EXERCISE-I

Arithmetic progression

- 1. If 2x, x+8, 3x+1 are in A.P., then the value of x will be (A) 3 (B) 7
 - (C) 5 (D) 2
- 2. If the sum of n terms of an A.P. is $nA + n^2B$, where A, B are constants, then its common difference will be
 - $(A) A B \qquad (B) A + B$
 - (C) 2A (D) 2B
- **3.** If the 9th term of an A.P. is 35 and 19th is 75, then its 20th terms will be
 - (A) 78 (B) 79
 - (C) 80 (D) 81
- 4. The 9^{th} term of the series 2. 6
 - 27+9+5 $\frac{2}{5}$ +3 $\frac{6}{7}$ +..... will be (A) 1 $\frac{10}{17}$ (B) $\frac{10}{17}$
 - (C) $\frac{16}{27}$ (D) $\frac{17}{27}$
- 5. If a, b, c are in A.P., then $\frac{(a-c)^2}{(b^2-ac)} =$ (A) 1 (B) 2
 - (C) 3 (D) 4

6. If
$$\log_3 2$$
, $\log_3 (2^x - 5)$ and $\log_3 \left(2^x - \frac{7}{2} \right)$

are in A.P., then x is equal to

(A)
$$1, \frac{1}{2}$$
 (B) $1, \frac{1}{3}$
(C) $1, \frac{3}{2}$ (D) None of these

If the pth, qth and rth term of an arithmetic 7. sequence are a, b and c respectively, then the value of [a(q-r)+b(r-p) + c(p-q)] =(A) 1 (B) -1(C) 0(D) 1/2 If n^{th} terms of two A.P.'s are 3n + 8 and 8. 7n + 15, then the ratio of their 12^{th} terms will be (A) 4/9 (B) 7/16 (D) 8/15 (C) 3/7 If $a_1 = a_2 = 2$, $a_n = a_{n-1} - 1$ (n > 2), then a_5 9. is (B) -1(A) 1 (C) 0(D) -2 10. If the numbers a, b, c, d, e form an A.P., then the value of a - 4b + 6c - 4d + e is (A) 1 (B) 2 (C) 0(D) None of these The sixth term of an A.P. is equal to 2, the 11. value of the common difference of the A.P. which makes the product $a_1a_4a_5$ least is given by (A) $x = \frac{8}{5}$ (B) $x = \frac{5}{4}$ (C) x = 2/3(D) None of these If p times the pth term of an A.P. is equal 12. to q times the qth term of an A.P., then $(n+a)^{th}$ term is

$$\begin{array}{c} (p+q) & \text{term is} \\ (A) 0 & (B) 1 \\ (C) 2 & (D) 3 \end{array}$$

13.The sums of n terms of two arithmatic
series are in the ratio 2n + 3:6n + 5, then
the ratio of their 13^{th} terms is
(A) 53:155 (B) 27:77
(C) 29:83 (D) 31:89

14.	If $a_{\rm m}$ denotes the $m^{\rm th}$ term of an A.P. then	20.	Th
	$a_m =$		(x
	(A) $\frac{2}{a_{m+k} + a_{m-k}}$ (B) $\frac{a_{m+k} - a_{m-k}}{2}$		(A
	(C) $\frac{a_{m+k} + a_{m-k}}{2}$ (D) None of these	21.	(C Th
15.	Let T_r be the r^{th} term of an A.P. for		wł
	$r = 1, 2, 3, \dots$ If for some positive integers		rei
	m, n we have $T_m = \frac{1}{n}$ and $T_n = \frac{1}{m}$, then	22	(A (C If
	T _{mn} equals	22.	11
	(A) $\frac{1}{mn}$ (B) $\frac{1}{m} + \frac{1}{n}$		an (S
	(C) 1 (D) 0		(A
16.	The maximum sum of the series		(C
	$20 + 19\frac{1}{3} + 18\frac{2}{3} + \dots$ is	23.	Th
	(A) 310 (B) 300		lo
	(C) 320 (D) None of these		
17.	The sum of the numbers between 100 and		()

17. The sum of the numbers between 100 and 1000 which is divisible by 9 will be

(A) 55350	(B) 57228
(C) 97015	(D) 62140

18. The ratio of sum of m and n terms of an A.P. is $m^2 : n^2$, then the ratio of m^{th} and n^{th} term will be

(A)
$$\frac{m-1}{n-1}$$
 (B) $\frac{n-1}{m-1}$
(C) $\frac{2m-1}{2n-1}$ (D) $\frac{2n-1}{2m-1}$
The value of $\sum_{r=1}^{n} \log\left(\frac{a^{r}}{b^{r-1}}\right)$ is
 $n = \left(a^{n}\right)$ $n = \left(a^{n+1}\right)$

19.

(A)
$$\frac{\pi}{2} \log \left(\frac{a}{b^n} \right)$$
 (B) $\frac{\pi}{2} \log \left(\frac{a}{b^n} \right)$
(C) $\frac{n}{2} \log \left(\frac{a^{n+1}}{b^{n-1}} \right)$ (D) $\frac{n}{2} \log \left(\frac{a^{n+1}}{b^{n+1}} \right)$

20.	The solution of the equation	
	(x+1)+(x+4)	
	+(x+7)+	(x+28) = 155 is
	(A) 1	(B) 2
	(C) 3	(D) 4
21.	The sum of all two	digit numbers which,
	when divided by	4, yield unity as a
	remainder is	
	(A) 1190	(B) 1197
	(C) 1210	(D) None of these
22.	If S_n denotes the s	sum of n terms of an
	arithmetic progressi	on, then the value of
	$(S_{2n} - S_n)$ is equal to	0
	(A) $2S_n$	(B) S _{3n}
	(C) $\frac{1}{3}S_{3n}$	(D) $\frac{1}{2}S_n$
23.	The solution of	
	$\log_{\sqrt{3}} x + \log_{\sqrt{3}} x + \log_{$	$g_{\sqrt[6]{3}} x$
	-	$+\log_{1\sqrt[6]{3}}x = 36$ is
	(A) $x = 3$	(B) $x = 4\sqrt{3}$
	(C) $x = 9$	(D) $x = \sqrt{3}$
24.	If S_k denotes the su	m of first k terms of an
	·.1 ·	1 6 4 4 1

- arithmetic progression whose first term and common difference are a and d respectively, then S_{kn} / S_n be independent of *n* if
 - (A) 2a d = 0 (B) a d = 0(C) a - 2d = 0 (D) None of these
- 25. A series whose n^{th} term is $\left(\frac{n}{x}\right) + y$, the sum

of r terms will be

(A)
$$\left\{\frac{\mathbf{r}(\mathbf{r}+1)}{2\mathbf{x}}\right\} + \mathbf{ry}$$
 (B) $\left\{\frac{\mathbf{r}(\mathbf{r}-1)}{2\mathbf{x}}\right\}$
(C) $\left\{\frac{\mathbf{r}(\mathbf{r}-1)}{2\mathbf{x}}\right\} - \mathbf{ry}$ (D) $\left\{\frac{\mathbf{r}(\mathbf{r}+1)}{2\mathbf{y}}\right\} - \mathbf{rx}$

- 26. If the sum of the 10 terms of an A.P. is 4 times to the sum of its 5 terms, then the ratio of first term and common difference is (A) 1:2(B) 2:1
 - (C) 2:3 (D) 3:2
- 27. Three number are in A.P. such that their sum is 18 and sum of their squares is 158. The greatest number among them is
 - (A) 10 (B) 11
 - (C) 12 (D) None of these
- 28. If $\frac{3+5+7+....to n \text{ terms}}{5+8+11+....to 10 \text{ terms}} = 7$, then the value of n is (A) 35 (B) 36
 - (C) 37 (D) 40
- **29.** If A_1, A_2 be two arithmetic means between
 - $\frac{1}{3}$ and $\frac{1}{24}$, then their values are
 - (A) $\frac{7}{72}, \frac{5}{36}$ (B) $\frac{17}{72}, \frac{5}{36}$ (C) $\frac{7}{36}, \frac{5}{72}$ (D) $\frac{5}{72}, \frac{17}{72}$
- **30.** If $\frac{a^{n+1} + b^{n+1}}{a^n + b^n}$ be the A.M. of a and b,
 - then n =
 - (A) 1 (B) -1
 - (C) 0 (D) None of these
- 31. A number is the reciprocal of the other. If the arithmetic mean of the two numbers be $\frac{13}{12}$, then the numbers are

(A)
$$\frac{1}{4}, \frac{4}{1}$$
 (B) $\frac{3}{4}, \frac{4}{3}$
(C) $\frac{2}{5}, \frac{5}{2}$ (D) $\frac{3}{2}, \frac{2}{3}$

32. If A be an arithmetic mean between two numbers and S be the sum of n arithmetic means between the same numbers, then

(A) S = n A (B) A = n S

(C)
$$A = S$$
 (D) None of these

33. The arithmetic mean of first *n* natural number

(A)
$$\frac{n-1}{2}$$
 (B) $\frac{n+1}{2}$
(C) $\frac{n}{2}$ (D) n

34. The sum of n arithmetic means between a and b, is

(A)
$$\frac{n(a+b)}{2}$$
 (B) $n(a+b)$
(C) $\frac{(n+1)(a+b)}{2}$ (D) $(n+1)(a+b)$

- **35.** After inserting n A.M.'s between 2 and 38, the sum of the resulting progression is 200. The value of n is
 - (A) 10
 (B) 8
 (C) 9
 (D) None of these

Geometric progression

36. The first and last terms of a G.P. are a and 1 respectively; r being its common ratio; then the number of terms in this G.P. is

(A)
$$\frac{\log 1 - \log a}{\log r}$$
 (B) $1 - \frac{\log 1 - \log a}{\log r}$
(C) $\frac{\log a - \log 1}{\log r}$ (D) $1 + \frac{\log 1 - \log a}{\log r}$

37. If $\log_x a$, $a^{x/2}$ and $\log_b x$ are in G.P., then x =(A) $-\log(\log_b a)$

- (B) $-\log_{a}(\log_{a} b)$
- (C) $\log_a(\log_a a) \log_a(\log_a b)$
- (D) $\log_a(\log_e b) \log_a(\log_e a)$

38. If the roots of the cubic equation

$$ax^{3} + bx^{2} + cx + d = 0$$
 are in G.P., then
(A) $c^{3}a = b^{3}d$ (B) $ca^{3} = bd^{3}$
(C) $a^{3}b = c^{3}d$ (D) $ab^{3} = cd^{3}$

- If the 10th term of a geometric progression 46. Three numbers are in G.P. such that their 39. is 9 and 4th term is 4, then its 7th term is sum is 38 and their product is 1728. The greatest number among them is (A) 6 (B) 36 (A) 18 (B) 16 (C) $\frac{4}{9}$ (D) $\frac{9}{4}$ (C) 14 (D) None of these The 6^{th} term of a G.P. is 32 and its 8^{th} term The sum of the series 3+33+333+...+n47. 40. is 128, then the common ratio of the G.P. is terms is (A) - 1(B) 2(A) $\frac{1}{27}(10^{n+1} + 9n - 28)$ (C) 4 (D) - 4(B) $\frac{1}{27}(10^{n+1} - 9n - 10)$ For a sequence $\langle a_n \rangle$, $a_1 = 2$ and $\frac{a_{n+1}}{a} = \frac{1}{3}$. 41. (C) $\frac{1}{27}(10^{n+1} + 10n - 9)$ Then $\sum_{r=1}^{20} a_r$ is (D) None of these (A) $\frac{20}{2}[4+19\times 3]$ (B) $3\left(1-\frac{1}{3^{20}}\right)$ The first term of a G.P. is 7, the last term is **48**. 448 and sum of all terms is 889, then the (C) $2(1-3^{20})$ (D) None of these common ratio is The solution of 42. the equation (A) 5 (B) 4 $1 + a + a^2 + a^3 + \dots + a^x$ (D) 2 (C) 3 $=(1+a)(1+a^{2})(1+a^{4})$ is given by x is 49. The sum of a G.P. with common ratio 3 is equal to 364, and last term is 243, then the number (A) 3 (B) 5 of terms is (C) 7 (D) None of these (A) 6 (B) 5 43. If in a geometric progression (C) 4(D) 10 $\{a_n\}, a_1 = 3, a_n = 96 \text{ and } S_n = 189 \text{ then}$ If n geometric means be inserted between **50**. a and b then the nth geometric mean will the value of n is (A) 5 (B) 6 be (D) 8(C) 7 (A) $a\left(\frac{b}{a}\right)^{\frac{n}{n-1}}$ (B) $a\left(\frac{b}{a}\right)^{\frac{n-1}{n}}$ The sum of few terms of any ratio series is 44. 728, if common ratio is 3 and last term is (C) $a\left(\frac{b}{a}\right)^{\frac{n}{n+1}}$ (D) $a\left(\frac{b}{a}\right)^{\frac{1}{n}}$ 486, then first term of series will be (A) 2 **(B)** 1 (D) 4(C) 3 If $A = 1 + r^{z} + r^{2z} + r^{3z} + \dots \infty$, then the 51. The product of n positive numbers is 45. value of *r* will be unity. Their sum is (A) A positive integer (A) $A(1-A)^{z}$ (B) $\left(\frac{A-1}{A}\right)^{1/2}$ (B) Equal to $n + \frac{1}{n}$
 - (C) $\left(\frac{1}{A} 1\right)^{1/z}$ (D) $A(1 A)^{1/z}$

(C) Divisible by n(D) Never less than

55

52.
$$x = 1 + a + a^{2} + (a < 1)$$

 $y = 1 + b + b^{2} (b < 1)$
Then the value of $1 + ab + a^{2}b^{2} + (b)$
is
(A) $\frac{xy}{x + y - 1}$ (B) $\frac{xy}{x + y + 1}$
(C) $\frac{xy}{x - y - 1}$ (D) $\frac{xy}{x - y + 1}$
53. The first term of a G.P. whose second term
is 2 and sum to infinity is 8, will be
(A) 6 (B) 3
(C) 4 (D) 1
54. $0.423 =$
(A) $\frac{419}{990}$ (B) $\frac{419}{999}$
(C) $\frac{417}{990}$ (D) $\frac{417}{999}$

- 55. If $y = x x^2 + x^3 x^4 + \dots \infty$, then value
 - of x will be (A) $y + \frac{1}{y}$ (B) $\frac{y}{1+y}$

(C)
$$y - \frac{1}{y}$$
 (D) $\frac{y}{1 - y}$

56. If
$$x = \sum_{n=0}^{\infty} a^n$$
, $y = \sum_{n=0}^{\infty} b^n$, $z = \sum_{n=0}^{\infty} (ab)^n$,
where a, b < 1, then
(A) $xyz = x + y + z$ (B) $xz + yz = xy + z$
(C) $xy + yz = xz + y$ (D) $xy + xz = yz + x$
The sum of infinite terms of a G P is x

- **57.** The sum of infinite terms of a G.P. is x and on squaring the each term of it, the sum will be y, then the common ratio of this series is
 - (A) $\frac{x^2 y^2}{x^2 + y^2}$ (B) $\frac{x^2 + y^2}{x^2 y^2}$ (C) $\frac{x^2 - y}{x^2 + y}$ (D) $\frac{x^2 + y}{x^2 - y}$

If the sum of an infinite G.P. and the sum of square of its terms is 3, then the common ratio of the first series is

(A) 1 (B)
$$\frac{1}{2}$$

(C) $\frac{2}{3}$ (D) $\frac{3}{2}$

58.

59. If S is the sum to infinity of a G.P., whose first term is a , then the sum of the first n terms is

(A)
$$S\left(1-\frac{a}{S}\right)^{n}$$
 (B) $S\left[1-\left(1-\frac{a}{S}\right)^{n}\right]$
(C) $a\left[1-\left(1-\frac{a}{S}\right)^{n}\right]$ (D) None of these

60. 0.14189189189.... can be expressed as a rational number

(A)
$$\frac{7}{3700}$$
 (B) $\frac{7}{50}$
(C) $\frac{525}{111}$ (D) $\frac{21}{148}$

Harmonic progression

61. If 5th term of a H.P. is
$$\frac{1}{45}$$
 and 11th term is

$$\frac{1}{69}$$
, then its 16th term will be
(A) 1/89 (B) 1/85
(C) 1/80 (D) 1/79

62. The first term of a harmonic progression is 1/7 and the second term is 1/9. The 12th term is
(A) 1/19 (B) 1/29

(C) 1/17	(D) 1/27
(C) 1/1/	(D) 1/2/

3

- 63. If a, b, c are three distinct positive real numbers which are in Н.Р., then $\frac{3a+2b}{2a-b} + \frac{3c+2b}{2c-b}$ is (A) Greater than or equal to 10 (B) Less than or equal to 10 (C) Only equal to 10 (D) None of these
- If a, b, c, d are in H.P., then ab + bc + cd64. is equal to
 - (A) 3ad (B) (a + b)(c + d)
 - (C) 3ac (D) None of these
- If the 7th term of a harmonic progression is 65. 8 and the 8th term is 7, then its 15th term is

(A) 16	(B) 14
(C) $\frac{27}{14}$	(D) $\frac{56}{15}$

If the 7th term of a H.P. is $\frac{1}{10}$ and the 12th **66.**

> term is $\frac{1}{25}$, then the 20th term is (A) $\frac{1}{37}$ (B) $\frac{1}{41}$ (C) $\frac{1}{45}$ (D) $\frac{1}{49}$

67. If sixth term of a H.P. is
$$\frac{1}{61}$$
 and its tenth term is $\frac{1}{105}$, then first term of that H.P. is
(A) $\frac{1}{20}$ (B) $\frac{1}{20}$

(A)
$$\frac{1}{28}$$
 (B) $\frac{1}{39}$
(C) $\frac{1}{6}$ (D) $\frac{1}{17}$

In a H.P., p^{th} term is q and the q^{th} term is p. 68. Then pq^{th} term is (Λ) (D) 1

$(\mathbf{A}) 0$	(B) I
(C) <i>pq</i>	(D) $pq(p+q)$

The 4^{th} term of a H	I.P. is $\frac{3}{5}$ and 8^{th} term is		
$\frac{1}{3}$, then its 6 th term	is		
(A) $\frac{1}{6}$	(B) $\frac{3}{7}$		
(C) $\frac{1}{7}$	(D) $\frac{3}{5}$		
If H is the harmon	ic mean between p and		
q, then the value of	$\frac{H}{p} + \frac{H}{q}$ is		
(A) 2	(B) $\frac{pq}{p+q}$		
(C) $\frac{p+q}{pq}$	(D) None of these		
Relation between A.P., G.P. and H.P.			

69.

70.

If a, b, c are in A.F	P. as well as in G.P.,
then	
(A) $a = b \neq c$	(B) $a \neq b = c$
(C) $a \neq b \neq c$	(D) $a = b = c$
If a, b, c are in G	.P. and x, y are the
arithmetic means be	tween a, b and b, c
respectively, then $\frac{a}{x}$	$\frac{c}{y}$ is equal to
(A) 0	(B) 1
(C) 2	(D) $\frac{1}{2}$
If a, b, c are in A.P	and a, b, d in G.P.,
then $a, a - b, d - c w$	ill be in
(A) A.P.	(B) G.P.
(C) H.P.	(D) None of these
If a^2 , b^2 , c^2 are	e in A.P., then
$(b+c)^{-1}, (c+a)^{-1}$ an	d $(a + b)^{-1}$ will be in
(A) H.P.	(B) G.P.
(C) A.P.	(D) None of these
	If a, b, c are in A.F then (A) $a = b \neq c$ (C) $a \neq b \neq c$ If a, b, c are in G arithmetic means be respectively, then $\frac{a}{x}$. (A) 0 (C) 2 If a, b, c are in A.P then a, a - b, d - c w (A) A.P. (C) H.P. If a^2 , b^2 , c^2 are (b+c) ⁻¹ , (c+a) ⁻¹ and (A) H.P. (C) A.P.

75.	If a b c are in A P	then $\frac{1}{-}$ $\frac{1}{-}$ $\frac{1}{-}$ will	82.	If a, b, c are in H.P.,	,
101	1 · ·	bc'ca'ab		then $\frac{a}{b} = \frac{b}{b}$	c are in
	be in			b+c'c+a'a	+b
	$(\mathbf{A}) \mathbf{A}.\mathbf{P}.$	(B) G.P.		(A) A.P.	(B) G.P.
	(C) H.P.	(D) None of these		(C) H.P.	(D) None of these
76.	If x, l, z are in A G P then $x \neq z$ w	.P. and $x, 2, z$ are in ill be in	83.	If $\frac{x+y}{2}$, y, $\frac{y+z}{2}$ ar	e in H.P.,
	$(\Lambda) \wedge P$	(B) G P			
	$(\mathbf{A}) \mathbf{A} \mathbf{A}$	(D) None of these		then x, y, z are in	
77	If a b c are in A P a	(D) None of these		(A) A.P.	(B) G.P.
, , ,	$\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$	u , v , v < 1		(C) H.P.	(D) None of these
	$x = 1 + a + a + \dots$.∞	84.	If the first and (2n -	$(-1)^{\text{th}}$ terms of an A.P.,
	$y = 1 + b + b^2 + \dots$	∞		G.P. and H.P. are eq	ual and their n th terms
	$z = 1 + c + c^2 \dots \infty$			are respectively a, b	and c, then
	Then x, y, z shall be	in		(A) $a \ge b \ge c$	(B) $a + c = b$
	(A) A.P.	(B) G.P.		(C) $ac - b^2 = 0$	(D)(A) and (C) both
	(C) H.P.	(D) None of these	85.	An A.P., a G.P. and	a H.P. have the same
78.	If three unequal n	on-zero real numbers		first and last term	s and the same odd
	a, b, c are in G.P. a	nd $b-c, c-a, a-b$ are		number of terms. Th	ne middle terms of the
	in H.P., then the	value of $a + b + c$ is		three series are in	
	independent of			(A) A.P.	(B) G.P.
	(A) a	(B) b		(C) H.P.	(D) None of these
	(C) c	(D) None of these	86.	If , a, b, c be in G.P.	and $a + x$, $b + x$, $c + x$
79.	If a, b, c are in A.P	P., b, c, d are in G.P.		in H P then the val	ue of x is (a b c are
	and c, d, e are in H.I	P., then a, c, e are in		distinct numbers)	
	(A) No particular or	der		(Λ) a	(P) h
	(B) A.P.			$(\mathbf{A}) \mathbf{c}$	(D) None of these
	(C) G.P.				(D) None of these
	(D) H.P.		87.	If $\frac{a+b}{1-ab}$, b, $\frac{b+c}{1-bc}$ a	re in A.P.,
80.	If a, b, c are in G.F	a - b, c - a, b - care		$1 - a0 \qquad 1 - 0C$	
	in H.P., then $a + 4b$	+ c is equal to		then $a, \frac{1}{b}, c$ are in	
	$(\mathbf{A}) 0$	(B) I		(A) A P	(B) G P
01	(C) -1	(D) None of these		(C) H P	(D) None of these
81.	If the ratio of two	numbers be 9:1, then	88.	If all the terms of an	A P are squared then
	the ratio of geometric and harmonic means			new series will be in	
	$(\Lambda) 1.0$	(B) 5·3		(A) A.P.	(B) G.P.
	(A) 1.7	(D) 2.5		(C) H.P.	(D) None of these
	(C) J . J	(D) 2.5			()

89.	If $2(y-a)$ is the H.	M. between $y - x$ and	96.	If $\frac{a}{b}$, $\frac{b}{c}$ are in H.1	P., then
	y - z, then $x - a$, $y - a$	-a, z-a are in		b'c'a	·) · ·
	(A) A.P.	(B) G.P.		(A) a^2b, c^2a, b^2c are	e in A.P.
	(C) H.P.	(D) None of these		(B) a^2b, b^2c, c^2a are	in H.P.
90.	If the ratio of A.M.	between two positive		(C) a^2b, b^2c, c^2a are	in G.P.
	real numbers a an	d b to their H.M. is		(D) None of these	
	m:n, then $a:b$ is		97.	If A is the A.M. of t	he roots of the equation
	(Λ) $\sqrt{m-n} + \sqrt{n}$	(P) $\sqrt{n} + \sqrt{m-n}$		$x^2 - 2ax + b = 0 an$	d G is the G.M. of the
	(A) $\frac{1}{\sqrt{m-n}} - \sqrt{n}$	(B) $\frac{1}{\sqrt{n} - \sqrt{m - n}}$		roots of the equat	ion $x^2 - 2bx + a^2 = 0$,
	$\sqrt{m} + \sqrt{m-n}$			then	
	(C) $\overline{\sqrt{m} - \sqrt{m - n}}$	(D) None of these		(A) $A > G$	(B) $A \neq G$
91.	If $a^x = b^y = c^z$ and a	abcare in GP then		(C) $A = G$	(D) None of these
/ 10	x v z are in		98.	If A and G are ari	thmetic and geometric
	$(\Lambda) \Lambda P$	$(\mathbf{B}) \mathbf{G} \mathbf{P}$		means and $x^2 - 2Ay$	$\mathbf{x} + \mathbf{G}^2 = 0$, then
	$(\mathbf{C}) \mathbf{H} \mathbf{P}$	(D) None of these		(A) A = G	(B) $A > G$
92	If G and G are tw	o geometric means and		(C) A < G	(D) $A = -G$
/2,	$1 \mathbf{G}_1$ and \mathbf{G}_2 are two 1 the arithmetic means	n inserted between two	99.	If $\ln (a+c)$, $\ln (c-c)$	-a), ln $(a-2b+c)$ are
	A the arithmetic mean inserted between two $C^2 = C^2$			In A.P., then $(A) = b = a \text{ are in } A$	D
	numbers, then the value of $\frac{G_1}{G} + \frac{G_2}{G}$ is			(A) a, b, c are in A.	r.
	٨	$\mathbf{U}_2 \mathbf{U}_1$		(B) a^2 , b^2 , c^2 are in	A.P.
	(A) $\frac{A}{2}$	$(\mathbf{B})A$		(C) $a, b, c are in G.I$	-
	(C) 2 A	(D) None of these		(D) a, b, c are in H.	P
93.	If		100.	If the altitudes of a t	riangle are in A.P., then
	$\log(x+z) + \log(x+z)$	$z - 2y = 2\log(x - z),$		the sides of the trian $(A) A B$	igle are in
	then x, y, z are in			(A) A.I . (B) H P	
	(A) H.P.	(B) G.P.		(C) G.P.	
	(C) A.P.	(D) None of these		(D) Arithmetico-geo	ometric progression
0.4	a b c	in UD then	101.	If a,b,c are	in G.P. then
94.	If $\overline{b+c}$, $\overline{c+a}$, $\overline{a+c}$	b are in H.P., then		$\log_{a} x, \log_{b} x, \log_{c} x$	are in
	a, b, c are in			(A) A.P.	(B) G.P.
	(A) A.P.	(B) G.P.		(C) H.P.	(D) None of these
	(C) H.P.	(D) None of these	102.	If a,b,c are three	unequal numbers such
95.	If a,b,c are in A.P.,			that a, b, c are in A	A.P. and $b - a$, $c - b$, a
	then $\frac{1}{}$	$\frac{1}{1}$ are in		are in G.P., then <i>a</i> :	b:c is
	$\sqrt{a} + \sqrt{b}$, $\sqrt{a} + \sqrt{b}$	$+\sqrt{c}$, $\sqrt{b}+\sqrt{c}$ are m		(A) 1 : 2 : 3	(B) 2: 3 : 1
	(A) A.P.	(B) G.P.		(C) 1 : 3 : 2	(D) 3 : 2 : 1
	(C) H.P.	(D) None of these			

- 103. If (y-x), 2(y-a) and (y-z) are in H.P., then x-a, y-a, z-a are in
 (A) A.P.
 (B) G.P.
 (C) H.P.
 (D) None of these
- 104. If a,b,c are in A.P. and a^2,b^2,c^2 are in H.P., then (A) $a \neq b \neq c$
 - (B) $a^{2} = b^{2} = \frac{c^{2}}{2}$ (C) a, b, c are in G.P. (D) $\frac{-a}{2}$, b, c are in G.P
- **105.** If $a_1, a_2, ..., a_n$ are positive real numbers whose product is a fixed number *c*, then the minimum value of $a_1 + a_2 + ... + a_{n-1} + 2a_n$ is
 - (A) $n(2c)^{1/n}$ (B) $(n+1)c^{1/n}$ (C) $2nc^{1/n}$ (D) $(n+1)(2c)^{1/n}$
 - Arithmetic geometric progression, Method of difference
- 106. 2+4+7+11+16+... to n terms = (A) $\frac{1}{6}(n^2+3n+8)$ (B) $\frac{n}{6}(n^2+3n+8)$ (C) $\frac{1}{6}(n^2-3n+8)$ (D) $\frac{n}{6}(n^2-3n+8)$
- 107. Sum of *n* terms of series 12+16+24+40+... will be (A) $2(2^{n}-1)+8n$ (B) $2(2^{n}-1)+6n$ (C) $3(2^{n}-1)+8n$ (D) $4(2^{n}-1)+8n$
- **108.** If a, b, c are in H.P., then which one of the following is true

(A)
$$\frac{1}{b-a} + \frac{1}{b-c} = \frac{1}{b}$$
 (B)
$$\frac{ac}{a+c} = b$$

(C)
$$\frac{b+a}{b-a} + \frac{b+c}{b-c} = 1$$
 (D) None of these

109.	The sum of the series	s $1 + \frac{1.3}{6} + \frac{1.3.5}{6.8} + \dots \infty$
	is	
	(A) 1	(B) 0
	(C) ∞	(D) 4
110.	n th term of the serie	es $2+4+7+11+$
	will be	
	$n^2 + n + 1$	
	(A) -2	(B) $n^2 + n + 2$
	(C) $\frac{n^2 + n + 2}{2}$	(D) $\frac{n^2 + 2n + 2}{2}$
111.	The sum	of the series
	$1 + 2x + 3x^2 + 4x^3 +$	upto n terms is
	(A) $1 - (n+1)x^n + n$	x^{n+1} (D) $1-x^n$
	(A) $(1-x)^2$	(B) $\frac{1-x}{1-x}$
	(C) x^{n+1}	(D) None of these
112.	The sum of the first	n terms of the series
	$\frac{1}{2} + \frac{3}{2} + \frac{7}{2} + \frac{15}{2} + \frac$	is
	2 4 8 16	
	(A) $2^n - n - 1$	(B) $1 - 2^{-n}$
	(C) $n + 2^{-n} - 1$	(D) $2^n - 1$
113.	The sum of $1 + \frac{2}{5} + \frac{2}{5}$	$\frac{3}{5^2} + \frac{4}{5^3} + \dots$ upto
	n terms is	
	$(\Lambda) \frac{25}{25} - \frac{4n+5}{25}$	(B) $\frac{3}{2n+5}$
	$16 16 \times 5^{n-1}$	(b) 4 $16 \times 5^{n+1}$
	(C) $\frac{3}{7} - \frac{3n+5}{16 \times 5^{n-1}}$	(D) $\frac{1}{2} - \frac{5n+1}{3 \times 5^{n+2}}$
114	$2^{1/4} 4^{1/8} 8^{1/16} 16^{1/32}$	2^{-} $3\times 5^{-}$
111.	(A) 1	(B) 2
	3	() 5 () 5
	$(C) = \frac{1}{2}$	(D) $\frac{1}{2}$
115.	The sum of $i - 2 - $	3i + 4 + upto 100
	terms, where $i = \sqrt{-1}$	ī is
	(A) $50(1-i)$	(B) 25i
	(C) $25(1+i)$	(D) 100(1-i)

*n*th term of special series, Sum to *n* terms and Infinite number of terms

- of 116. The sum the series $1^{2}.2 + 2^{2}.3 + 3^{2}.4 + \dots$ to *n* terms is (A) $\frac{n^3(n+1)^3(2n+1)}{24}$ (B) $\frac{n(n+1)(3n^2+7n+2)}{12}$ (C) $\frac{n(n+1)}{6}[n(n+1)+(2n+1)]$ (D) $\frac{n(n+1)}{12}[6n(n+1)+2(2n+1)]$ 117. The sum of the series
- (D) $\frac{1}{4}(n+1)(n+2)(n+3)$ (D) $\frac{1}{4}(n+1)(n+2)(n+3)$
- **118.** The sum of $1^3 + 2^3 + 3^3 + 4^3 + \dots + 15^3$, is (A) 22000 (B) 10,000 (C) 14,400 (D) 15,000
- 119. Sum of the squares of first n natural numbers exceeds their sum by 330, then n =
 - (A) 8(B) 10(C) 15(D) 20
- 120. Sum of first n terms in the following series $\cot^{-1} 3 + \cot^{-1} 7 + \cot^{-1} 13 + \cot^{-1} 21 + \dots$ is given by

(A)
$$\tan^{-1}\left(\frac{n}{n+2}\right)$$

(B) $\cot^{-1}\left(\frac{n+2}{n}\right)$
(C) $\tan^{-1}(n+1) - \tan^{-1} 1$

(D) All of these

121. Sum of the n terms of the series $\frac{3}{1^2} + \frac{5}{1^2 + 2^2} + \frac{7}{1^2 + 2^2 + 3^2} + \dots$ is (A) $\frac{2n}{n+1}$ (B) $\frac{4n}{n+1}$ (C) $\frac{6n}{n+1}$ (D) $\frac{9n}{n+1}$ 122. The sum of the series 1.3.5 + .2.5.8 + 3.7.11 + upto 'n ' terms is (A) $\frac{n(n+1)(9n^2+23n+13)}{6}$ (B) $\frac{n(n-1)(9n^2+23n+12)}{6}$ (C) $\frac{(n+1)(9n^2+23n+13)}{6}$ (D) $\frac{n(9n^2+23n+13)}{6}$

123. Sum of the series $\frac{2}{3} + \frac{8}{9} + \frac{26}{27} + \frac{80}{81} + \dots$ to

n terms is

(A)
$$n - \frac{1}{2}(3^{n} - 1)$$
 (B) $n + \frac{1}{2}(3^{n} - 1)$
(C) $n + \frac{1}{2}(1 - 3^{-n})$ (D) $n + \frac{1}{2}(3^{-n} - 1)$

124.
$$\sum_{m=1}^{n} m^{2}$$
 is equal to
(A) $\frac{m(m+1)}{2}$

(B)
$$\frac{m(m+1)(2m+1)}{6}$$

(C) $\frac{n(n+1)(2n+1)}{6}$
(D) $\frac{n(n+1)}{6}$

2

125. The sum of n terms of the following series $1.2 + 2.3 + 3.4 + 4.5 + \dots$ shall be (A) n³

(B)
$$\frac{1}{3}n(n+1)(n+2)$$

(C) $\frac{1}{6}n(n+1)(n+2)$
(D) $\frac{1}{3}n(n+1)(2n+1)$

126. $11^3 + 12^3 + \dots + 20^3$

- (A) Is divisible by 5
- (B) Is an odd integer divisible by 5

(C) Is an even integer which is not divisible by 5

(D) Is an odd integer which is not divisible by 5

127. The sum to n terms of the infinite series $1.3^2 + 2.5^2 + 3.7^2 + \dots \infty$ is

(A)
$$\frac{n}{6}(n+1)(6n^2+14n+7)$$

(B) $\frac{n}{6}(n+1)(2n+1)(3n+1)$

(C)
$$4n^3 + 4n^2 + n$$

(D) None of these

128. If the nth term of a series be 3 + n(n-1), then the sum of *n* terms of the series is

(A)
$$\frac{n^2 + n}{3}$$
 (B) $\frac{n^3 + 8n}{3}$
(C) $\frac{n^2 + 8n}{5}$ (D) $\frac{n^2 - 8n}{3}$

129. The sum to n terms of

$$(2n-1)+2(2n-3)+3(2n-5)+...$$
 is
(A) $(n+1)(n+2)(n+3)/6$
(B) $n(n+1)(n+2)/6$
(C) $n(n+1)(2n+3)$
(D) $n(n+1)(2n+1)/6$

130. First term of the 11th group in the following groups (1), (2, 3, 4), (5, 6, 7, 8, 9),.....is
(A) 89 (B) 97
(C) 101 (D) 123