposition is $\frac{2}{3} \operatorname{Al}_2 O_3 \longrightarrow \frac{4}{3} \operatorname{Al} + O_2$
	$\Delta G = +960 \text{ kJ at } 500^{\circ}\text{C}.$
11.	Name the chemical process and also write the chemical reactions involved in the removal of impurities of copper and silver from impure gold.
12.	Mond's process involves formation of $Ni(CO)_4$ and subsequent decomposition into Ni and CO.

- 12. Mond's process involves formation of Ni(CO)₄ and subsequent decomposition into Ni and CO. Ni+4CO $\xrightarrow{T_1}$ Ni(CO)₄ $\xrightarrow{T_2}$ Ni+4CO What are the values of temperatures, T₁ and T₂?
- 13. What is the role of graphite rod in the electrometallurgy of aluminium?
- 14. Explain the difference between hydro-metallurgy and pyro-metallurgy.
- 15. Gold is also extracted by cyanide process as in case of silver. Outline the reactions.
- **16.** How is Ag extracted from silver coin ?
- 17. In the purification of bauxite ore as preliminary step in the production of AI, $[AI(OH)_4]^-$ can be converted to $AI(OH)_3$ by passing CO₂(g) through it. Write an equation for the reaction that occurs.
- 18. Coke does not cause reduction of AI_2O_3 . Explain. ΔG_f^o (in kJ mol⁻¹) for AI_2O_3 : -1582 CO : -137.2

19. Following method of extracting Zn is based on thermodynamics:

(A) $2ZnS + 3O_2 \longrightarrow 2ZnO + 2SO_2$ (B) $ZnO + C \longrightarrow Zn + CO$ ΔG^{o}_{f} (standard free energies of formation, in kJ mol⁻¹) of ZnS = -205.4; ZnO = -318.2 $SO_2 = -300.4$; CO = -137.3

Calculate free energy changes of the reactions and comment on the result.

20. Describe the principle of extraction of each of the following.

(i) Sn from SnO₂, (ii) Pb from PbS, (iii) Ag from Ag₂S

21. Use the relationship $\Delta G^{\circ} = -nF E^{\circ}_{cell}$ to estimate the minimum voltage required to electrolyse Al₂O₃ in the Hall-Heroult process.

 $\Delta G^{o}_{f}(Al_{2}O_{3}) = -1520 \text{ kJ mol}^{-1}$; $\Delta G^{o}_{f}(CO_{2}) = -394 \text{ kJ mol}^{-1}$

Show that the oxidation of the graphite anode to CO_2 permits the electrolysis to occur at a lower voltage than if the electrolysis reactions were $Al_2O_3 \longrightarrow 2Al + 3O_2$.

- 22. Lead metal is purified by electrolysis similar to that for copper; the electrolyte is lead (II) hexafluorosilicate $PbSiF_6$. Describe the process.
- (a) Pure iron is prepared for special purposes by precipitating iron (III) oxide and reducing the dry oxide with H₂ gas. Write the balanced equation.
 - (b) HCI can't be used to precipitate $AI(OH)_3$ from soluble $Na[AI(OH)_4]$ but addition of NH_4CI can cause precipitation. Explain by reactions.
 - (c) AgCI (Horn silver) is converted into Ag by pyrometallurgical method. Describe reactions.
- 24. When an inert atmosphere is needed for a metallurgical process, nitrogen is frequently used. However, in the reduction of $TiCI_4$ by by magnesium, helium is used. Explain why nitrogen is not suitable for this process.

Ex	xercise # 5	Part # I Previo	ous Year Questions] [A	IEEE/JEE-N	MAIN]
1.	Which one of the followi (1) magnetite	ng ores is best concentrated (2) cassiterite	by froth floatation method (3) galena	1 ? (4) malachite.	[AIEEE - 2004]
2.	Heating mixture of Cu_2Oa (1) Cu_2SO_3	and Cu ₂ S will give : (2) CuO + CuS	$(3) Cu + SO_3$	$(4) \operatorname{Cu} + \operatorname{SO}_2$	[AIEEE - 2005]
3.	During the process of ele	ctro-refining of copper some	e metals present as impurity	y settle as anode	mud. These are : [AIEEE - 2005]
	(1) Sn and Ag	(2) Pb and Zn	(3) Ag and Au	(4) Fe and Ni	
4.	sulphide ores to carbon r (1) CO ₂ is thermodynamic (2) Metal sulphides are le (3) CO ₂ is more volatile th	cally more stable than CS_2 ess stable than the correspon	nding oxides	the oxides and	not subjecting the [AIEEE - 2008]
5.	Which method of purifica	ation is represented by the fo	ollowing equation :		[AIEEE - 2012]
	$Ti(s) + 2I_2(g) \xrightarrow{523K} fi$	$\mathrm{TiI}_{4}(\mathrm{g}) \xrightarrow{1700\mathrm{K}} \mathrm{Ti}(\mathrm{s}) + 2$	$2I_2(g)$		
	(1) Zone refining	(2) Cupellation	(3) Polling	(4) Van Arkel	
6.	The distillation technique	e most suited for separating	glycerol from spent-lye in		
	 (1) Fractional distillation (3) Distillation under red 	uced pressure	(2) Steam distillation(4) Simple distillation	[J]	EE (Mains) 2016]
7.	Which one of the followi (1) Siderite	ng ores is best concentrated (2) Galena	by froth floation method? (3) Malachite	[JF (4) Magnetite	CE (Mains) 2016]
8.	Galvanization is applying (1) Cr	a coating of: (2) Cu	(3) Zn	[JE (4) Pb	E (Mains) 2016]
9.		l wiht NaOH, a white gelatin nen heated strongly gives an		omatography as	
	(1) Ca	(2) Al	(3) Fe	(4) Zn	

	Part # II
•	Pb and Sn are extracted from their chief ores by : [JEE-20
	(A) carbon reduction and self reduction.
	(B) self reduction and carbon reduction.
	(C) electrolytic reduction and self reduction.
	(D) self reduction and electrolysis.
•	Two ores A1 and A2 of a metal M show the following reactivity :
	Calcination \rightarrow S (black solid) + CO ₂ + H ₂ O
	(i) dil. HCl (ii) KI (ii) KI
	A2 — Roasting → G (gas) + M (metal)
	$G \xrightarrow{\text{Acidified } K_2 Cr_2 O_7 \text{ solution}} \text{green solution}$
	Write the chemical formulae of A1, A2, S, P and G. Explain using required chemical reactions. [JEE-20
	Which of the following ore contains both Fe and Cu?
	(A) Chalcopyrite (B) Malachite (C) Cuprite (D) Azurite
	Match the extraction processes listed in column-I with metals listed in column-II. [JEE-20
	Column-I Column-II
	(A) Self reduction (p) Lead
	(B) Carbon reduction (q) Silver
	 (B) Carbon reduction (C) Complex formation and displacement by metal (P) Copper
	 (B) Carbon reduction (C) Complex formation and displacement by metal (D) Decomposition of iodide (q) Silver (r) Copper (s) Boron
	 (B) Carbon reduction (C) Complex formation and displacement by metal (D) Decomposition of iodide (S) Boron (D) Extraction of zinc from zinc blende is achieved by :
	 (B) Carbon reduction (C) Complex formation and displacement by metal (D) Decomposition of iodide (P) Decomposition of iodid
	 (B) Carbon reduction (C) Complex formation and displacement by metal (D) Decomposition of iodide (S) Boron (D) Extraction of zinc from zinc blende is achieved by :
	 (B) Carbon reduction (C) Complex formation and displacement by metal (P) Copper (D) Decomposition of iodide (s) Boron Extraction of zinc from zinc blende is achieved by : (A) electrolytic reduction (B) roasting followed by reduction with carbon (C) roasting followed by reduction with another metal (D) roasting followed by self-reduction Native silver metal forms a water soluble complex with a dilute aqueous solution of NaCN in the presence of:
	 (B) Carbon reduction (Q) Silver (C) Complex formation and displacement by metal (P) Decomposition of iodide (S) Boron Extraction of zinc from zinc blende is achieved by : (A) electrolytic reduction (B) roasting followed by reduction with carbon (C) roasting followed by reduction with another metal (D) roasting followed by self-reduction
	 (B) Carbon reduction (Q) Silver (C) Complex formation and displacement by metal (r) Copper (D) Decomposition of iodide (s) Boron Extraction of zinc from zinc blende is achieved by : (A) electrolytic reduction (B) roasting followed by reduction with carbon (C) roasting followed by reduction with another metal (D) roasting followed by self-reduction Native silver metal forms a water soluble complex with a dilute aqueous solution of NaCN in the presence of:
	(B) Carbon reduction (q) Silver (C) Complex formation and displacement by metal (r) Copper (D) Decomposition of iodide (s) Boron Extraction of zinc from zinc blende is achieved by : [JEE-20] (A) electrolytic reduction (B) roasting followed by reduction with carbon (C) roasting followed by reduction with another metal (D) roasting followed by self-reduction Native silver metal forms a water soluble complex with a dilute aqueous solution of NaCN in the presence of: [JEE-20] (A) nitrogen (B) oxygen (C) carbon dioxide (D) argon Match the conversions in Column-I with the type(s) of reaction(s) given in Column-II. [JEE-20] (A) PbS \rightarrow PbO (p) Roasting
	(B) Carbon reduction (q) Silver (C) Complex formation and displacement by metal (r) Copper (D) Decomposition of iodide (s) Boron Extraction of zinc from zinc blende is achieved by: [JEE-20] (A) electrolytic reduction (B) roasting followed by reduction with carbon (C) roasting followed by reduction with another metal (D) roasting followed by self-reduction Native silver metal forms a water soluble complex with a dilute aqueous solution of NaCN in the presence of: [JEE-20] (A) nitrogen (B) oxygen (C) carbon dioxide (D) argon Match the conversions in Column-I with the type(s) of reaction(s) given in Column-II. [JEE-20] (Olumn I Column II [JEE-20]

Comprehension

8.

9.

10.

11.

12.

13.

omp	rehension				
	Copper is the most nob	le of the first row transition	metals and occurs in small o	leposits in several o	countries, Ores of
	copper include chalcanthite (CuSO ₄ .5H ₂ O), atacamite (Cu ₂ Cl(OH) ₃), cuprite (Cu ₂ O), copper glance (Cu ₂ S) and				lance (Cu ₂ S) and
	malachite $(Cu_2(OH)_2CO_3)$. However, 80% of the world copper production comes from the ore chalcopyrite $(CuFeS_2)$.				opyrite (CuFeS ₂).
	The extraction of copper from chalcopyrite involves partial roasting, removal of iron and self-reduction.				
	Partial roasting of Cha	lcopyrite produces :			[JEE-2010]
	(A) Cu_2S and FeO	(B) Cu ₂ O and FeO	(C) CuS and Fe_2O_2	(D) Cu ₂ O and I	Fe ₂ O ₂
	Iron is removed from c	halcopyrite as :			[JEE-2010]
	(A) FeO	(B) FeS	(C) Fe_2O_3	(D) FeSiO ₃	
•	In self-reduction, the r				[JEE - 2010]
	(A) S	(B) O ^{2–}	(C) S ^{2–}	(D) SO_2	
•		m the ore cassiterite involv			[JEE - 2011]
	(A) carbon reduction o		(B) self-reduction of a	-	
	(C) removal of copper	impurity	(D) removal of iron imp	ourity	
•	Oxidation states of the	metal in the minerals haem	atite and magnetite, respecti	vely, are :	[JEE - 2011]
	(A) II, III in haematite a	and III in magnetite			
	(B) II, III in haematite a	and II in magnetite			
	(C) II in haematite and	II, III in magnetite			
	(D) III in haematite and	l II, III in magnetite			
	In the cyanide extracti	on process of silver from a	rgentite ore, the oxidizing a	and reducing agents	used are
	(A) O ₂ and CO respect	ively			
	(B) O_2 and Zn dust res				

(C) HNO₃ and Zn dust respectively.
(D) HNO₃ and CO respectively **14.** Sulfide ores are common for the metals :

(A) Ag, Cu and Pb
(C) Ag, Mg and Pb

(B) Ag, Cu and Sn
(D) Al, Cu and Pb

- 15.
 The carbon-based reduction method is NOT used for the extraction of :
 [JEE(Advanced) 2013]

 (A) tin from SnO2
 (B) iron from Fe2O3
 (C) aluminium from Al2O3

 (C) aluminium from Al2O3
 (D) magnesium from MgCO3, CaCO3
- 16. The compound (s) which generate (s) N_2 gas upon thermal decomposition below 300°C is (are)

			[JEE(Advanced) 2018]	I
(A) NH ₄ NO ₃	(B) $(NH_4)_2 Cr_2 O_7$	(C) $Ba(N_3)_2$	(D) Mg_3N_2	

MOCK TEST

SECTION-I: STRAIGHT OBJECTIVE TYPE

1. Match the column (I) and (II) and select the correct answer using the codes given below.

Colun	ın - I	Column - II		
(a) Ar	gentite	(1) Halide ore		
(b) Cu	prite	(2) Carbonate one		
(c) Sid	lerite	(3) Oxide ore		
(d) Ca	rnallite	(4) Sulphide ore		
Codes	:-			
	а	b	c	d
(A)	4	3	2	1
(B)	1	2	3	4
(C)	2	3	4	1
(D)	3	4	1	2

2. NaCN is sometimes added in the froth floatation process as a depressant when mineral contains ZnS and PbS because,

(A) $Pb(CN)_2$ is precipitated while there is no effect on ZnS.

- **(B)** ZnS forms soluble complex $Na_2[Sn(CN)_4]$ while PbS forms froth
- (C) PbS forms soluble complex $Na_2[Pb(CN)_4]$ while ZnS forms froth.
- (D) silicious impurities settle down on the bottom.
- 3. Main source of lead is galena (PbS). It is converted to Pb by :

(A):
$$PbS \xrightarrow{air}{\Delta} PbO + SO_2$$

 $c \rightarrow Pb + CO_2$

(B): $PbS \xrightarrow{air} PbO + PbS$ $\rightarrow Pb + SO_2$

Self-reduction process is : (A) A (B) B

(C) both

(D) none

4. The chemical composition of "slag" formed during the smelting process in the extraction of copper is : (A) $Cu_2O + FeS$ (B) $FeSiO_3$ (C) $CuFS_2$ (D) $Cu_2S + FeO$

5. Which of the following statement is incorrect about the extractive metallurgy of copper?

- (A) Matte chiefly consists of cuprous sulphide and some ferrous sulphide
- (B) Most of the impurity of iron sulphide is removed as fusible slag during roasting.
- (C) The copper pyrites is concentrated by froth floatation process.
- (D) The copper obtained from Bessemer converter is called as blister copper

6.	Roasted silver ore + $CN_{(aq)}^{-}$ + $O_2 \rightarrow [X]_{(aq)}$ + $OH_{(aq)}^{-}$; $[X]_{(aq)}$ + $Zn \rightarrow [Y]_{(aq)}$ + $Ag \downarrow$		
	The [X] and [Y] are respectively :		
	(A) $[Ag(CN)_2]^-, [Zn(CN)_6]^{-4}$	(B) AgCN, $[Zn(CN)_4]^{-2}$	
	(C) $[Ag(CN)_4]^{-3}, [Zn(CN)_4]^{-2}$	(D) $[Ag(CN)_2]^-, [Zn(CN)_4]^{-2}$	

7. Match column (I) with column (II) and select the correct answer using codes given below in the lists.

Column - I	Column - II
(i) Cyanide process	(a) Extraction of Al
(ii) Self reduction	(b) Extraction of Ag
(iii) Electrolytic reduction	(c) Extraction of Cu
(iv) Carbon reduction	(d) Extraction of Sn
(A) (i) - (b), (ii) - (c), (iii) - (a), (iv) - (d)	(B) (i) - (b), (ii) - (d), (iii) - (a), (iv) - (c)
(C) (i) - (d), (ii) - (a), (iii) - (c), (iv) - (b)	(D) (i) - (c), (b) - (ii) - (d), (iv) - (a)

8. Select the group of oxides that can not be reduced by carbon to give the respective metals.
(A) CaO, K₂O
(B) Fe₂O, ZnO
(C) Cu₂O, SnO₃
(D) Fe₂O₃, PbO

SECTION - II : MULTIPLE CORRECT ANSWER TYPE

- 9. The reaction(s) which does (do) not occur in the reduction zone in the extraction of iron from haematite ore is (are): (A) $Fe_2O + CO \rightarrow 2 FeO + CO_2$ (B) $FeO + CO \rightarrow Fe + CO_2$ (C) $Fe_2O_3 + 3C \rightarrow 2Fe + 3CO$ (D) $CaO + SiO_2 \rightarrow CaSiO_3$
- Cassiterite ore (SnO₂) is purified by :
 (A) magnetic separator
 (C) leaching

(B) roasting (D) calcination

- 11. Why lime stone is added in the extraction of lead from galena?
 (A) It prevents the formation of PbSO₄
 (B) It remove the impurity of silica as fusible slag
 (C) It converts lead silicate to lead oxide
 (D) It remove the impurity of iron oxide as fusible slag
- 12. Which of the following statement(s) is/are correct about slag?
 (A) The chemical composition of slag obtained in the extraction of copper from copper pyrites is PbSiO₃.
 (B) The calcium silicate, CaSiO₃ is obtained in slag formation zone in the extraction of iron from haematite ore.
 - (C) In blast furnace /Bessemer converter, the upper layer of molten liquid (i.e. molten metal) is of slag.
 - (D) The slag is fusible matter.
- 13. S_1 : Cuprite, Limonite and Zincite are oxide ores
 - S₂: Magnesite and carnallite are magnesium ores
 - S_3 : Chalcocite and azurite are ores of copper

S_4 : Felspar and mice minerals contain aluminium.

(A) TTTT (B) FTFF (C) FFTT (D) TTFT

14. S₁: In the aluminothermite process, aluminium acts as reducing agent.
S₂: Amongst the following Mg and Al can not be obtained by the electrolysis of the aqueous solution of their salts.
(I) Ag
(II) Mg
(III) Cu
(IV) Al.
S₃: In the extractive metallurgy of zinc, partial fusino of ZnO with coke is called sintering and reduction of ore to the molten metal is called smelting.
S₄: Extractive metallurgy of silver from its ore argenite involves complex formation and displacement by more electropositive metal.

(A) TFFT (B) TTTT (C) TTFT (D) TFTF

SECTION - III : ASSERTION AND REASON TYPE

Statement - 1 : Silica is added as a flux in reverberatory furnace, in the extraction of copper from copper pyrites. 15. **Statement - 2**: Silica decreases the melting point of the ore and remove the impurity of lead sulphide as PbSiO...

(A) Statement - 1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1.

(B) Statement-2 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1.

(C) Statement-1 is True, Statement-2 is False

- (D) Statement-1 is False, Statement 2 is True.
- 16. Statement - 1: Cast iron is different from pig iron.
 - Statement 2: Cast iron is made by melting pig iron with scrap iron and coke using hot air blast and has about 3% carbon content.
 - (A) Statement-1 is True, Statement-2 is True, Statement 2 is a correct explanation for Statement-1.
 - (B) Statement-1 is True, Statement-2 is True, Statement is NOT a correct explanation for Statement-1.
 - (C) Statement-1 is True, Statement-2 is False.
 - (D) Statement-1 is False, Statement-2 is True.
- 17. Statement-1 : Sodium chloride is added during electrolysis of fused anhydrous magnesium chloride.
 - Statement-2: Anhydrous magnesium chloride is obtained by heating hydrate magnesium chloride, MgCl,.6H,O.
 - (A) Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1.
 - (B) Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1.
 - (C) Statement-1 is True, Statement-2 is False.
 - (D) Statement-1 is False, Statement-2 is True.

SECTION - IV : COMPREHENSION TYPE

Read the following comprehensions carefully and answer the questions.

Comprehension #1

Minerals from which metals can be extracted economically and easily are called ores. The extraction of metals from theirs ores involves the following processes.

- (i) Concentration
- (ii) Calcination | roasting | leaching
- (iii) Reduction
- It is carried out by one of the following methods.
- (a) Carbon | carbon monoxide reduction
- (b) Self reduction
- (c) Electrolytic reduction
- (d) Reduction by more electropositve metal (i.e. displacement method).
- Which of the following reaction does not occur in Bessemer converter in the extraction of copper from chalcopy-18. rites.
 - (A) 2 Cu FeS₂ + O₂ \longrightarrow Cu₂S + 2FeS + SO₂ (B) FeO + SiO₂ \longrightarrow FeSiO₃
 - (C) $2FeS + 3O_3 \longrightarrow 2FeO + 2SO_2$
- (D) $Cu_2S+2Cu_2O \longrightarrow 6 Cu+SO_2$

- **19.** Silver is extracted from its native ore by :
 - (A) formation of soluble complex by dilute solution of NaCN in presence of air followed by the reduction with zinc.
 - (B) formation of soluble complex by dilute solution of NaCN in absence of air followed by the reduction with zinc.
 - (C) roasting followed by the self reduction.
 - **(D)** roasting followed by electrolytic reduction.
- **20.** Which of the following is not correctly matched ?

(A)	Red bauxite	_	Purification by Serpeck's method				
(B)	Iron from haematite	_	Carbon monoxide reduction				
(C)	Calamine	_	Carbonate ore				
(D)	FeSiO ₃	_	Slag obtained in the extraction of copper				

Comprehension #3

Metallic gold frequently is found in aluminosilicate rocks and its is finely dispersed among other minerals. It may be extracted by trating the crushed rock with aerated potassium cyanide solution. During this process metallic gold is slowly converted to $[Au(CN)_2]^-$, which is soluble in water. After equilibrium has been reached, the aqueous phase is pumped off and the metallic gold is recovered from it by reacting the gold complex with zinc, which is converted to $[Zn(CN)_4]^2^-$. Gold in nature is frequently alloyed with silver which is also oxidised by aerated sodium cyanide solution. Silver occurs as native as well as sulphurised ore.

21. The correct reaction involved in the leaching of gold with dilute solution of NaCN is :

(A) $4Au + 8CN^- + 2H_2O + O_2(air) \rightarrow 4[Au(CN)_2]^- + 4OH^-$ (B) $Au + 2CN^- \rightarrow Au[(Cn)_2]^-$ (C) $Zn + 2CN^- \rightarrow Zn[(Cn)_2]^-$ (D) $Zn + 4CN^- \rightarrow Zn[(Cn)_4]^{2-}$

- 22. Which of the following statement is correct ?
 - (A) Leaching of gold with CN^- is an oxidation reaction.
 - (B) Argentite is oxide ore of silver.
 - (C) In the precipitation of gold from the soluble complex, zinc acts as complexing and reducing agent.
 - (\mathbf{D}) (A) and (C) both
- 23. The process described above in the passage is regarding :
 - (A) ore dressing (B) pyrometallurgical extraction
 - (C) hydrometallurgical extraction
- (D) purification of metal

Comprehnsion #4

Amongst the various ores of a metal (M) (sulphide, carbonates, oxides, hydrated or hydroxide(s) two ores [X] and [Y] show the following reactively.

- (i) [X] on calcination gives a black solid (S), carbon dioxide and water.
- (ii) [X] Dissolved in dil. HCl on reaction with Kl gives a white precipitate (P) and iodine.
- (iii) [Y] on roasting gives metal (M) and a gas (G_1) , which turns acidified K₂Cr₂O, solution green.
- (iv) [Y] on reaction with dil. HCl gives a white precipitate (Q) and another gas (G_2) which turns lead acetate solution black and also reacts with gas (G_1) to precipitate colloidal sulphur in presence of moisture.

The M, S, [X] and [Y] gives greenish blue flame.

METALLURGY

24.	The metal ores [X] and [Y] are respectively								
	(A) Carbonate and sulphide ores	(B) Sulphide and carbonate ore							
	(C) Carbonate and hydroxide ores	(D) Carbonate and oxide ores							
25. Which of the following statements is correct about [Y]?									
	(A) [Y] is converted to metal (M) by self red	5 - F							
	(B) Carbonate extract of [Y] gives yellow precipitate with suspension of CdCO ₃ .								
	(C) [Y] is chalcocites or chalcopyrites								
	(D) All of these								
26.	The gas (G_1) acts as								
	(A) Oxidising agent	(B) reducing agent							
	(C) oxidising and reducing agent	(D) fluxing agent							
27.	The white precipitate (P) is of :								
	$(\mathbf{A}) \operatorname{Cu}_2 \operatorname{I}_2 \qquad \qquad (\mathbf{B}) \operatorname{Cu}_2$	(C) $K_2[CuI_4]$	(D) None						
	SECTION V	: MATRIX - MATCH TYP	F						
28.	Match the ores listed in column (I) with type								
20.	Column - I	Column - II							
	(A) Chalcopyrites								
	(B) Galena	(p) Self- reduction (q) Sulphurised ore							
	(C) Argentite	(r) Carbon reduction							
	(D) Malachite	(s) Leaching followed	by displacement method.						
29.	Match the reactions given in column (I) with	h the appropriate method(s) listed	in column (II).						
	Column - I		Column - II						
	(A) $4 \text{Au} + 8 \text{NaCN} + 2 \text{H}_2\text{O} + \text{O}_2 (\text{air}) \longrightarrow$	$4 \operatorname{Na} [\operatorname{Au} (\operatorname{CN})_{2}] + 4 \operatorname{NaOH}$	(p) Leaching						
	(B) $\operatorname{CuFeS}_2 + 2 \operatorname{H}_2 \operatorname{SO}_4 \longrightarrow \operatorname{CuSO}_4 + \operatorname{FeSC}_4$	$D_4 + 2 H_2 S$	(q) Smelting						
	(C) $\operatorname{Fe_3O_4} + 4\operatorname{CO} \xrightarrow{823\operatorname{K}} 3\operatorname{Fe} + \operatorname{CO}$		(r) Roasting						
	(D) $MgCl_2 + 6H_2O \xrightarrow{\Delta} MgCl_2 + 6H_2O$	0	(s) Calcination						
		2							
30.	Match the following metals given in column I with the appropriate metal extraction process(es) listed below in								
	column II.	Colores H							
	Column - I (A) Silver	Column-II (p) Fused salt electroly							
	(B) Lead	(q) Cyanide process							
	(C) Iron	(r) Carbon monoxide r	eduction						
	(D) Magnesium	(s) Self reduction							
	SECTION -	VI: SUBJECTIVE TYPE							
21									
31.	Elaborate the metallurgy of : (A) Silver								

- (B) Gold
- (C) Iron

ANSWER KEY

EXERCISE - 1

 1. B
 2. B
 3. C
 4. A
 5. C
 6. C
 7. D
 8. C
 9. B
 10. B,C
 11. C
 12. D
 13. A

 14. B,C,D
 15. A
 16. C
 17. D
 18. A,B,C
 19. A
 20. C
 21. B
 22. A,C
 23. C
 24. C

 25. A,B,D
 26. C
 27. A
 28. C
 29. C
 30. D
 31. D
 32. D
 33. A
 34. C
 35. D
 36. C
 37. A,D

 38. A,B,C
 39. C
 40. A
 41. B
 42. B
 43. D
 44. C
 45. C
 46. D
 47. D
 48. B
 49. A
 50. A

 51. A
 52. C
 53. A
 54. C
 55. B
 56. C
 57. C
 58. C
 59. D
 60. B
 61. C
 62. D
 63. D

 64. C
 65. A
 66. B
 67. C
 68. A
 69. B
 70. D
 71. D
 72. C
 73. D
 74. C
 75. B
 76. C

 77. B
 78. B
 79. B
 80. A
 81. A
 82. B
 83. D
 84. B
 85. B
 86. D
 87. D
 88. A
 89. B

EXERCISE - 2 : PART # I

1. B,D	2. A, B, C, D	3. A, B, D	4. A, B, C	5. A, B, C, D	6. D
7. A, C	8. B,C	9. A, B, C, D	10. A, D	11. A, B, C	12. A, B, C
13. A, B, C, D	14. A, B, C	15. A, B, C	16. C,D	17. A, B, C, D	18. B,D
19. B, C, D	20. A, B	21. A, B, C, D	22. A, B, D	23. A, C	

PART # II

1. D 2. C 3. C 4. C 5. D 6. B 7. C 8. B 9. A 10. B 11. C 12. C 13. B 14. C 15. B 16. C 17. A

EXERCISE - 3 : PART # I

- 1. $A \rightarrow p, q, s, B \rightarrow p, q, s, C \rightarrow q, s, D \rightarrow r$
- 2. $A \rightarrow p, s, B \rightarrow s, C \rightarrow q, r, D \rightarrow q, r$
- 3. $A \rightarrow p, B \rightarrow p, q, C \rightarrow q, s, D \rightarrow r$
- 4. $A \rightarrow q, s, B \rightarrow p, C \rightarrow r, s, D \rightarrow r, s$
- 5. $A \rightarrow p, r, s, t, B \rightarrow p, t, C \rightarrow q, s, D \rightarrow p, s, t$
- $6. \qquad A \to p, B \to q, C \to r, D \to s$

7. $A \rightarrow p, r, B \rightarrow p, r, C \rightarrow q, D \rightarrow s$

- 8. $A \rightarrow r, t, B \rightarrow s, C \rightarrow t, D \rightarrow p, E \rightarrow q$
- 9. $A \rightarrow q, s, B \rightarrow r, C \rightarrow s, D \rightarrow p$

PART # II

Comprehension #1:	1.	А	2.	D	3.	С	4.	А	5. E)
Comprehension #2:	1.	А	2.	В	3.	С				
Comprehension #3:	1.	А	2.	В	3.	D				
Comprehension #4:	1.	В	2.	D	3.	В	4.	А	5.	В
Comprehension # 5 :	1.	D	2.	А	3.	В	4.	С		

EXERCISE - 5 : PART # I

1. 3 **2.** 4 **3.** 3 **4.** 3 **5.** 4 **6.** 3 **7.** 2 **8.** 3 **9.** 2

PART # II

2. A1 = CuCO₃, Cu(OH)₂ or 2CuCO₃, Cu(OH)₂; A2 = Cu₂S; S = CuO; P = Cu₂I₂; G = SO₂

3. A **4.** $A \rightarrow p, r; B \rightarrow p; C \rightarrow q; D \rightarrow s.$ **5.** B **6.** B **7.** $A \rightarrow p; B \rightarrow q; C \rightarrow p, r; D \rightarrow p, s$ **8.** A

9. D 10. C 11. A,D 12. D 13. B 14. A 15. C,D 16. B,C

MOCK-TEST

1. A 2. B 3. B 4. B 5. B 6. D 7. A 8. A 9. C,D 10. A,B,C 11. A,B, 12.B,C,D 13. A 14. B 15. C 16. A 17. C 18. A 19. A 20. A 21. A 22. D 23. C 24. A 25. D 26. C 27. A 28. $A \rightarrow p,q; B \rightarrow p,q,r; C \rightarrow q,s; D \rightarrow r$ 29. $A \rightarrow p; B \rightarrow p; C \rightarrow q; D \rightarrow s$ 30. $A \rightarrow q; B \rightarrow s; C \rightarrow r; D \rightarrow p$

