E	xercise # 5	Part # I Pre	evious Year Questions]	[AIEEE/JEE-MAIN]
1.	The conjugate base of (1) PO_4^{3-}	$H_2PO_4^{-} is$ (2) P_2O_5	(3) H ₃ PO ₄	[AIEEE-2004] (4) HPO ₄ ²⁻
2.	The molar solubility (in is given in terms of K_{sp} (1) s = $(K_{sp}/128)^{1/4}$	by the relation	uble salt MX ₄ is s. The corr (3) $s = (256K_{sp})^{1/5}$	esponding solubility product is $K_{sp.}$ s [AIEEE-2004] (4) s = $(K_{sp}/256)^{1/5}$
3.	The solubility product of the saturated aqueous $(1) 2.0 \times 10^{-6} \text{ M}$		nula MX_2 , in water is : 4 × 1 (3) 1.6 × 10 ⁻⁴ M	0^{-12} . The concentration of M ²⁺ ions in [AIEEE-2005] (4) 4.0×10^{-10} M
4.	What is the conjugate $(1) O_2$	base of OH^- ? (2) H_2O	(3) O ⁻	[AIEEE-2005] (4) O ²⁻
5.	Hydrogen ion concentr (1) 3.98×10^8	ation in mol/L in a solution (2) 3.88×10^6	of pH = 5.4 will be (3) 3.68×10^{-6}	[AIEEE-2005] (4) 3.98 × 10 ⁻⁶
6.	dissociation constant o	f the acid will be	-	5.0×10^{-10} respectively. The overall [AIEEE-2007]
7.	(1) 5.0×10^{-15} The pK _a of a weak acidionized, is :	(2) 0.2×10^5 I (HA) is 4.5. The pOH of a	(3) 5.0×10^{-5} an aqueous buffered solutio	(4) 5.0×10^{15} n of HA, in which 50% of the acid is [AIEEE-2007]
	(1) 9.5	(2) 7.0	(3) 4.5	(4) 2.5
8.	which sets in is	of the sparingly soluble str $\Rightarrow Ag^{+}(aq) + IO^{-}_{3}(aq)$	rong electrolyte AgIO ₃ (Mo	blecular mass = 283) the equilibrium
	5		t a given temperature is 1.	0×10^{-8} , what is the mass of AgIO ₃
	contained in 100 ml of	its saturated solution?		[AIEEE-2007]
	(1) 1.0×10^{-7} g	(2) 1.0×10^{-4} g	(3) 28.3×10^{-2} g	(4) 2.83×10^{-3} g
9.	The pK _a of a weak acid corresponding salt, BA	5	weak base, BOH, is 4.78.	The pH of an aqueous solution of the [AIEEE-2008]
	(1) 4.79	(2) 7.01	(3) 9.22	(4) 9.58
10.	Solid Ba(NO ₃) ₂ is gradu begin to form ? (K_{sp} for		M Na ₂ CO ₃ solution. At what o	concentration of Ba ²⁺ will a precipitate [AIEEE-2009]
	(1) $5.1 \times 10^{-5} \mathrm{M}$	(2) $8.1 \times 10^{-8} \mathrm{M}$	(3) $8.1 \times 10^{-7} \mathrm{M}$	(4) 4.1×10^{-5} M
11.				a bromide (molar mass taken as 120 g cipitation of AgBr is : [AIEEE-2010] (4) 5.0×10^{-8} g

CHEMISTRY FOR JEE MAIN & ADVANCED

12.		y product of Mg(OH) ₂ is 1.0 olution of 0.001 M Mg ²⁺ ion	0×10^{-11} . At Which pH, will M ns ?	[g ²⁺ ions start precip:	itating in the form [AIEEE-2010]
	(1)9	(2) 10	(3) 11	(4) 8	
13.	(i) $H_3PO_4 + H_2O \rightarrow H$ (ii) $H_2PO_4^- + H_2O \rightarrow I$ (iii) $H_2PO_4^- + OH^- \rightarrow I$	$HPO_4^{2-} + H_3O^+$			[AIEEE-2010]
	(1) (ii) only	(2) (i) and (ii)	(3) (iii) only	(4) (i) only	
14.	$K_1 = 4.2 \times 10^{-10}$	the ionization constants for 0^{-7} and $K_2 = 4.8 \times 10^{-11}$			[AIEEE-2010]
	 (1) The concentration (2) The concentration (3) The concentration 	tement for a saturated 0.034 m of CO_3^{2-} is 0.034 M. n of CO_3^{2-} is greater than th n of H^+ and HCO_3^{-} are approximately n of H^+ is double that of CO	oximately equal.	acid.	
15.	How many litres of v solution with pH of 2		re an aqueous solution of HC		create an aqueous JEE(Main) 2013]
	(1) 0.1 L	(2) 0.9 L	(3) 2.0 L	(4) 9.0 L	
16.	Which of the followi (1) CH ₃ COOK	ng salts is the most basic in (2) FeCl ₃	n aqueous solution ? (3) Pb (CH ₃ COO) ₂	[J (4) Al (CN) ₃	EE(Main) 2018]
17.			20 M HCl. If the equilibrium contrast 1.2×10^{-13} then the concentration	tion of S ²⁻ ions in aq	
	(1) 3×10^{-20}	(2) 6×10^{-21}	(3) 5×10^{-19}	(4) 5×10^{-8}	
	Part # II	> [Previous Year Qu	uestions][IIT-JEE ADV	ANCED]	
1.	A weak acid HX has the hydrolysis of 0.1 M s		< 10 ⁻⁵ M. It forms a salt NaX o (C) 0.1 %	n reaction with alkal	i. The percentage [JEE-2004]
2.	0.1 M NaOH is titrat		end point; K_a for HA is 5.6 ×		hydrolysis is less [JEE-2004]
3.		-	ith 0.08 mole of HCl and dil H ⁺ concentration in the solut		hat will be the H ⁺ [JEE-2005]
	(A) 8×10^{-2} M	(B) $8 \times 10^{-11} \mathrm{M}$	(C) 1.6×10^{-11} M	(D) $8 \times 10^{-5} \mathrm{M}$	

4.	2.5 mL of $\frac{2}{5}$ M	weak monoaci	dic base ($K_b = 1 \ge 1$	0 ⁻¹² at 25° C) is t	titrated with $\frac{2}{15}$ M	I HCl in water at 25°C. The
	concentration of	H ⁺ at equivaler	the point is $(K_w = 1)$	x 10 ⁻¹⁴ at 25°C)		[JEE-2008]
	(A) $3.7 \times 10^{-14} \mathrm{M}$			(C) 3.2×10^{-2}	M (D)2	2.7 x 10 ⁻² M
5.	Solubility produc	et constant (K) of salts of types M	X, MX, and M,X	at temperature T a	re 4.0×10^{-8} , 3.2×10^{-14} and
			lities (mol dm ⁻³) of t			
	(A) $MX > MX_2 >$	•		$(B) M_3 X > M$		
	(C) $MX_2 > M_3X >$	> MX		(D) $MX > M_3$	-	
6.	The dissociation	constant of a su	hatitutad hanzaia aa	id at 25°C is 1.0 x	$\sqrt{10^{-4}}$ The pH of 0	.01 M solution of its sodium
0.	salt is	constant of a st	iostituted benzoic ac	iu at 25 C is 1.0 /	× 10 . The prior 0	[JEE-2009]
	Salt 15					[JEE-2007]
7.	Amongst the foll	owing, the tota	al number of compo	ounds whose aque	eous solution turns	red litmus paper blue is :
						[JEE-2010]
	KCN	K_2SO_4	$(NH_4)_2C_2O_4$	NaCl	$Zn(NO_3)_2$	
	FeCl ₃	K ₂ CO ₃	NH ₄ NO ₃	LiCN		
8.		5	5	3	identical concentra	tions are provided. The pair
			ffer upon mixing is			[JEE-2010]
	(A) HNO_3 and CH	5		(B) KOH and	2	
	(\mathbf{C}) HNO ₃ and CH	I ₃ COONa		(D) CH ₃ COO	H and CH ₃ COONa	
9.	In 1 L saturated a	alution of A al	$V_{\rm L}(\Lambda_{\rm ec}C) = 1.6$	$(10^{-10}] 0.1 \text{ mol}$	fCuCl[V_(CuCl)	-1.0×10^{-61} is added. The
9.			· · ·		*	$= 1.0 \times 10^{-6}$] is added. The
	resultant concent	ation of Ag' in	the solution is 1.6	× 10 ⁻ [*] . The value	of "X" 1S :	[JEE-2011]
10.	The initial rate of	hydrolysis of t	nethyl acetate (1M)	by a weak acid (I	HA 1M) is $1/100^{\text{th}}$	of that of a strong acid (HX,
10.	1M), at 25°C. The		neury accure (111)	by a weak acta (1	11, 11, 11, 15 17 100	[JEE(Advanced)-2013]
	(A) 1×10^{-4}	- /	1×10^{-5}	(C) 1 × 10 ^{−6}	(D)	1×10^{-3}
11.						tion (A) of 0.5. The ratio of
	the observed dep	ression of free	zing poi <mark>nt of th</mark> e aq			lepression of freezing point
	in the absence of				、 、	[JEE(Advanced)-2014]
12.			he oxoacids, HClO		e)	[JEE(Advanced)-2017]
	(A) The central a	tom in both HC	ClO_4 and HClO is <i>sp</i>	³ hybridized		
	(B) HClO ₄ is form	ned in the reac	tion between Cl ₂ and	H ₂ O		
	(C) The conjugat	te base of HCl	D_4 is weaker base th	an H ₂ O		
	(D) HClO ₄ is more	re acidic than H	IClO because of the	resonance stabil	ization of its anion	
13.	The solubility of	a salt of weak	acid (AB) at pH 3 is	$Y \times 10^{-3} mol L^{1}$. The value of Y is	·
	(Given that the v	value of solubi	lity product of AB	$(K_{sn}) = 2 \times 10^{-10}$	⁰ and the value of	ionization constant of HB
	$(K_a) = 1 \times 10^{-8})$			ւր		[JEE(Advanced)-2018]

CHEMISTRY FOR JEE MAIN & ADVANCED

14. Dilution processes of different aqueous solutions, with water, are given in LIST-I. The effects of dilution of the solution on [H⁺] are given in LIST-II.

LIST - I

- (P) (10 mL of 0.1 M NaOH + 20 mL of 0.1 M acetic acid) diluted to 60 mL
- (Q) (20 mL of 0.1 M NaOH + 20 mL of 0.1 M acetic dilution acid) diluted to 80 mL
- (R) (20 mL of 0.1 M HCl+20 mL of 0.1 M ammonia solution) diluted to 80 mL
- (S) 10 mL saturated solution of $Ni(OH)_2$ in

equilibrium with excess solid $Ni(OH)_2$ is diluted to 20 mL (solid $Ni(OH)_2$ is still present after dilution).

LIST-II

(1) The value of [H⁺] does not change on dilution

(2) The value of [H⁺] changes to held of its initial value on dilution

(3) The value of $[H^+]$ changes to two times of its initial value on dilution

(4) The value of [H]⁺ changes to $\frac{1}{\sqrt{2}}$ times of its initial

value on dilution

(5) The value of [H⁺] changes to $\sqrt{2}$ times of its initial value on dilution

Match each process given in LIST-I with one or more effect(s) in LIST-II, the correct option is

- (A) $P \rightarrow 4, 5; Q \rightarrow 2; R \rightarrow 3; S \rightarrow 1$
- **(B)** $P \rightarrow 4, 4; Q \rightarrow 3; R \rightarrow 2; S \rightarrow 3$
- (C) $P \rightarrow 1; Q \rightarrow 4; R \rightarrow 5; S \rightarrow 3$
- (D) $P \rightarrow 1, 5; Q \rightarrow 5; R \rightarrow 4; S \rightarrow 1$

		K TEST	
	SECTION - I : STRAI	GHT OBJECTIVE T	YPE
1.	The following equilibrium is established when hydrogeneous $HCl(aq) + CH_{3}COOH(aq)$ The set that characterises the conjugate acid-base	$(aq) \Longrightarrow Cl^{-}(aq) + CH_{3}CC$	
	(A) (HCl, CH ₃ COOH) and (CH ₃ COOH ₂ ⁺ , Cl ⁻) (C) (CH ₂ COOH ₂ ⁺ , HCl) and (Cl ⁻ , CH ₃ COOH)	(B) (HCl, CH ₃ COOH ₂ ⁺) (D) (HCl, Cl ⁻) and (CH ₃	, J
2.	The following equilibrium is established when HC HF + $HClO_4 \iff ClC$ Which of the following is correct set of conjugate	$D_4^- + H_2F^+$	id HF.
	(A) HF and $HClO_4$ (B) HF and ClO_4^-	(C) HF and H_2F^+	$(\mathbf{D}) \operatorname{HClO}_4 \& \operatorname{H}_2 \mathrm{F}^+$
3.	Identify the amphoteric species from the following(I) H2O(II) NH3(A) I, II(B) III, IV	;: (III) H ₂ PO ₄ ⁻ (C) I, II, III	(IV) HCO ₃ ⁻ (D) I, II, III, I
4.	Which of the following relations is correct ? (A) $\Delta G^{\circ} = RT \ln K_{eq}$	(B) $[H_3O^+] = 10^{pH}$	
	(C) $\log \frac{Kw_2}{Kw_1} = \frac{\Delta H^o}{2.303 R} \left(\frac{1}{T_1} - \frac{1}{T_2}\right)$	(D) $[OH^{-}] = 10^{-7}$, for p	ure water at all temperatures.
5.	Which of the following is incorrect ? (A) K_a (weak acid). K_b (conjugate weak base) = K_w (B) K_a (strong acid). K_b (conjugate weak base) = K (C) K_a (weak acid). K_b (weak base) = K_w (D) K_a (weak acid). K_b (conjugate strong base) = K	w	
5.	K _a for the acid HA is 1×10^{-6} . The value of K for t (A) 1×10^{-6} (B) 1×10^{12}		
7.	The pK _a value of NH_4^+ is 9. The pK _b value of NH_4^+		
	(A) 9 (B) 5	(C) 7	(D) 8
3.	Which of the following solution will have a pH exa (A) 10^{-8} M HCl solution at 25°C (C) 2×10^{-6} M Ba(OH) ₂ solution at 25°C	actly equal to 8 ? (B) 10 ⁻⁸ M H ⁺ solution (D) 10 ⁻⁵ M NaOH solu	
9.	Which of the following solution will have pH close (A) 100 ml of M/10 HCl+ 100 ml of M/10 NaOH (C) 10 ml of M/10 HCl+ 90 ml of M/10 NaOH		+ 45 ml of M/10 NaOH 25 ml of M/5 NaOH.
10.	0.1mol HCl is dissolved in distilled water of volum (A) zero (B) 1	the V then at $\lim_{V \to \infty} (pH)_{so}$ (C) 7	blution is equal to (D) 14

CHEMISTRY FOR JEE MAIN & ADVANCED

11.		of mono basic acids A, B, C a M aqueous solution are in tl		.6 x 10 ⁻⁶ and 7 x 10 ⁻¹⁰ respectively. The
	(A) D>C>B>A	(B) A > B > C > D	(C) D > C > A > B	(D) None
12.	Which statement/relat	ionship is correct?		
	(A) pH of 0.1 M HNO ₃	, 0.1M HCl, 0.1M HI is not o	equal. (B) pH = $-\log \frac{1}{[H^+]}$	
	(C) At 25°C the pH of	pure water is 7.	(D) The value of pK_w	at 25 °C is 7.
13.	Approximate pH of 0 respectively :	.1 M aqueous H_2S solution	when K_1 and K_2 for H_2S	at 25°C are 1×10^{-7} and 1.3×10^{-13}
	(A)4	(B) 5	(C) 6	(D) 8
	SEC	ΓΙΟΝ - ΙΙ : <mark>MULTIPL</mark>	E CORRECT ANSWI	ERTYPE
14.			1L of a 0.01 M CH ₃ COOH solution ? K _a = 1.6×10^{-5} for	solution will cause no change in the or CH,COOH?
	(A) 0.6 mM HCOOH (I (C) 0.4 mM HCl	•	(B) 0.1 M CH ₃ COONa (D) 0.01 M CH ₃ COOH	
15.	Equal volumes of follo pH of two solutions.	wing solutions are mixed, in	n which case the pH of resul	ting solution will be average value of
		= 2, aqueous NaOH of pH =		
		= 2, aqueous HCl of $pH = 4$ bH = 12, aqueous NaOH of $pH = 12$		
			$pH = 9. [K_a (CH_3COOH) =]$	(NH_3)
16.		nd HD are 10 ⁻⁵ , 10 ⁻⁷ and 10 ⁻⁵ JaA, Na <mark>B and N</mark> aD at 25 ⁰ C		ollowing will be correct for decimolar
	$(\mathbf{A}) (\mathbf{pH})_{\mathrm{NaA}} < (\mathbf{pH})_{\mathrm{NaB}}$	$(\mathbf{B}) (\mathbf{pH})_{\mathrm{NaD}} < (\mathbf{pH})_{\mathrm{NaB}}$	$(\mathbf{C}) (\mathbf{pH})_{\mathrm{NaA}} < (\mathbf{pH})_{\mathrm{NaD}}$	(D) $(pH)_{NaB} = 7$

17. $0.1 \text{ M CH}_3\text{COOH}$ is diluted at 25°C (K = 1.8×10^{-5}), then which of the following will be found correct(A) [H⁺] will increase(B) pH will increase(C) number of H⁺ will increase(D) all the above are correct

SECTION - III : ASSERTION AND REASON TYPE

Each question has 5 choices (A), (B), (C), (D) and (E) out of which only one is correct.

(A) Statement-1 is true, Statement-2 is true and Statement-2 is correct explanation for Statement-1.

(B) Statement-1 is true, Statement-2 is true and Statement-2 is not correct explanation for Statement-1.

- (C) Statement-1 is true, Statement-2 is false
- (D) Statement-1 is false, Statement-2 is true
- (E) Both Statements are false
- **18. Statement-1** : Aqueous solutions of all strong acids contain only the same acid, the hydronium ion.
 - **Statement-2**: For all diprotic acids, the equilibrium constant K_{a2} , for the second stage of ionisation is smaller than the equilibrium constant, K_{a1} , for the first stage of ionisation.
- Statement-1: 0.20 M solution of NaCN is more basic than 0.20 M solution of NaF.
 Statement-2: K_a of HCN is very much less than that of HF.

.....(1)

.....(2)

.....(3)

- **20. Statement-1** : A substance that can either act as an acid as well as a base is called ampholyte. **Statement-2** : Bisulphide ion (HS⁻) and biscarbonate ion (HCO₃⁻) are ampholytes.
- Statement-1: Addition of HCl(aq) to HCOOH(aq), decrease the ionization of HCOOH(aq)
 Statement-2: Due to common ion effect of H⁺, ionization of HCOOH decreased.

SECTION - IV : COMPREHENSION TYPE

Read the following comprehensions carefully and answer the questions.

Comprehension #1

Consider a solution of CH_3COONH_4 which is a salt of weak acid & weak base.

The equilibrium involved in the solutions are :

 $\begin{array}{c} \mathrm{CH}_{3}\mathrm{COO^{-}} + \mathrm{H}_{2}\mathrm{O} \underbrace{\longrightarrow} \mathrm{CH}_{3}\mathrm{COOH} + \mathrm{OH^{-}}\\ \mathrm{NH}_{4}^{-} + \mathrm{H}_{2}\mathrm{O} \underbrace{\longrightarrow} \mathrm{NH}_{4}\mathrm{OH} + \mathrm{H^{+}}\\ \mathrm{H^{+}} + \mathrm{OH^{-}} \underbrace{\longrightarrow} \mathrm{H}_{2}\mathrm{O} \end{array}$

If we add these three reactions, then the net reaction is

$$CH_2COO^- + NH_4^+ + H_2O \Longrightarrow CH_2COOH + NH_4OH$$
(4)

Both CH_3COO^- and NH_4^+ get hydrolysed independently and their hydrolysis depends on

(i) their initial concentration

(ii) the value of
$$K_h$$
 which is $\frac{K_w}{K_a}$ for CH_3COO^- and $\frac{K_w}{K_b}$ for NH_4^+ .

Since both of the ions were produced from the same salt, their initial concentrations are same. Therefore unless &

untial the value of $\frac{K_w}{K_a}$ and $\frac{K_w}{K_b}$ or K_a and K_b is same, the degree of hydrolysis of ion can't be same.

To explain why we assume that degree of hydrolysis of cation and anion is same, we need to now look at the third reaction i.e., combination of H^+ and OH^- ions. It is obvious that this reaction happens only because one reaction produced H^+ ion and the other produced OH^- ions. We can also note that this reaction causes both the hydrolysis reaction to occur more since their product ions are being consumed. Keep this thing in mind that the equilibrium which has smaller value of equilibrium constant is affected more by the common ion effect. For the same reason if for any reason a reaction is made to occur to a greater extent by the comsumption of any one of the product ion, the reaction with the smaller value of equilibrium constant tends to get affected more.

Therefore we conclude that firstly the hydrolysis of both the ions ocurs more in the presence of each other (due to consumption of the product ions) than in each other is absence. Secondly the hydrolysis of the ion which occurs to a lesser extent (due to smaller value of K_h) is affected more than the one whose K_h is greater. Hence we can see that the degree of hydrolysis of both the ions would be close to each other when they are getting hydrolysed in the presence of each other.

- 22. In the hydrolysis of salt of weak acid & weak base :
 - (A) degree of hydrolysis of cation and anion is different
 - (B) degree of hydrolysis of cation and anion is same
 - (C) degree of hydrolysis of cation and anion is different and they can never be assumed same.

(D) degree of hydrolysis of cation and anion is different but they are very close to each other when they are getting hydrolysed in the presence of each other.

23. For 0.1 M CH₃COONH₄ salt solution given, K_a (CH₃COOH) = K_b (NH₄OH) = 2×10^{-5} .

In this case : degree of hydrolysis of cation and anion are

- (A) exactly same
- (C) can't say

(B) slightly different

(D) different but can be take approximatly same

SECTION - V : MATRIX - MATCH TYPE

24. (Use log 1.8 = 0.26, Ka of formic acid = 1.8×10^{-4} , Ka of acetic acid = 1.8×10^{-5} , K_b of ammonia= 1.8×10^{-5} , Ka₁ of H₂S = 10^{-7} and Ka₂ of H₂S = 10^{-14} , for the following matchings)

Match the entries of column II for which the equality or inequality given in the column I are satisfied.

Column I	Column II
(A) 10^{-5} M HCl solution > 0.1 M H ₂ S solution	(p) α_{water} (degree of dissociation of water)
(B) CH_3COOH solution at pH equal to 4.74	
$= NH_4OH$ solution at pH equal to 9.26	(q) [OH ⁻]
(C) 0.1 M CH ₃ COOH solution	
= 1.0 M HCOOH solution	(r) α (degree of dissociation)
(D) 0.1 M of a weak acid $HA_1(Ka = 10^{-5})$ solution	
< 0.01 M of a weak acid HA ₂ (Ka = 10 ⁻⁶) solution	(s) pH

SECTION - VI : SUBJECTIVE TYPE

- 25. If both the functional groups of salicylic acid, HOC_6H_4COOH , ionise in water, with $K_a = 1 \times 10^{-3}$ for the –COOH group and 4.2×10^{-13} for the –OH group, calculate pH of the saturated solution of the acid. (Solubility of salicylic acid in water = 1.725 g/L, log 2 = 0.3).
- 26. A solution is prepared by mixing of acetic acid ($K_a = 2 \times 10^{-5}$) and HCl. In the mixture acetic acid is 0.2 M and HCl is 0.1 M. Calculate

(i) pH of 0.2 M acetic acid and its degree of dissociation.

- (ii) pH of final solution.
- (iii) CH₃COO⁻ ion concentration in final solution.
- (iv) % decrease of α of acetic acid due to common ion effect.
- 27. If the equilibrium constant for the reaction of weak acid HA with strong base is 10⁹, then pH of 0.1 M Na A is
- 28. The ionization constant of nitrous acid is 4.5×10^{-4} . Calculate the pH of 0.04 M sodiums nitrite solution and also its degree of hydrolysis.
- 29. K_a for ascorbic acid (HAsc) is 5×10^{-5} . Calculate the hydrogen ion concentration and percentage hydrolysis in an aqueous solution in which concentration of Asc⁻ ions is 0.02 M.

ANSWER KEY

EXERCISE - 1

1. D	2. C	3. C	4. D	5. D	6. C	7. A	8. D	9. D	10. C	11. D	12. B	13. D
14. B	15. C	16. B	17. A	18. B	19. C	20. C	21. C	22. D	23. C	24. C	25. A	26. D
27. D	28. B	29. C	30. (i)	B (ii)	A (iii)) C (iv)	В (v	i) B	31. C	32. A	33. D	34. C
35. B	36. B	37. B	38. A	39. D	40. A	41. D	42. C	43. B	44. A	45. A	46. C	47. D
48. C	49. D	50. D	51. B	52. D	53. A	54. B	55. C	56. D	57. D	58. A	59. C	60. D
61. B	62. C	63. D	64. B	65. C	66. A	67. C	68. B	69. D	70. B	71. D	7 2. D	73. D
74. C	75. B	76. D	77. D	78. B	79. C	80. B	81. D	82. C	83. D	84. D	85. C	86. C
87. B	88. C	89. A	90. B	91. D	92. C	93. A	94. C	95. C	96. C	97. B	98. B	99. C
100. A	101. C	102. D	103. B	104. D	105. A	106. D						

EXERCISE - 2 : PART # I

1. A, B,	D 2	2. A, C	C, D	3	A, C	4	B,C	5	B, C	,D	6	A, D	7	D	8	A, C, D
9 A, C	1	10 A, B	8, C, D	11	B, D	12	A, B, C	13	A, B		14	C,D	15	B,C,D	16	A, B, C
17 B,C	1	18 B,C	,D	19	A, B	20	A, B, C	21	A, D		22	C,D	23	A, C, D	24	C,D
25 A, B	26	A, C, D	27. D	28. <i>I</i>	A 29.	D	30. B	31.	В	32. D	33.	А	34. A	35. B	36.	В
37. A 3	8. A 3	39. C	40. C	41. <i>A</i>	42.	С	43. D	44.	А	45. A	46.	D	47. D	48. A	49.	A
50.B 5	51.B	52. B	53. C	54. I	3 55.	С	56. A	57.	C	58. A	59.	С	60. B	61. D	62.	С
63. A 6	64.C (65. B	66. D	67. I	68.	В	69. B	70.	В	71. C	72.	А	7 3. A	74. B	75.	A
76. C																

PART # II

1. A 2. B 3. A 4. B 5. B 6. B 7. A 8. A 9. A 10. A 11. A 12. B 13. D 14. C 15. B 16. C 17. A

EXERCISE - 3 : PART # I

1.	$A \rightarrow (p, q, r, s), B \rightarrow (p, r), C \rightarrow (r), D \rightarrow (p, q, s)$	2. $A \rightarrow (p,q), B \rightarrow (q,r), C \rightarrow (p,q,s), D \rightarrow (r,s)$
3.	$A \rightarrow (r), B \rightarrow (s), C \rightarrow (q), D \rightarrow (p)$	4. $A \rightarrow (r), B \rightarrow (p), C \rightarrow (q), D \rightarrow (s)$
5.	$A \rightarrow (s), B \rightarrow (p), C \rightarrow (r), D \rightarrow (q)$	

PART # II

Comprehension #1:	1.	D	2.	А				
Comprehension #2:	1.	в	2.	А	3.	В	4.	А
Comprehension #3:	1.	А	2.	С	3.	В		
Comprehension #4:	1.	D	2.	В	3.	В		
Comprehension # 5 :	1.	С	2.	А	3.	В	4.	В

						EX	ER	CIS	E -	5 :]	PAF	RT #	ŧI							
1. 4	2. 4	9.	3		4.	4		5.	4		6.	1	7.	1		8.	4	9.	. 2	
10. 1	11. 2	12.	2		13.	1		14.	3		15.	4	16.	1	17.	1				
								PA	RT	# I]	[
1. B 2.	8.98 ≈ 9	3.	В	4.	D	5.	D	6.	8	7.	3	8.	C,D	9.	7	10.	A	11. 2		
12. A, C, D	13. 4.47×10	_3	14.	D																
							1	MO	СК	TES	ST									

1. D	2. C	3. D	4. C	5. C	6. D	7. B
8. B	9. D	10. C	11. A	12. C	13. A	14. (A,C,D)
15. (A,D)	16. (A,C)	17. (B,C)	18. A	19. A	20. B	21. A
22. D	23. A					

24. $A \rightarrow (p, q, r, s)$; $B \rightarrow (p, r)$; $C \rightarrow (r)$; $D \rightarrow (p, q, s)$

