PERMUTATION AND COMBINATION

EXERCISE - 2
Part # 1 : Multiple Choice
3. Total number of required possibilities

$${}^{5}C_{3} \cdot {}^{8}C_{7} + {}^{5}C_{4} \cdot {}^{8}C_{6} + {}^{5}C_{5} \cdot {}^{5}C_{5}$$

 $= {}^{5}C_{3} \cdot {}^{8}C_{7} + {}^{5}C_{4} \cdot {}^{8}C_{6} + {}^{8}C_{6} = {}^{13}C_{10} - {}^{5}C_{3} = 276$
6. $\frac{{}^{200}C_{2} \cdot {}^{198}C_{2} \cdot {}^{196}C_{2} \dots {}^{2}C_{2}}{100!} = \frac{200!}{2^{100}}$
 $= \frac{101.102.103....200}{2^{100}}$
 $= \frac{(100)}{2} \cdot (\frac{102}{2}) \cdot (\frac{103}{2}) \dots (\frac{100}{2})$
and $\frac{1.2.3.4.5.6.7.8....200}{2^{100}.100!}$
 $= \frac{(1.3.5.7....199)(2.4.6.8.....200)}{2^{100}.100!}$
 $= \frac{(1.3.5.....199).2^{100}.100!}{2^{100}.100!} = 1.3.5.199$
9. $x_{1} + x_{2} + x_{3} + x_{4} \le n$
 $\Rightarrow x_{1} + x_{2} + x_{3} + x_{4} + y = n$
(where y is known as pseudo variable)
Total no. of required solution is $= {}^{n+5-1}C_{n}$
 $= {}^{n+4}C_{n}$ or ${}^{n+4}C_{4}$
11. We have arrange all the letter except 'ccc' is $\frac{12!}{5!.3!2!}$

new there all 13 place where 'i' can be placed ${}^{13}C_3$ Hence required number of ways is

$$= \frac{12!}{5!3!2!} \, {}^{13}C_3 = 11 \, . \, \frac{13!}{6!}$$

12. Here given no. be 1,2,3,.....n Let common difference = r Total way of selection = (1, 1 + r, 1+2r),

(2, 2 + r, 2 + 2r), ...(n - 2r, n - r, n)

12!

Total numbers are =
$$(n - 2r)$$

Here $r_{min.} = 1$ and $r_{max.} = (n - 1)/2$

$$r_{max} = \frac{(n-1)}{2}$$
 & total no. of selection is

$$=\sum_{r=1}^{(n-1)/2} (n-2r) = \frac{n(n-1)}{2} - \frac{2\left(\frac{n-1}{2}\right)\left(\frac{n+1}{2}\right)}{2}$$

$$=\left(\frac{n-1}{2}\right)^{\frac{n}{2}}$$

T

Case - II when n is even = r_{max} 2 so total no. selection is

$$= \sum_{r=1}^{(n-2)/2} (n-2r) = \frac{n(n-2)}{2} - \frac{2\left(\frac{n-2}{2}\right)\frac{n}{2}}{2}$$
$$= \left(\frac{n-2}{2}\right)\left(n-\frac{n}{2}\right) = \frac{n(n-2)}{4}$$

14. Total no. of visits that a teacher goes is $= {}^{25}C_5$ (selection of 5 different kids each time & teacher goes every time) Number of visits of a boy = select one particular boy & 4 from rest $24 = {}^{24}C_{4}$ So extra visits of a teacher from a boy is $= {}^{25}C_5 - {}^{24}C_4 = {}^{24}C_5$

- 17. Number of ways he can fail is either one or two, three or four subject then total of ways. ${}^{4}C_{1} + {}^{4}C_{2} + {}^{4}C_{3} + {}^{4}C_{4} = 2^{4} - 1$
- 19. Total number of required quadrilateral ${}^{7}C_{4} + {}^{7}C_{3} \times {}^{5}C_{1} + {}^{7}C_{2} \times {}^{5}C_{2}$

$$= \frac{7 \times 6 \times 5 \times 4}{1 \times 2 \times 3 \times 4} + \frac{7 \times 6 \times 5}{1 \times 2 \times 3} \cdot 5 + \frac{7 \times 6}{1 \times 2} \times \frac{5 \times 4}{1 \times 2}$$

= 35 + 175 + 210 = 420 = 2.7p₃

Part # II : Assertion & Reason

- Statement -1: Two circles intersect in 2 points. 3.
 - : Maximum number of points of intersection
 - $= 2 \times$ number of selections of two circles from 8 circles.

$$= 2 \times {}^{8}C_{2} = 2 \times 28 = 56$$

Statement -2: 4 lines intersect each other in ${}^{4}C_{2} = 6$ points. 4 circles intersect each other in $2 \times {}^{4}C_{2} = 12$ points. Further, one lines and one circle intersect in two points. So, 4 lines will intersect four circles in 32 points.

Maximum number of points = 6 + 12 + 32 = 50. .*.

5.
$$x_1 x_2 x_3 x_4 = 2 \times 5 \times 7 \times 11 \implies N = 4^4$$

EXERCISE - 4 Subjective Type

1. Selecting 3 horses out of ABC A'B'C' is ⁶C₃ ways When AA' is always selected among (ABC A'B'C')

Remaining (BB'CC') can be selected in ${}^{4}C_{1}$ ways similarly, when BB' and CC' is selected

- :. Undesirable ways will be $({}^{4}C_{1}) \times 3$
- using, total ways-undesirable ways

= desired ways we get

 $({}^{6}C_{3} - ({}^{4}C_{1})3) \rightarrow$ This is selection of 3 horses among (ABC A'B'C') under given condition.

Remaining 3 can be selected in ${}^{10}C_3$ ways.

Hence, desired ways will be $[{}^{6}C_{3} - {}^{4}C_{1} \times 3]{}^{10}C_{3} = 792$

Method II : Select one horse each from AA', BB' and CC' hence ${}^{2}C_{1} \times {}^{2}C_{1} \times {}^{2}C_{1}$ ways. Now select 3 horses from remaining 10 horses in ${}^{10}C_{3}$ ways. Total ways = ${}^{10}C_{3} \times {}^{2}C_{1} \times {}^{2}C_{1} \times {}^{2}C_{1}$

 Total no. of M are = 1 Total no. of P are = 2 First we arrange all the words other than I's are

$$\frac{7!}{2!\,4!} = \frac{7 \times 6 \times 5}{1 \times 2} = 105$$

Now, there are 8 places which can be fulfilled by I's i.e. the number of ways is ${}^{8}C_{4}$

Total required no. = $105 \times {}^{8}C_{4} = \frac{105 \times 8 \times 7 \times 6 \times 5}{1 \times 2 \times 3 \times 4}$ = $105 \times 70 = 7350$

Step 1st: Select 2 lines out of n lines in ⁿC₂ ways to get a point (say p).

Step- 2^{nd} : Now select another 2 lines in ${}^{n-2}C_2$ ways, to get another point (say Q)

Step-3rd : When P and Q are joined we get a fresh line.

But when we select P first then Q and Q first then P we get same line.

$$\therefore \frac{{}^{n}C_{2} \times {}^{n-2}C_{2}}{2}$$
 Fresh lines

 First we select n grand children from 2n grand children is ²ⁿC_n

Now arrangement of both group is $n! \times n!$

Now Rest all (m + 1) place where we occupy the grandfather and m sons but grandfather refuse the sit to either side of grand children so the out of m - 1 seat one seat can be selected

Now required number of sitting in ${}^{2n}C_n \times n ! \times n ! \times {}^{(m-1)}C_1 . m !$

$$= \frac{12n}{n \bowtie n!} \times n! \times n! \times n! \times {}^{(m-1)}C_1 \cdot m! = 2n! \cdot m! \cdot (m-1)$$

6. Number of ways of distributing 200 objects into 20 groups each containing 10 objects

$$=\frac{200!}{(10!)^{20}.20!} \times 20 = \frac{200!}{(10!)^{20}.19!}$$
 which must be an integer.

7. (i) Total ways = 10!

undesirable cases : when 2 Americans are together (A_1A_2) or two British are together (B_1B_2) or two Chinese are together (C_1C_2)

we plot them on Venn diagram :

we use,

$$\begin{split} n(A_1A_2 \cup B_1B_2 \cup C_1C_2) \\ = n\,(A_1A_2) + n(B_1B_2) \,+\, n(C_1C_2) - n[(A_1A_2) \cup (B_1B_2)] \\ - n\,[(B_1B_2) \cup (C_1C_2)] - n\,[(C_1C_2) \cup (A_1A_2)] \\ + n\,[(A_1A_2) \cap (B_1B_2) \cap (C_1C_2)] \end{split}$$

where $n(A_1A_2)$ denotes \rightarrow when 2 Americans are together = 9! 2! correspondingly for $B_1B_2\&C_1C_2$ $n[(A_1A_2) \cup (B_1B_2)]$ denotes when 2 Americans and 2 Britishmen are together

$$= 8! \times 2! \times 2!$$

correspondingly same for others.

 $n[(A_1A_2) \cap (B_1B_2) \cap (C_1C_2)]$ denotes when 2 Americans, 2 Britishmen and 2 Chinese are together

$$= 7! \times 2! \times 2! \times 2! = 86$$

Add. 41-42A, Ashok Park Main, New Rohtak Road, New Delhi-110035 +91-9350679141

PERMUTATION AND COMBINATION

15. 2 clerks who prefer Bombay are to be sent to 2 different companies in Bombay, and Out of remaining 5 clerks (excluding 3 clerks who prefer for outside) 2 clerks are chosen in ${}^{5}C_{2}$ ways.

Now these 4 can be sent to 2 different companies into 2 groups of 2 each in ${}^{4}C_{2}$ ways

 $\Rightarrow {}^{5}C_{2} \times {}^{4}C_{2}$

Now for outside companies we have 6 clerks remaining we select them as (2 for each company)

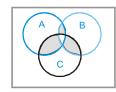
$${}^6\mathrm{C}_2 \times {}^4\mathrm{C}_2 \times {}^2\mathrm{C}_2$$

Desired ways = $({}^{5}C_{2} \times {}^{4}C_{2}) ({}^{6}C_{2} \times {}^{4}C_{2} \times {}^{2}C_{2}) = 5400$ ways.

16. Total students $n(A \cup B \cup C) = 100$

Students reading Business India = n(A) = 80Students reading Business World = n(B) = 50Students reading Business Today = n(C) = 30

Students reading all the three magazines = $n(A \cap B \cap C) = 5$



Hence students reading exactly two magazines

$$= n(A) + n(B) + n(C) - n(A \cup B \cup C) - 2 \times n(A \cap B \cap C)$$

= 80 + 50 + 30 - 100 - 2 × 5 = 50

- 19. (a) Selection of r things out of n + 1 different things = Selection of r things out of n + 1 different things, when a particular thing is excluded + a particular thing is included.
- (b) Selection of r things out of not m + n different Things can be made by selecting x thing from m and y thing from such that x +y = r

$$\& (x, y) = (0, r), (1, r-1), (2, r-2), \dots, (r, 0)$$

21. Step 1st : Arrange 5 boys in 5! ways

Step 2^{nd} : Select 2 gaps from 6 gaps for 4 girls (2 girls for each gap) in ${}^{6}C_{2}$ ways.

Step 3^{rd} : Select 2 girls to sit in one of the gaps and other 2 in remaining selected gaps = ${}^{4}C_{2}$ ways

Step 4th : Arrange 1st, 2 girls in 2! and other 2 in 2! ways Hence, total ways $\rightarrow 5! \times {}^{6}C_{2} \times {}^{4}C_{2} \times 2 \times 2 = 43200$ 22. Ordered pair = total - (A ∪ B = X) = 4ⁿ - 3ⁿ Subsets of X = 2ⁿ will not repeat in both but here the whole set X has not been taken So subsets of x which are not repeated (2ⁿ - 1)

Hence unordered pair = $\frac{(4^n - 3^n) - (2^n - 1)}{2} + (2^n - 1)$

- 23. Total No. of bowlers = 6 Now,
- (i) If 4 bowlers are including the no. of ways selecting 11 players out of 15 players $= {}^{6}C_{4} \times {}^{9}C_{7} = 15 \times 36 = 540$
- (ii) If 5 bowlers are selected $= {}^{6}C_{5} \times {}^{9}C_{6} = 6 \times 84 = 504$
- (iii) If all 6 bowlers are selected = ${}^{6}C_{6} \times {}^{9}C_{5} = 1 \times 126 = 126$ Hence total no. of ways = 540 + 504 + 126 = 1170

25.
$$1980 = 2^2 \cdot 3^2 \cdot 5 \cdot 11$$
,
number of divisiors of $1980 = 36$
(i) $3.3.2 = 18$
sum = $11.(1 + 2 + 2^2)$
 $\cdot (1 + 3 + 3^2)$
 $\cdot (1 + 5)$
(ii) $2.2 + 1.2 - 8$

(ii)
$$3.2 + 1.1.2 = 8$$

Part # II : IIT-JEE ADVANCED

4. x+y < 21

 $x+y \le 20$ $x+y \le 18 (\Rightarrow x>0 \& y>0)$

Introducing new variable t

$$x+y+t=18$$

Now dividing 18 identical things among 3 persons.

$$={}^{18+3-1}C_{3-1} = \frac{|18+3-1|}{|18||3-1|} = 190$$

 Total number of ways of distributing n² objects into n groups, each containing n objects

$$= \frac{(n^2)!}{(n!)^n n!} \cdot n! = \frac{(n^2)!}{(n!)^n} = \text{integer}$$

(Since number of ways are always integer)

7. Since, r, s, t are prime numbers.

	Selection of p and q are as under			
р	q	number of ways		
\mathbf{r}^0	r^2	1 way		
\mathbf{r}^{l}	r^2	1 way		
r^2	r^0, r^1, r^2	3 ways		
	Total number of	ways to select $r = \frac{1}{2}$		
\mathbf{s}^0	s^4	1 way		
\mathbf{S}^1	s^4	1 way		
\mathbf{S}^2	\mathbf{S}^4	1 way		
s^3	s^4	1 way		
s^4	$s^0, s^1, s^2, s^3,$	s ⁴ 5 ways		
	Total number of	ways to select s =		
Similarly total number of ways to calact				

Similarly total number of ways to select t = 5 number of ways = $5 \times 9 \times 5 = 225$.

11. **(D)**

Case- I: The number of elements in the pairs can be 1,1; 1,2; 1,3,; 2,2

$$= {}^{4}C_{2} + {}^{4}C_{1} \times {}^{3}C_{2} + {}^{4}C_{1} \times {}^{3}C_{3} + \frac{{}^{4}C_{2} \cdot {}^{2}C_{2}}{2} = 25$$

Case- II : Number of pairs with ϕ as one of subsets = $2^4 = 16$ \therefore Total pairs = 25 + 16 = 41 Balls can be distributed as 1, 1, 3 or 1, 2, 2 to each person.When 1, 1, 3 balls are distributed to each person, then total number of ways :

$$=\frac{5!}{1!1!3!}\cdot\frac{1}{2!}\cdot3!=60$$

When 1, 2, 2 balls are distributed to each person, then total number of ways :

$$=\frac{5!}{1!2!2!}\cdot\frac{1}{2!}\cdot3!=90$$

:. total = 60 + 90 = 150

```
Paragraph for Question 13 and 14 : For a<sub>n</sub>
```

The first digit should be 1

For b_n

н

$$1 - 4 - 44 - 2 - 4 \cdot 4 - 4$$

(n-2 Places)

Last digit is 1. so b_n is equal to number of ways of a_{n-1} (i.e. remaining (n - 1) places)

 $\mathbf{b}_{n} = \mathbf{a}_{n-1}$

```
For c<sub>n</sub>
```

Last digit is 0 so second last digit must be 1

So $c_n = a_{n-2}$ $b_n + c_n = a_n$

So $a_n = a_{n-1} + a_{n-2}$

Similarly $b_n = b_{n-1} + b_{n-2}$

13. (B)

 $a_1 = 1, a_2 = 2$ So $a_3 = 3, a_4 = 5 a_5 = 8$ $\Rightarrow b_6 = a_5 = 8$

14. (A)

 $\begin{array}{l} a_n = a_{n-1} + a_{n-2} \\ put \ n = 17 \\ a_{17} = a_{16} + a_{15} \\ c_n = c_{n-1} + c_{n-2} \\ so \ put \ n = 17 \\ c_{17} = c_{16} + c_{15} \\ b_n = b_{n-1} + b_{n-2} \\ put \ n = 17 \\ b_{17} = b_{16} + b_{15} \\ a_{17} = a_{16} + a_{15} \\ while (D) \ says \ a_{17} = a_{15} + a_{15} \\ (D) \ is \ incorrect \\ \end{array}$

10. $\psi \psi \psi$

There are 2M, 2T, 2A and 1 H, E, I, C, S First find the number of ways if odd's no. position place be filled is ${}^{5}p_{3} = 60$ Now Case I If even place words is same i.e no. of ways = 3 Case II If even place words is different i.e no. of

ways = ${}^{3}c_{2} \times 2! = 6$ Hence total no. of arragment is $60 \times (3+6) = 540$

11. First find no. of '2' at the end of (125)! is

(A) $\left[\frac{125}{2}\right] + \left[\frac{125}{2^2}\right] + \left[\frac{125}{2^3}\right] + \left[\frac{125}{2^4}\right] + \left[\frac{125}{2^5}\right] + \left[\frac{125}{2^6}\right] + \left[\frac{125}{2^7}\right]$ = 62 + 31 + 15 + 7 + 3 + 1 + 0 = 119 Find the number of '5' at the end of (125)!

is
$$\left[\frac{125}{5}\right] + \left[\frac{125}{5^2}\right] + \left[\frac{125}{5^3}\right] + \dots$$

= 25 + 5 + 1 = 31

Hence no. of zero is 31

(B) Total no. of signals can made by each arm = 10 so total number of different signals can be formed = $10^{10} - 1$

(here -1 is because if all arms are at the position of rest, then no signal will pass away)

(C) 4 5 $\frac{5!}{2!} = 60$ $\frac{5!}{2! \cdot 2!} = 30$ Total number of arrangement = 90 Let number of player is n then total number of games is ${}^{n}c_{2} = 5050$

 \Rightarrow n = 101

12. Here the sum of the numbers are vanishes of six cards i.e

Case I : If selected 3 cards each of number -1 or 1

i.e The number of arrangement = $\frac{6!}{3!3!} = 20$

Case II : If selected 2 cards each of no. -1, 0 or 1 i.e

number of arrangement $= \frac{6!}{2! 2! 2!} = 90$

Case III : If selected one card each of number -1 and 1 and 4 cards of no. 0.

so no. of arrangement is $\frac{6!}{1! 1! 4!} = 30$

Case IV : If all cards selected fram the no. 0

So no. of arrangement is $\frac{6!}{6!} = 1$

Hence total no. of arrangement is 20+90+30+1 = 141

(A)		
two 2's	five 1's	
two 2's	four 1's	one 3
two 2's	three 1's	two 3's
two 2's	two 1's	three 3's
two 2's	onel	four 3's
two 2's	five 3's	
	71)	

$$2\left(\frac{7!}{2!\ 5!} + \frac{7!}{2!\ 4!} + \frac{7!}{2!\ 3!\ 2!}\right) = 672$$

(D)

14.

15.

T

13.

D P M L can be arranged in 4 ! ways & the two gaps out of 5 gaps can be selected in ${}^{5}C_{2}$ ways. {A A and EE} or {A E and A E} can be placed in 6 ways.

Total = $4!.{}^{5}C_{2}.6 = 1440$

(A,D)

All AAAAA BBB D EEF can be arranged in

$$\frac{12!}{5!\,3!\,2!}$$
 ways

Between the gaps C can be arranged in ¹³C₃ ways

Total ways =
$${}^{13}C_3 \times \frac{12!}{5! \times 3! \times 2!}$$

Number of ways = without considering separation of C – in which all C's are together – in which exactly two C's are

together =
$$\frac{15!}{5!(3!)^2 2!} - \frac{13!}{5!3! 2!} - \frac{12!}{5!3!} {}^{13}C_2$$

1

(D)

16.

If
$$\left[\frac{1}{3} + \frac{\lambda}{50}\right] = 0$$

 $\Rightarrow \quad 0 \le \frac{1}{3} + \frac{\lambda}{50} < 0$

PERMUTATION AND COMBINATION

$$=\frac{1}{15}\left\{\frac{(1+2+\dots+9)^2-(1^2+2^2+\dots+9^2)}{2}+(1^2+2^2+\dots+9^2)\right\}$$

$$=\frac{1}{30}\left\{\left(\frac{9\times10}{2}\right)^2+\frac{9\times10\times19}{6}\right\}=77$$
2.

22. $(A) \rightarrow (r); (B) \rightarrow (s); (C) \rightarrow (q); (D) \rightarrow (p)$ Select m out of $n = {}^{n}C_{m}$ **(A)** number of ways of arranging in increasing order = 1

> **(B)** A monkey has m choice

Hence ⁿC_m

$$\prod_{\substack{n \text{ times}}} m \not a \not m \not a \cdot \mathfrak{m}_{n \text{ times}} = m^n$$

(C) Arrange
$$(m-1)$$
 green balls then out of
m gaps select n positions for red balls
and arrange red balls = 1. ${}^{m}C_{n}$. 1
= ${}^{m}C_{n}$

(**D**)
$$\underset{\text{m times}}{\mathbf{n} \notin \mathbf{2} \times \mathbf{3}^{n}} = n^{m}$$

23.

1

(B) Since there are 5 even places and 3 pairs of repeated letters therefore at least one of these must be at an odd place.

11! the number of ways = $\frac{1}{2! 2! 2!}$...

2 **(A)**

Make a bundle of both M's and another bundle of T's. Then except A's we have 5 letters remaining so M's, T's and the letters except A's can be arranged in 7 ! ways total number of arrangements = $7 ! \times {}^{8}C_{2}$

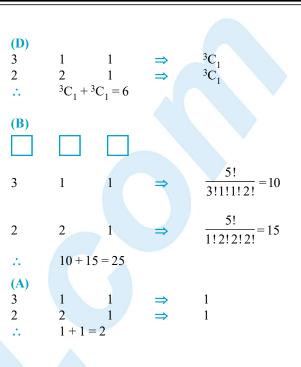
...

3 **(A)**

Consonants can be placed in $\frac{7!}{2!2!}$ ways

Then there are 8 places and 4 vowels

Number of ways =
$$\frac{7!}{2!2!} \cdot {}^{8}C_{4} \frac{4!}{2!}$$



(B) Since n = 4

3

25.

1.

2.

3.

26.

Number of matched arrangements

$$=\frac{8!}{4!\ 5!}=\frac{{}^{8}\mathrm{C}_{4}}{5}$$

(A) n = 3....

Number of matched arrangements

$$=\frac{6!}{3!4!}$$

Total number of arrangements = $\frac{6!}{3!3!}$

$$\therefore$$
 probability = $\frac{1}{4}$

(B)

Since first pair is matched and it can be done in 1 way

.... for mismatched pairs n = 4

Number of mismatched pairs $= {}^{8}C_{5}$...

Here, we note the following.

- 1. A door will open if it face odd no of changes.
- 2. No. of changes faced by any door will be equal to no. of factors of the door no.
- 3. So only those door will open, whose number is

perfect square so ans is $\left[\sqrt{n}\right]$ [where [] denotes the G.I.F.]

...