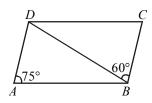
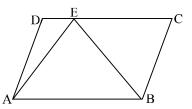
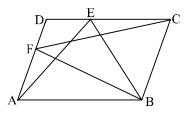

EXERCISE

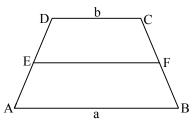

- Q.1 Two opposite angles of a parallelogram are $(3x 2)^{\circ}$ and $(50 x)^{\circ}$. Find the measure of each angle of the parallelogram.
- **Q.2** If an angle of a parallelogram is two-third of its adjacent angle, find the angles of the parallelogram.
- **Q.3** Find the measure of all the angles of a parallelogram, if one angle is 24° less than twice the smallest angle.
- Q.4 The perimeter of a parallelogram is 22 cm. If the longer side measures 6.5 cm what is the measure of the shorter side?
- **Q.5** In a parallelogram ABCD, $\angle D = 135^{\circ}$, determine the measures of $\angle A$ and $\angle B$.
- **Q.6** ABC is a triangle. D is a point on AB such that $AD = \frac{1}{4}AB$ and E is a point on AC such that $AE = \frac{1}{4}AC$. Prove that $DE = \frac{1}{4}BC$.
- Q.7 In fig. ABCD is a parallelogram in which P is the mid-point of DC and Q is a point on AC such that $CQ = \frac{1}{4}$ AC. If PQ produced meets BC at R, prove that R is a mid-point of BC.

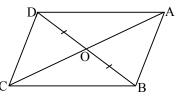
- **Q.8** ABCD is a parallelogram, E and F are the mid-points of AB and CD respectively. GH is any line intersecting AD, EF and BC at G, P and H respectively. Prove that GP = PH.
- **Q.9** In the figure, ABCD is a parallelogram and a line through A cuts DC at P and BC produced at Q. Prove that arc (Δ BPC) = arc (Δ DPQ)


- **Q.10** If one angle of a parallelogram is 24°less than twice the smallest angle, then find the largest angle of the parallelogram.
- **Q.11** If an angle of a parallelogram is two-third of its adjacent angle, then find smallest angle of the parallelogram.
- Q.12 In the given figure, ABCD is a parallelogram in which $\angle DAB = 75^{\circ}$ and $\angle DBC = 60^{\circ}$ Then find $\angle BDC$.

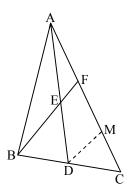

- Q.13 Two parallelograms stand on equal bases and between the same parallels. Then find ratio of their areas.
- Q.14 If a rectangle and a parallelogram are equal in area and have the same base and are situated on the same side, then the quotient:

Perimeter of rectangle Perimeter of || gm


- Q.15 ABCD is a parallelogram, E, F are the mid points of BC and AD respectively and G is any point on EF. Then find area of Δ GAB.
- Q.16 P and Q are any two points lying on the sides DC and AD respectively of a parallelogram ABCD. Show that ar (APB) = ar (BQC).
- Q.17 The altitude of a parallelogram is twice the length of the base and its area is 1250 cm². Then find lengths of the base and the altitude.
- **Q.18** In the figure if area of parallelogram ABCD is 30 cm^2 , then find ar (ADE) + ar (BCE).

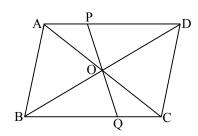

Q.19 In the figure, ABCD is a parallelogram, if area of $\triangle AEB$ is 16 cm², then find area of $\triangle BFC$.

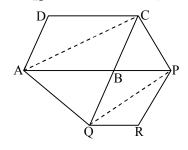
- **Q.20** If the ratio of the altitude and the area of the parallelogram is 2 : 11, then find the length of the base of the parallelogram.
- Q.21 Two adjacent sides of a parallelogram are 24 cm and 18 cm. If the distance between the longer sides is 12 cm, then find the distance between the shorter sides.
- Q.22 ABCD is a trapezium with parallel sides AB = a cm and DC = b cm. E and F are the mid-points of the non-parallel sides. Then find ratio of ar (ABFE) and ar (EFCD).


Q.23 In figure, diagonals AC and BD of quadrilateral ABCD, intersect at O such that OB = OD. If AB = CD. then show that :

(i) ar (DOC) = ar (AOB)
(ii) ar (DCB) = ar (ACB)
(iii) DA || CD or ABCD is a parallelogram

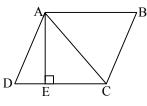
- Q.24 The area of a triangle is equal to the area of a rectangle whose length and breadth are 18 cm and 12 cm respectively. If the base of the triangle is 24 cm, then find its altitude.
- Q.25 In figure, ABC is a triangle, AD is a median and E is the mid-point of AD.BE is joined and produced to intersect AC in a point F. Prove that :


$$AF = \left(\frac{1}{3}\right)AC$$

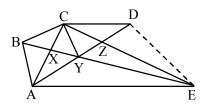

Q.26 ABC is triangle right-angled at B and P is the mid-point of AC. Prove that :

$$PB = PA = \frac{1}{2}AC$$

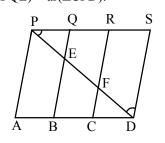
Q.27 The diagonals of a parallelogram ABCD intersect at a point O. Through O, a line is drawn to intersect AD at P and BC at Q. Show that PQ divides the parallelogram into two parts of equal area. (See figure)



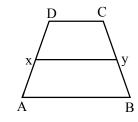
- **Q.28** ABCD is a quadrilateral. A line through D, parallel to AC meets BC produced in P. Prove that area of $\triangle ABP =$ area of quad. ABCD.
- Q.29 In figure, ABCD is a parallelogram, P is any point on AB produced, AQ is drawn parallel to CP to intersect CB produced at Q and parallelogram BQRP is completed. Show that area of ||gm ABCD = area BQRP.

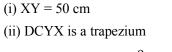

True/False Type Questions

- **Q.30** In a parallelogram, the diagonals are equal.
- **Q.31** In a parallelogram, the diagonals bisect each other.
- **Q.32** In a parallelogram, the diagonals intersect each other at right angles.
- **Q.33** If ABCD is a parallelogram with two adjacent angles A and B equal to each other, then the parallelogram is a rectangle.
- Q.34 If ABCD is a parallelogram and E, F are the centroids of Δ s ABD and BCD respectively, then EF = AE.
- **Q.35** ABCD is a parallelogram one of whose diagonals is AC. Then ar $(\Delta ADC) = ar (\Delta CBA)$



Fill in the blanks Types Questions


- Q.36 Fill in the blanks :
 - (i) The triangle formed by joining the midpoints of the sides of an isosceles triangle is
 - (ii) The triangle formed by joining the midpoints of the sides of a right triangle is
 - (iii) The figure formed by joining the midpoints of the consecutive sides of a quadrilateral is
- **Q.37** In figure CD \parallel AE and CY \parallel BA.
 - (i) Name a triangle equal in area of ΔCBX
 - (ii) Prove that $ar(\Delta ZDE) = ar(\Delta CZA)$
 - (iii) Prove that $ar(BCZY) = ar(\Delta EDZ)$



Q.38 In figure PSDA is a parallelogram in which PQ = QR = RS and $AP \parallel BQ \parallel CR$. Prove that $ar(\Delta PQE) = ar(\Delta CFD)$.

Q.39 In figure ABCD is a trapezium in which AB || DC and DC = 40 cm and AB = 60 cm. If X and Y are, respectively, the mid-point of AD and BC, prove that :

(iii) ar(trap. DCYX) = $\frac{9}{11}$ ar(trap. (XYBA))

Q.40 D is the mid-point of side BC of \triangle ABC and E is the mid-point of BD. If O is the mid-point

of AE, prove that
$$ar(\Delta BOE) = \frac{1}{8} ar(\Delta ABC)$$
.

ANSWER KEY

1. 37°, 143°, 37°, 143°	2. 108°, 72°, 108°, 7	3. 68°, 112°,68°, 112° 4.45 cm
4. ∠A = 45°, ∠B = 135°	10. 112°	11. 72°
12. 45°	13. 1 : 1	14. Less than 1
15. $\frac{1}{4}$ (gm ABCD)	17. 25 cm, 50 cm	18. 15 cm ²
19. 16 cm^2	20. 5.5 units	21. 16 cm
22. (3a + b) : (a + 3b)	24. 18 cm	30. Flase
31. True	32. Flase	33. True
34. True	35. True	
36. (i) Also isosceles Δ	(ii) Also right angle Δ	(iii) Parallelograme