SOLVED EXAMPLES

```
Ex. 1
           If 49^n + 16n + \lambda is divisible by 64 for all n \in \mathbb{N}, then find the least negative integral value of \lambda.
Sol.
           For n = 1, we have
           49^{n} + 16n + \lambda = 49 + 16 + \lambda = 65 + \lambda
                          = 64 + (\lambda + 1), which is divisible by 64 if \lambda = -1
           For n = 2, we have
                     49^{n} + 16n + \lambda = 49^{2} + 16 \times 2 + \lambda = 2433 + \lambda
                                    = (64 \times 38) + (\lambda + 1), which is divisible by 64 if \lambda = -1
           Hence, \lambda = -1
           Prove that n^2 + n is even for all natural numbers n.
Ex.2
                     P(n) be n^2 + n is even
Sol.
          Let
           P(1) is true as 1^2 + 1 = 2 is an even number.
                     P(k) be true.
           Let
           To Prove: P(k+1) is true.
           P(k+1) states that (k+1)^2 + (k+1) is even.
           Now (k+1)^2 + (k+1)
                     =k^2+2k+1+k+1
                     =k^{2}+k+2k+2
                                                      (rearranging terms)
                     = 2\lambda + 2k + 2 (Since P(k) is true, k^2 + k is an even number, or can be written as 2\lambda,
                                                                                                              where \lambda is some natural number)
                     =2(\lambda+k+1)
                     = a multiple of 2.
           thus, (k+1)^2 + (k+1) is an even number, or P(k+1) is true when P(k) is true.
           Hence, by PMI, P(n) is true for all n, where n is a natural number.
           Prove that x^{2n-1} + y^{2n-1} is divisible by x + y for all n \in N.
Ex.3
Sol.
          Let
                     P(n) be the given statement.
                     P(1) is clearly true, as x + y is divisible by x + y.
                     P(k) be true. Thus, x^{2k-1} + y^{2k-1} = (x + y)\lambda
           Let
           Consider x^{2(k+1)-1} + y^{2(k+1)-1}
                     = x^{2k-1} \cdot x^2 + y^{2k-1} \cdot y^2
                      = ((x + y)\lambda - y^{2k-1})x^2 + y^{2k-1} \cdot y^2 (Since P(k) is true)
                     = (x + y) \lambda x^{2} + y^{2k-1}(y^{2} - x^{2}) \implies (x + y) \lambda x^{2} + y^{2k-1}(y - x)(y + x)
                     =(x+y)(\lambda x^{2}+y^{2k-1}(y-x))
                                                          \Rightarrow divisible (x + y)
           Hence, P(k + 1) is true when P(k) is true. Thus, P(n) is true for all n \in N by PMI.
```


MATHEMATICAL INDUCTION

Prove that : $1 + 2 + 3 + ... + n < \frac{(2n+1)^2}{8}$ for all $n \in N$. **Ex.4** Sol. Let P(n) be the statement given by $P(n): 1+2+3+\ldots+n < \frac{(2n+1)^2}{2}$ Step-I We have P(1): $1 < \frac{(2 \times 1 + 1)^2}{8}$ $\Rightarrow 1 < \frac{(2 \times 1 + 1)^2}{8} = \frac{9}{8}$ **Step-II** Let P(m) be true, then $1+2+3+\ldots+m < \frac{(2m+1)^2}{2}$...**(i)** We shall now show that P(m + 1) is true i.e. $1+2+3+\ldots+m+(m+1) < \frac{[2(m+1)+1]^2}{8}$ P(m) is true Now $1+2+3+\ldots+m < \frac{(2m+1)^2}{2}$ \Rightarrow $1+2+3+\ldots+m+(m+1) < \frac{(2m+1)^2}{8} + (m+1)$ ⇒ $1+2+3+\ldots+m+(m+1) < \frac{(2m+1)^2+8(m+1)}{8}$ \Rightarrow $1+2+3+\ldots+m+(m+1) < \frac{(4m^2+12m+9)}{2}$ ⇒ $1+2+3+\ldots+m+(m+1) < \frac{(2m+3)^2}{8} = \frac{[2(m+1)+1]^2}{8}$ ⇒ P(m+1) is true P(m) is true $\Rightarrow P(m+1)$ is true thus Hence by the principle of mathematical induction P(n) is true for all $n \in N$

Ex.5 Prove that
$$\cos \alpha \cos 2\alpha \cos 4\alpha \dots \cos (2^{n-1}\alpha) = \frac{\sin 2 \alpha}{2^n \sin \alpha}$$

Sol. Let P(n) be the given statement.

Clearly, P(1) is true. (Expand sin 2α on RHS to verify this)

Let P(k) be true.

Consider $\cos \alpha \cos 2\alpha \cos 4\alpha \dots \cos (2^{k-1}\alpha) \cos (2^{k+1-1}\alpha)$

$$= \frac{\sin 2^{k} \alpha}{2^{k} \sin \alpha} \cos 2^{k} \alpha \implies \frac{2 \sin 2^{k} \alpha \cos 2^{k} \alpha}{2 \cdot 2^{k} \sin \alpha}$$
$$= \frac{\sin 2^{k+1} \alpha}{2^{k+1} \sin \alpha} \qquad (\text{Using } \sin 2\theta = 2 \sin \theta \cos \theta)$$

Hence, P(k + 1) is true when P(k) is true. By PMI, for all natural numbers n, P(n) is true.

 \therefore P(1) is true

Ex. 6 $\frac{3}{4} + \frac{15}{16} + \frac{63}{64} + \dots$ to n terms = (1) $n - \frac{4^{n}}{3} - \frac{1}{3}$ (2) $n + \frac{4^{-n}}{3} - \frac{1}{3}$ (3) $n + \frac{4^{n}}{3} - \frac{1}{3}$ (4) $n - \frac{4^{-n}}{3} + \frac{1}{3}$ Sol. For n = 1, we have $n - \frac{4^{n}}{3} - \frac{1}{3} = 1 - \frac{4}{3} - \frac{1}{3} = -\frac{2}{3}$ $n + \frac{4^{-n}}{3} - \frac{1}{3} = 1 + \frac{4^{-1}}{3} - \frac{1}{3} = \frac{3}{4}$ $n + \frac{4^{n}}{3} - \frac{1}{3} = 1 + \frac{4}{3} - \frac{1}{3} = 2$ $n - \frac{4^{-n}}{3} + \frac{1}{3} = 1 - \frac{4^{-1}}{3} + \frac{1}{3} = \frac{5}{4}$ Also, for n = 2, we have $n + \frac{4^{-n}}{3} - \frac{1}{3} = 2 + \frac{1}{48} - \frac{1}{3} = \frac{27}{16}$ and $\frac{3}{4} + \frac{15}{16} = \frac{27}{16}$ Hence, option (2) is correct

Ex.7 Prove that

 $7 + 77 + 777 + 7777 + 7777 \dots 7$ (n digits) = $7(10^{n+1} - 9n - 10)/81$

Sol. Let P(n) be the given statement.

Clearly, P(1) is true.

Let
$$P(k)$$
 be true.

To Prove : P(k + 1) is true.

Consider the LHS of P(k + 1)

7 + 77 + 777 + 7777 + ... + 777...7 (k digits) + 777...7 (k + 1 digits)

 $=7(10^{k+1}-9k-10)/81+777...7(k+1 digits)$

 $= 7(10^{k+1} - 9k - 10 + 81x111...1(k+1 \text{ digits}))/81$

Now, 111...1 = 1 + 10 + 100 + 1000 + ... (upto k + 1 terms). This is a Geometric Progression with a = 1,

r = 10. Hence 111 ... 1(k + 1 digits) =
$$\frac{1(10^{k+1} - 1)}{10 - 1} = \frac{(10^{k+1} - 1)}{9}$$

Thus, LHS becomes

 $= 7(10^{k+1} - 9k - 10 + 9(10^{k+1} - 1))/81$ = 7(10^{k+1}(1 + 9) - 9k - 9 - 10)/81 = 7(10^{k+2} - 9(k + 1) - 10)/81

Hence, P(k+1) is true when P(k) is true. Thus, by PMI, P(n) is true for all n, where n is a Natural Number.

Ex. 8 If P(n) is the statement " $2^{3n} - 1$ is an integral multiple of 7", and if P(r) is true, prove that P(r+1) is true.

Sol. P(r) be true. Then $2^{3r} - 1$ is an integral multiple of 7. Let We wish to prove that P(r + 1) is true i.e. $2^{3(r+1)} - 1$ is an integral multiple of 7. P(r) is true Now $2^{3r} - 1$ is an integral multiple of 7 $2^{3r} - 1 = 7\lambda$ for some $\lambda \in N$ ⇒ $2^{3r} = 7\lambda + 1$ ⇒ ...**(i)** $2^{3(r+1)} - 1 = 2^{3r} \cdot 2^3 - 1 = (7\lambda + 1) \times 8 - 1$ Now $2^{3(r+1)} - 1 = 56\lambda + 8 - 1 = 56\lambda + 7 = 7(8\lambda + 1) \implies 2^{3(r+1)} - 1 = 7\mu$, where $\mu = 8\lambda + 1 \in \mathbb{N}$ ⇒ $2^{3(r+1)} - 1$ is an integral multiple of 7 \Rightarrow ⇒ P(r+1) is true **Ex.9** Consider the sequence of real numbers defined by the relations $x_1 = 1$ and $x_{n+1} = \sqrt{1 + 2x_n}$ for $n \ge 1$. Use the Principle of Mathematical Induction to show that $x_n < 4$ for all $n \ge 1$. Sol. For any $n \ge 1$, let P_n be the statement that $x_n < 4$. **Base Case** The statement P_1 says that $x_1 = 1 < 4$, which is true. Inductive Step Fix $k \ge 1$, and suppose that P_k holds, that is, $x_k < 4$. It remains to show that P_{k+1} holds, that is, that $x_{k+1} < 4$. $x_{k+1} = \sqrt{1 + 2x_k}$ $<\sqrt{1+2(4)}$ $=\sqrt{9}$ = 3< 4.Therefore, P_{k+1} holds. Thus by the principle of mathematical induction, for all $n \ge 1$, P_n holds. For $n \in N$, $x^{n+1} + (x+1)^{2n-1}$ is divisible by -Ex. 10 **(1)** x (2) x + 1(3) $x^2 + x + 1$ (4) $x^2 - x + 1$ Sol. For n = 1, we have $x^{n+1} + (x+1)^{2n-1} = x^2 + (x+1) = x^2 + x + 1$, which is divisible by $x^2 + x + 1$. For n = 2, we have $x^{n+1} + (x+1)^{2n-1} = x^3 + (x+1)^3 = (2x+1)(x^2 + x + 1)$, which is divisible by $x^2 + x + 1$ Hence, option (3) is true. **Ex. 11** Let $p_0 = 1$, $p_1 = \cos\theta$ (for θ some fixed constant) and $p_{n+1} = 2p_1p_n - p_{n-1}$ for $n \ge 1$. Use an extended Principle of

- Ex. If $p_0 = 1$, $p_1 = \cos(100)$ some fixed constant) and $p_{n+1} = 2p_1p_n p_{n-1}$ for $n \ge 1$. Use an extended if incipie of Mathematical Induction to prove that $p_n = \cos(n\theta)$ for $n \ge 0$. Sol. For any $n \ge 0$, let P_n be the statement that $p_n = \cos(n\theta)$.
 - **Base Cases** The statement P_0 says that $p_0 = 1 = \cos(0\theta) = 1$, which is true. The statement P_1 says that $p_1 = \cos\theta = \cos(1\theta)$, which is true.

Inductive Step Fix $k \ge 0$, and suppose that both P_k and P_{k+1} hold, that is, $p_k = \cos(k\theta)$, and

$$p_{k+1} = \cos((k+1)\theta)$$

It remains to show that P_{k+2} holds, that is, that $p_{k+2} = \cos((k+2)\theta)$.

We have the following identities:

 $\cos(a + b) = \cos a \cos b - \sin a \sin b$

 $\cos(a - b) = \cos a \cos b + \sin a \sin b$

Therefore, using the first identity when $a = \theta$ and $b = (k + 1)\theta$, we have

 $\cos(\theta + (k+1)\theta) = \cos\theta \cos(k+1)\theta - \sin\theta \sin(k+1)\theta,$

and using the second identity when $a = (k + 1)\theta$ and $b = \theta$, we have

```
\cos((k+1)\theta - \theta) = \cos(k+1)\theta\cos\theta + \sin(k+1)\theta\sin\theta.
```

Therefore,

 $\begin{aligned} p_{k+2} &= 2p_1p_{k+1} - p_k \\ &= 2(\cos\theta)(\cos((k+1)\theta)) - \cos(k\theta) \\ &= (\cos\theta)(\cos((k+1)\theta)) + (\cos\theta)(\cos((k+1)\theta)) - \cos(k\theta) \\ &= \cos(\theta + (k+1)\theta) + \sin\theta\sin(k+1)\theta + (\cos\theta)(\cos((k+1)\theta)) - \cos(k\theta) \\ &= \cos((k+2)\theta) + \sin\theta\sin(k+1)\theta + (\cos\theta)(\cos((k+1)\theta)) - \cos(k\theta) \\ &= \cos((k+2)\theta) + \sin\theta\sin(k+1)\theta + \cos((k+1)\theta - \theta) - \sin(k+1)\theta\sin\theta - \cos(k\theta) \\ &= \cos((k+2)\theta) + \cos(k\theta) - \cos(k\theta) \\ &= \cos((k+2)\theta). \end{aligned}$

Therefore P_{k+2} holds.

Thus by the principle of mathematical induction, for all $n \ge 1$, P_n holds.

Ex. 12 Prove that for any positive integer number n, $n^3 + 2n$ is divisible by 3

Sol. Statement P (n) is defined by

```
n^3 + 2n is divisible by 3
```

STEP 1: We first show that p (1) is true. Let n = 1 and calculate $n^3 + 2n$

 $1^3 + 2(1) = 3$

3 is divisible by 3

Hence p(1) is true.

STEP 2: We now assume that p(k) is true

 $k^3 + 2 k$ is divisible by 3

is equivalent to

 $k^3 + 2 k = 3 M$, where M is a positive integer.

We now consider the algebraic expression $(k + 1)^3 + 2(k + 1)$; expand it and group like terms

 $(k+1)^3 + 2(k+1) = k^3 + 3k^2 + 5k + 3$

 $= [k^{3} + 2k] + [3k^{2} + 3k + 3] \implies 3M + 3[k^{2} + k + 1] = 3[M + k^{2} + k + 1]$

Hence $(k + 1)^3 + 2 (k + 1)$ is also divisible by 3 and therefore statement P(k + 1) is true.

Ex. 13 Prove by the principle of mathematical induction that for all $n \in N$: $1+4+7+\ldots+(3n-2)=\frac{1}{2}n(3n-1)$ P(n) be the statement given by Sol. Let P(n): 1+4+7+...+(3n-2) = $\frac{1}{2}$ n (3n-1) We have $P(1): 1 = \frac{1}{2} \times (1) \times (3 \times 1 - 1)$ Step-I $\Rightarrow 1 = \frac{1}{2} \times (1) \times (3 \times 1 - 1)$ So, P(1) is true **Step-II** Let P(m) be true, then $1+4+7+\ldots+(3m-2)=\frac{1}{2}m(3m-1)$...(i) We wish to show that P(m + 1) is true. For this we have to show that $1+4+7+\ldots+(3m-2)+[3(m+1)-2]=\frac{1}{2}(m+1)(3(m+1)-1)$ Now $1 + 4 + 7 + \ldots + (3m - 2) + [3(m + 1) - 2]$ $= \frac{1}{2}m(3m-1) + [3(m+1)-2]$ [Using (i)] $= \frac{1}{2}m(3m-1) + (3m+1) = \frac{1}{2}[3m^2 - m + 6m + 2]$ $=\frac{1}{2}[3m^{2}+5m+2]=\frac{1}{2}(m+1)(3m+2)=\frac{1}{2}(m+1)[3(m+1)-1]$ P(m+1) is true ... Thus P(m) is true \Rightarrow P(m+1) is true

Hence by the principle of mathematical induction the given result is true for all $n \in N$.

- Ex. 14 Prove that $n \ge 2^n$ for n a positive integer greater than or equal to 4. (Note: n! is n factorial and is given by $1 \ge 2^n \dots \ge (n-1) \ge n$.)
- **Sol.** Statement P (n) is defined by $n! > 2^n$

STEP 1: We first show that p(4) is true. Let n = 4 and calculate 4 ! and 2^n and compare them

4! = 24

 $2^4 = 16$

24 is greater than 16 and hence p (4) is true.

STEP 2: We now assume that p (k) is true

 $k! > 2^k$

Multiply both sides of the above inequality by k + 1

 $k!\,(k+1) > 2^k\,(k+1)$

The left side is equal to (k + 1)!. For k >, 4, we can write

k + 1 > 2

Multiply both sides of the above inequality by 2^k to obtain

 $2^{k}(k+1) > 2 * 2^{k}$

The above inequality may be written

$$2^{k}(k+1) > 2^{k+1}$$

We have proved that $(k + 1)! > 2^k (k + 1)$ and $2^k (k + 1) > 2$

^{k+1}we can now write

 $(k+1)! > 2^{k+1}$

We have assumed that statement P(k) is true and proved that statement P(k + 1) is also true.

 $1 \times \theta$

Ex. 15 Prove by the principle of mathematical induction that for all $n \in N$,

$$\sin\theta + \sin 2\theta + \sin 3\theta + \ldots + \sin n\theta = \frac{\sin\left(\frac{n+1}{2}\right)\theta\sin\frac{n\theta}{2}}{\sin\frac{\theta}{2}}$$

Sol. Let P(n) be the statement given by

$$P(n):\sin\theta + \sin 2\theta + \sin 3\theta + \ldots + \sin n\theta = \frac{\sin\left(\frac{n+1}{2}\right)\theta\sin\frac{n\theta}{2}}{\sin\frac{\theta}{2}}$$

 $\sin\frac{\theta}{2}$

 $1 \times \theta$

2

· sin

 $\frac{\theta}{2}$

Step-I We have
$$P(1) : \sin\theta$$

$$\Rightarrow \qquad \sin\theta = \frac{\sin\left(\frac{1+1}{2}\right)\theta}{\sin\theta}$$

 \therefore P(1) is true

Step-II Let P(m) be true, then

$$\sin\theta + \sin 2\theta + \ldots + \sin m\theta = \frac{\sin\left(\frac{m+1}{2}\right)\theta\sin\frac{m\theta}{2}}{\sin\frac{\theta}{2}} \qquad \dots (i)$$

We shall now show that P(m + 1) is true

$$\sin\theta + \sin 2\theta + \ldots + \sin m\theta + \sin(m+1)\theta = \frac{\sin\left(\frac{(m+1)+1}{2}\right)\theta\sin\left(\frac{m+1}{2}\right)\theta}{\sin\frac{\theta}{2}}$$

i.e.

Add. 41-42A, Ashok Park Main, New Rohtak Road, New Delhi-110035 +91-9350679141

[Using (i)]

(4) None of these

We have $\sin\theta + \sin 2\theta + \ldots + \sin m\theta + \sin(m+1)\theta$

$$=\frac{\sin\left(\frac{m+1}{2}\right)\theta\sin\frac{m\theta}{2}}{\sin\frac{\theta}{2}}+\sin(m+1)\theta$$

=

$$=\frac{\sin\left(\frac{m+1}{2}\right)\theta\sin\frac{m\theta}{2}}{\sin\frac{\theta}{2}}+2\sin\left(\frac{m+1}{2}\right)\theta\cos\left(\frac{m+1}{2}\right)\theta$$

$$= \sin\left(\frac{m+1}{2}\right)\theta \left\{\frac{\sin\left(\frac{m\theta}{2}\right)}{\sin\frac{\theta}{2}} + 2\cos\left(\frac{m+1}{2}\right)\theta\right\}$$

$$=\sin\left(\frac{m+1}{2}\right)\theta \left\{\frac{\sin\left(\frac{m\theta}{2}\right)+2\sin\frac{\theta}{2}\cos\left(\frac{m+1}{2}\right)\theta}{\sin\frac{\theta}{2}}\right\}$$

$$= \sin\left(\frac{m+1}{2}\right)\theta \left\{\frac{\sin\left(\frac{m\theta}{2}\right) + \sin\left(\frac{m+2}{2}\right)\theta - \sin\frac{m\theta}{2}}{\sin\frac{\theta}{2}}\right\}$$

$$(m+1) = (m+2) = ((m+1)+1) = (m+2)$$

$$=\frac{\sin\left(\frac{m+1}{2}\right)\theta\sin\left(\frac{m+2}{2}\right)\theta}{\sin\frac{\theta}{2}}=\frac{\sin\left\{\frac{(m+1)+1}{2}\right\}\theta\sin\left(\frac{m+1}{2}\right)\theta}{\sin\frac{\theta}{2}}$$

.... P(m+1) is true

Thus, P(m) is true $\Rightarrow P(m+1)$ is true Hence by principle mathematical induction P(n) is true for all $n \in N$

(2) $n! \ge \left(\frac{n+1}{2}\right)^n$ (3) $n! < \left(\frac{n+1}{2}\right)^n$

Ex. 16 If $n \in N$ and n > 1, then

(1)
$$n! > \left(\frac{n+1}{2}\right)^n$$
 (2) $n! \ge \left(\frac{n+1}{2}\right)^n$ (3) n
When $n=2$ then
 $n=2, \left(\frac{n+1}{2}\right)^n = \frac{9}{4} \implies n! < \left(\frac{n+1}{2}\right)^n$

When
$$n = 3$$
, then $n! = 6$, $\left(\frac{n+1}{2}\right)^n = 8$

Sol.

$$\Rightarrow$$
 $n! < \left(\frac{n+1}{2}\right)^r$

When
$$n = 4$$
, then $n! = 24$, $\left(\frac{n+1}{2}\right)^n = \frac{625}{16}$
 $\Rightarrow n! < \left(\frac{n+1}{2}\right)^n$

$$\therefore$$
 it is seen that \Rightarrow $n! < \left(\frac{n+1}{2}\right)^n$

Ex. 17 Use mathematical induction to prove De Moivre's theorem

$$[R (\cos t + i \sin t)]^n = R^n (\cos nt + i \sin nt)$$

for n a positive integer.

Sol. STEP 1 : For n = 1

 $[R (\cos t + i \sin t)]^{1} = R^{1}(\cos 1 * t + i \sin 1 * t)$

It can easily be seen that the two sides are equal.

STEP 2: We now assume that the theorem is true for n = k,

Hence

 $[R (\cos t + i \sin t)]^k = R^k (\cos kt + i \sin kt)$

Multiply both sides of the above equation by $R(\cos t + i \sin t)$

 $[R (\cos t + i \sin t)]^k R (\cos t + i \sin t) = R^k (\cos kt + i \sin kt)$

 $R(\cos t + i \sin t)$

Rewrite the above as follows

 $[R (\cos t + i \sin t)]^{k+1} = R^{k+1} [(\cos kt \cos t - \sin kt \sin t) + i (\sin kt \cos t + \cos kt \sin t)]$

Trigonometric identities can be used to write the trigonometric expressions (cos kt cos t – sin kt sin t) and (sin kt cos t + cos kt sin t) as follows

 $(\cos kt \cos t - \sin kt \sin t) = \cos(kt + t) = \cos(k + 1)t$

 $(\sin kt \cos t + \cos kt \sin t) = \sin(kt + t) = \sin(k + 1)t$

Substitute the above into the last equation to obtain

 $[R (\cos t + i \sin t)]^{k+1} = R^{k+1} [\cos (k+1)t + \sin(k+1)t]$

It has been established that the theorem is true for n=1 and that if it assumed true for n=k it is true for n=k+1.

Ex.18 Prove by the principle of mathematical induction that for all $n \in N$, 3^{2n} when divided by 8 the remainder is always 1.

Sol.

Let P(n) be the statement given by

 $P(n): 3^{2n}$ when divided by 8 the remainder is 1

 $P(n): 3^{2n} = 8\lambda + 1$ for some $\lambda \in N$

or

Step-I $P(1): 3^2 = 8\lambda + 1$ for some $\lambda \in N$

 $\Rightarrow 3^2 = 8 \times 1 + 1 = 8\lambda + 1 \text{ where } \lambda = 1$ $\therefore P(1) \text{ is true}$

Step-II Let P(m) be true then

 $3^{2m}\!=\!8\lambda\!+\!1$ for some $\lambda\in N$

We shall now show that P(m + 1) is true for which we have to show that $3^{2(m+1)}$ when divided by 8 the remainder is 1 i.e. $3^{2(m+1)} = 8\mu + 1$ for some $\mu \in N$

[Using (i)]

Now $3^{2(m+1)} = 3^{2m} \cdot 3^2 = (8\lambda + 1) \times 9$

 \Rightarrow P(m+1) is true

```
thus P(m) is true \Rightarrow P(m+1) is true
```

Hence by the principle of mathematical induction P(n) is true for all $n \in N$ i.e. 3^{2n} when divided by 8 the remainder is always 1.

Ex. 19 Using the principle of mathematical induction, prove that

 $1^2 + 2^2 + 3^2 + \dots + n^2 = (1/6) \{n(n+1)(2n+1)\}$ for all $n \in \mathbb{N}$.

Sol. Let the given statement be P(n). Then,

$$P(n): 1^2 + 2^2 + 3^2 + \dots + n^2 = (1/6)\{n(n+1)(2n+1)\}.$$

Putting n = 1 in the given statement, we get

LHS =
$$1^2 = 1$$
 and RHS = $(1/6) \times 1 \times 2 \times (2 \times 1 + 1) = 1$.

Therefore LHS=RHS.

Thus, P(1) is true.

Let	P(k) be true. Then,
P(k):	$1^2 + 2^2 + 3^2 + \dots + k^2 = (1/6) \{k(k+1)(2k+1)\}.$
Now,	$1^2 + 2^2 + 3^2 + \dots + k^2 + (k+1)^2$
	$= (1/6) \{k(k+1)(2k+1) + (k+1)^2\}$
	$= (1/6)\{(k+1) . (k(2k+1) + 6(k+1))\}$
	$= (1/6)\{(k+1)(2k^2+7k+6\})$
	$= (1/6)\{(k+1)(k+2)(2k+3)\}$
	$= 1/6\{(k+1)(k+1+1)[2(k+1)+1]\}$
⇒	$P(k + 1): 1^2 + 2^2 + 3^2 + \dots + k^2 + (k+1)^2$
	$= (1/6)\{(k+1)(k+1+1)[2(k+1)+1]\}$

P(k+1) is true, whenever P(k) is true.

Thus, P(1) is true and P(k+1) is true, whenever P(k) is true.

Hence, by the principle of mathematical induction, P(n) is true for all $n \in N$.

MATHS FOR JEE MAIN & ADVANCED

Ex. 20 Using the principle of mathematical induction, prove that

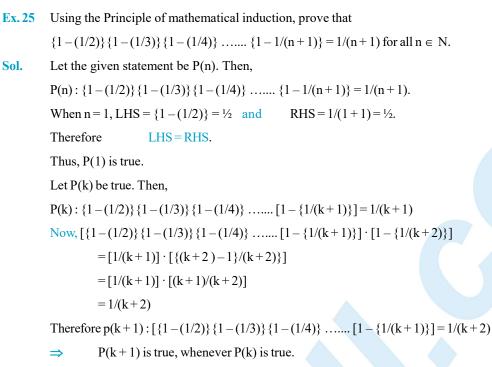
$$1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + + n(n + 1) = (1/3) (n(n + 1)(n + 2)).$$

Sol. Let the given statement be P(n). Then,
P(n): $1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + + n(n + 1) = (1/3) (n(n + 1)(n + 2)).$
Thus, the given statement is true for $n = 1$, i.e., P(1) is true.
Let P(k) be true. Then,
P(k): $1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + + k(k + 1) = (1/3) (k(k + 1)(k + 2)).$
Now, $1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + + k(k + 1) + (k + 1)(k + 2)$
 $= (1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + + k(k + 1) + (k + 1)(k + 2)$
 $= (1/3) k(k + 1)(k + 2) + (k + 1)(k + 2)$ [using (i)]
 $= (1/3) [k(k + 1)(k + 2) + (k + 1)(k + 2)$
 $= (1/3) [k(k + 1)(k + 2) + (k + 1)(k + 2)$
 $= (1/3) [k(k + 1)(k + 2) + 3(k + 1)(k + 2)$
 $= (1/3) [k(k + 1)(k + 2) + 3(k + 1)(k + 2)$
 $= (1/3) [k(k + 1)(k + 2)(k + 3)]$
 \Rightarrow P(k + 1): $1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + + (k + 1)(k + 2)$
 $= (1/3) [k(k + 1)(k + 2)(k + 3)]$
 \Rightarrow P(k + 1) is true, whenever P(k) is true.
Thus, P(1) is true and P(k + 1) is true, whenever P(k) is true.
Hence, by the principle of mathematical induction, prove that
 $1 \cdot 3 + 3 \cdot 5 + 5 \cdot 7 + + (2n - 1)(2n + 1) = (1/3)n(4n^2 + 6n - 1).$
Sol. Let the given statement be P(n). Then,
P(n): $1 \cdot 3 + 3 \cdot 5 + 5 \cdot 7 + + (2n - 1)(2n + 1) = (1/3)n(4n^2 + 6n - 1).$
When $n = 1$, LHS = $1 \cdot 3 = 3$ and RHS = $(1/3) \times 1 \times (4 \times 1^2 + 6 \times 1 - 1)$
 $= (1/3) \times 1 \times 9 = 3.$
LHS = RHS.
Thus, P(1) is true.
Let P(k) be true. Then,
P(k): $1 \cdot 3 + 3 \cdot 5 + 5 \cdot 7 + + (2k - 1)(2k + 1) = (1/3)[k(4k^2 + 6k - 1)(i)
Now.
 $1 \cdot 3 + 3 \cdot 5 + 5 \cdot 7 + + (2k - 1)(2k + 1) = (1/3)[k(4k^2 + 6k - 1)(i)$
Now.
 $1 \cdot 3 + 3 \cdot 5 + 5 \cdot 7 + + (2k - 1)(2k + 1) = (1/3)[k(4k^2 + 6k - 1)(i)$
Now.
 $1 \cdot 3 + 3 \cdot 5 + 5 \cdot 7 + + (2k - 1)(2k + 1) = (1/3)[k(4k^2 + 6k - 1)(i)$
Now.
 $1 \cdot 3 + 3 \cdot 5 + 5 \cdot 7 + + (2k - 1)(2k + 1) = (1/3)[k(4k^2 + 6k - 1)(i)$
Now.$

	$\Rightarrow P(k+1): 1 \cdot 3 + 3 \cdot 5 + 5 \cdot 7 + \dots + (2k+1)(2k+3)$			
	$\Rightarrow P(k+1): 1 \cdot 3 + 3 \cdot 5 + 5 \cdot 7 + \dots + (2k+1)(2k+3) = (1/3)[(k+1)\{4(k+1)^2 + 6(k+1) - 1)\}]$			
	$\Rightarrow P(k+1) \text{ is true, whenever } P(k) \text{ is true.}$			
	Thus, $P(1)$ is true and $P(k+1)$ is true, whenever $P(k)$ is true.			
	Hence, by the principle of mathematical induction, $P(n)$ is true for all $n \in N$.			
E- 22				
Ex. 22	Using the principle of mathematical induction, prove that $1/(1-2) + 1/(2-2) + 1/(2-4) + \dots + 1/(n+1) = n/(n+1)$			
Sol.	$1/(1 \cdot 2) + 1/(2 \cdot 3) + 1/(3 \cdot 4) + \dots + 1/\{n(n+1)\} = n/(n+1)$			
501.	Let the given statement be P(n). Then, P(n): $1/(1+2) + 1/(2+3) + 1/(3+4) + \dots + 1/(n(n+1)) = n/(n+1)$			
	$P(n): 1/(1 \cdot 2) + 1/(2 \cdot 3) + 1/(3 \cdot 4) + \dots + 1/\{n(n+1)\} = n/(n+1).$ Putting n = 1 in the given statement, we get			
	LHS = $1/(1 \cdot 2)$ = and RHS = $1/(1 + 1) = 1/2$.			
	LHS = RHS .			
	Thus, P(1) is true.			
	Let P(k) be true. Then,			
	$P(k): 1/(1 \cdot 2) + 1/(2 \cdot 3) + 1/(3 \cdot 4) + \dots + 1/\{k(k+1)\} = k/(k+1) \qquad \dots \dots (i)$			
	Now $1/(1 \cdot 2) + 1/(2 \cdot 3) + 1/(3 \cdot 4) + \dots + 1/{k(k+1)} + 1/{(k+1)(k+2)}$			
	$[1/(1 \cdot 2) + 1/(2 \cdot 3) + 1/(3 \cdot 4) + \dots + 1/\{k(k+1)\}] + 1/\{(k+1)(k+2)\}$			
	$= \frac{k}{(k+1)+1} \{ (k+1)(k+2) \}.$			
	$ \{k(k+2)+1\}/\{(k+1)2/[(k+1)k+2)] $ [using (i)] = $\{k(k+2)+1\}/\{(k+1)(k+2)\} $			
	$= \{(k+1)^2\}/\{(k+1)(k+2)\}$			
	= (k+1)/(k+2) = (k+1)/(k+1+1)			
	$\Rightarrow P(k+1): 1/(1 \cdot 2) + 1/(2 \cdot 3) + 1/(3 \cdot 4) + \dots + 1/\{k(k+1)\} + 1/\{(k+1)(k+2)\}$			
	=(k+1)/(k+1+1)			
	\Rightarrow P(k+1) is true, whenever P(k) is true.			
	Thus, $P(1)$ is true and $P(k + 1)$ is true, whenever $P(k)$ is true.			
	Hence, by the principle of mathematical induction, $P(n)$ is true for all $n \in N$.			
Ex. 23	Using the principle of mathematical induction, prove that			
	$\{1/(3 \cdot 5)\} + \{1/(5 \cdot 7)\} + \{1/(7 \cdot 9)\} + \dots + 1/\{(2n+1)(2n+3)\} = n/\{3(2n+3)\}.$			
Sol.	Let the given statement be P(n). Then,			
	$P(n): \{1/(3 \cdot 5) + 1/(5 \cdot 7) + 1/(7 \cdot 9) + \dots + 1/\{(2n+1)(2n+3)\} = n/\{3(2n+3).$			
	Putting n = 1 in the given statement, we get and LHS = $1/(3 \cdot 5) = 1/15$ and RHS = $1/{3(2 \times 1 + 3)} = 1/15$.			
	LHS=RHS			
	Thus, P(1) is true.			
	Let P(k) be true. Then,			

P(k): $\{1/(3 \cdot 5) + 1/(5 \cdot 7) + 1/(7 \cdot 9) + \dots + 1/\{(2k+1)(2k+3)\} = k/\{3(2k+3)\}$ (i) Now, $1/(3 \cdot 5) + 1/(5 \cdot 7) + \dots + 1/[(2k+1)(2k+3)] + 1/[(2(k+1)+1)(2(k+1)+3)]$ $= \{1/(3 \cdot 5) + 1/(5 \cdot 7) + \dots + [1/(2k+1)(2k+3)]\} + 1/\{(2k+3)(2k+5)\}$ = k/[3(2k+3)] + 1/[2k+3)(2k+5)][using (i)] $= \{k(2k+5)+3\}/\{3(2k+3)(2k+5)\}$ $=(2k^{2}+5k+3)/[3(2k+3)(2k+5)]$ $= \{(k+1)(2k+3)\}/\{3(2k+3)(2k+5)\}$ $=(k+1)/{3(2k+5)}$ $= (k+1)/[3\{2(k+1)+3\}]$ $= P(k+1): \frac{1}{3 \cdot 5} + \frac{1}{5 \cdot 7} + \dots + \frac{1}{2k+1}(2k+3) + \frac{1}{2(k+1)+1} + \frac{1}{2(k+1)+3}$ $= (k+1)/\{3\{2(k+1)+3\}\}$ P(k+1) is true, whenever P(k) is true. ⇒ Thus, P(1) is true and P(k+1) is true, whenever P(k) is true. Hence, by the principle of mathematical induction, P(n) is true for $n \in N$. Ex. 24 Using the principle of mathematical induction, prove that $1/(1 \cdot 2 \cdot 3) + 1/(2 \cdot 3 \cdot 4) + \dots + 1/\{n(n+1)(n+2)\} = \{n(n+3)\}/\{4(n+1)(n+2)\}$ for all $n \in \mathbb{N}$. Let P(n): $1/(1 \cdot 2 \cdot 3) + 1/(2 \cdot 3 \cdot 4) + \dots + 1/\{n(n+1)(n+2)\} = \{n(n+3)\}/\{4(n+1)(n+2)\}$. Sol. Putting n = 1 in the given statement, we get LHS = $1/(1 \cdot 2 \cdot 3) = 1/6$ and RHS = $\{1 \times (1+3)\}/[4 \times (1+1)(1+2)] = (1 \times 4)/(4 \times 2 \times 3) = 1/6$. Therefore LHS=RHS. Thus, the given statement is true for n = 1, i.e., P(1) is true. Let P(k) be true. Then, $P(k): 1/(1 \cdot 2 \cdot 3) + 1/(2 \cdot 3 \cdot 4) + \dots + 1/{k(k+1)(k+2)} = {k(k+3)}/{4(k+1)(k+2)} = \dots \dots (i)$ Now, $1/(1 \cdot 2 \cdot 3) + 1/(2 \cdot 3 \cdot 4) + \dots + 1/{k(k+1)(k+2)} + 1/{(k+1)(k+2)(k+3)}$ $= [1/(1 \cdot 2 \cdot 3) + 1/(2 \cdot 3 \cdot 4) + \dots + 1/\{k(k+1)(k+2)\} + 1/\{(k+1)(k+2)(k+3)\}$ $= \left[\frac{k(k+3)}{4(k+1)(k+2)} + \frac{1}{k(k+1)(k+2)(k+3)} \right]$ [using(i)] $= \{k(k+3)^2 + 4\} / \{4(k+1)(k+2)(k+3)\}$ $= (k^{3} + 6k^{2} + 9k + 4)/\{4(k+1)(k+2)(k+3)\}$ $= \{(k+1)(k+1)(k+4)\}/\{4(k+1)(k+2)(k+3)\}$ $= {(k+1)(k+4)}/{4(k+2)(k+3)}$ $P(k+1): \frac{1}{(1 \cdot 2 \cdot 3)} + \frac{1}{(2 \cdot 3 \cdot 4)} + \dots + \frac{1}{(k+1)(k+2)(k+3)}$ $= \{(k+1)(k+2)\}/\{4(k+2)(k+3)\}$ P(k+1) is true, whenever P(k) is true. \Rightarrow Thus, P(1) is true and P(k + 1) is true, whenever P(k) is true.

Hence, by the principle of mathematical induction, P(n) is true for all $n \in N$.



Thus, P(1) is true and P(k + 1) is true, whenever P(k) is true.

Hence, by the principle of mathematical induction, P(n) is true for all $n \in N$.

MATHS FOR JEE MAIN & ADVANCED

Ex	xercise # 1		ingle Correct Choice	Type Questions]	
1.	The greatest positive integer. which divides $(n + 16)(n + 17)(n + 18)(n + 19)$, for all $n \in N$, is-				
	(A)2	(B) 4	(C) 24	(D) 120	
2.	The sum of the cubes of three consecutive natural numbers is divisible by-				
	(A) 2	(B) 5	(C) 7	(D)9	
3.	For every positive integer	r.			
	n, $\frac{n^7}{7} + \frac{n^5}{5} + \frac{2n^3}{3} - \frac{1}{10}$				
	n, $\frac{1}{7} + \frac{1}{5} + \frac{1}{3} - \frac{1}{10}$	05 is-			
	(A) an integer		(B) a rational number		
	(C) a negative real numbe	r	(D) an odd integer		
4.	If $10^n + 3.4^{n+2} + \lambda$ is exactle	y divisible by 9 for all n	\equiv N, then the least positive int	egral value of λ is-	
	(A) 5	(B) 3	(C) 7	(D) 1	
5.	The sum of n terms of 1^2 +	$(1^2+2^2)+(1^2+2^2+3^2)+$	is-		
	(A) $\frac{n(n+1)(2n+1)}{6}$		(B) $\frac{n(n+1)(2n-1)}{6}$		
	1		ů		
	(C) $\frac{1}{12}n(n+1)^2(n+2)$		(D) $\frac{1}{12}n^2(n+1)^2$		
6.	For positive integer n, 3 ⁿ .	< n! when-			
	$(\mathbf{A}) \mathbf{n} \ge 6$	(B) n > 7	(C) n ≥ 7	(D) $n \le 7$	
7.	For all positive integral va	alues of n, $3^{2n} - 2n + 1$ is	divisible by-		
	(A) 2	(B) 4	(C) 8	(D) 12	
0	$\frac{1}{12} + \frac{1}{23} + \frac{1}{34} + \dots$	1 n			
8.	$\frac{1.2}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \dots$	$+$ $\frac{1}{n(n+1)}$ $=$ $\frac{1}{n+1}$, $n \in \mathbb{N}$	N, 18 true for		
	$(\mathbf{A}) \mathbf{n} \ge 3$	(B) n ≥ 2	(C) n≥4	(D) all n	
9.	Let $P(n) : n^2 + n$ is an odd	integer. It is seen that tru	th of $P(n) \Rightarrow$ the truth of $P(n + n)$	+ 1). Therefore, $P(n)$ is true for all-	
	(A) $n > 1$	(B) n	(C) $n > 2$	(D) None of these	
10.	If $n \in N$, then $3^{4n+2} + 5^{2n+1}$	is a multiple of-			
	(A) 14	(B) 16	(C) 18	(D) 20	
11.	If $A = \begin{pmatrix} a & 1 \\ 0 & a \end{pmatrix}$, then for any $n \in N$, A^n equals-				
	$(\mathbf{A}) \begin{pmatrix} \mathbf{n}\mathbf{a} & \mathbf{n} \\ 0 & \mathbf{n}\mathbf{a} \end{pmatrix}$	$ (\mathbf{B}) \begin{pmatrix} \mathbf{a}^n & \mathbf{n} \mathbf{a}^{n-1} \\ 0 & \mathbf{a}^n \end{pmatrix} $	$(\mathbf{C}) \begin{pmatrix} \mathbf{na} & 1 \\ 0 & \mathbf{na} \end{pmatrix}$	$(\mathbf{D})\begin{pmatrix} \mathbf{a}^n & \mathbf{n} \\ 0 & \mathbf{a}^n \end{pmatrix}$	
12.	For every natural number n, $n(n + 3)$ is always-				
	(A) multiple of 4	(B) multiple of 5	(C) even	(D) odd	

MATHEMATICAL INDUCTION

13.	$\frac{1^2}{1} + \frac{1^2 + 2^2}{1 + 2} + \frac{1^2 + 2^2 + 3^2}{1 + 2 + 3} + \dots \text{ upto n t}$	erms is-	
	(A) $\frac{1}{3}(2n+1)$ (B) $\frac{1}{3}n^2$	(C) $\frac{1}{3}(n+2)$	(D) $\frac{1}{3}$ n(n+2)
14.	The sum of n terms of the series $1 + (1 + a) + (1 + a + a^2) + (1 + a + a^2 + a^3) + .$, is-	
	(A) $\frac{n}{1-a} - \frac{a(1-a^n)}{(1-a)^2}$ (B) $\frac{n}{1-a} + \frac{a(1-a)^n}{(1-a)^n}$	$\frac{(-a^{n})}{(-a)^{2}} \qquad (C) \ \frac{n}{1-a} + \frac{a(1+a^{n})}{(1-a)^{2}}$	(D) $-\frac{n}{1-a} + \frac{a(1-a^n)}{(1-a)^2}$
15.	If $p(n) : n^2 > 100$ then		
	(A) $p(1)$ is true	(B) p(4) is true	
	(C) $p(k)$ is true $\forall k \ge 5, k \in N$	(D) $p(k+1)$ is true when	enever $p(k)$ is true where $k \in N$
16.	If $n \in N$, then $x^{2n-1} + y^{2n-1}$ is divisible by-		
	(A) $x + y$ (B) $x - y$	(C) $x^2 + y^2$	(D) $x^2 + xy$
17.	For each $n \in N$, $10^{2n+1} + 1$ is divisible by-		
	(A) 11 (B) 13	(C) 27	(D) None of these
18.	The sum of n terms of the series $\frac{\frac{1}{2} \cdot \frac{2}{2}}{1^3} + \frac{1}{1}$	$\frac{\frac{2}{2}\cdot\frac{3}{2}}{\frac{3}{2}+2^{3}} + \frac{\frac{3}{2}\cdot\frac{4}{2}}{\frac{1}{1}^{3}+2^{3}+3^{3}} + \dots \text{ is-}$	
	(A) $\frac{1}{n(n+1)}$ (B) $\frac{n}{n+1}$	(C) $\frac{n+1}{n}$	(D) $\frac{n+1}{n+2}$
19.	For all $n \in N$, n^4 is less than-		
	(A) 10 ⁿ (B) 4 ⁿ	(C) 10 ¹⁰	(D) None of these
20.	For positive integer n, $10^{n-2} > 81$ m when-		
	(A) $n < 5$ (B) $n > 5$	(C) n ≥ 5	(D) n > 6
21.	1 + 3 + 6 + 10 + upto n terms is equal to	-	
	(A) $\frac{1}{3}$ n(n+1)(n+2)	(B) $\frac{1}{6}$ n(n+1)(n+2)	
	(C) $\frac{1}{12}$ n(n+2)(n+3)	(D) $\frac{1}{12}$ n(n+1)(n+2)	
22.	Sum of n terms of the series $\frac{1}{1} + \frac{1}{1+2} + \frac{1}{1+2}$	$\frac{1}{1+2+3}$ + is-	
	(A) $\frac{n}{n+1}$ (B) $\frac{2}{n(n+1)}$	(C) $\frac{2n}{n+1}$	(D) $\frac{2(n+1)}{n+2}$

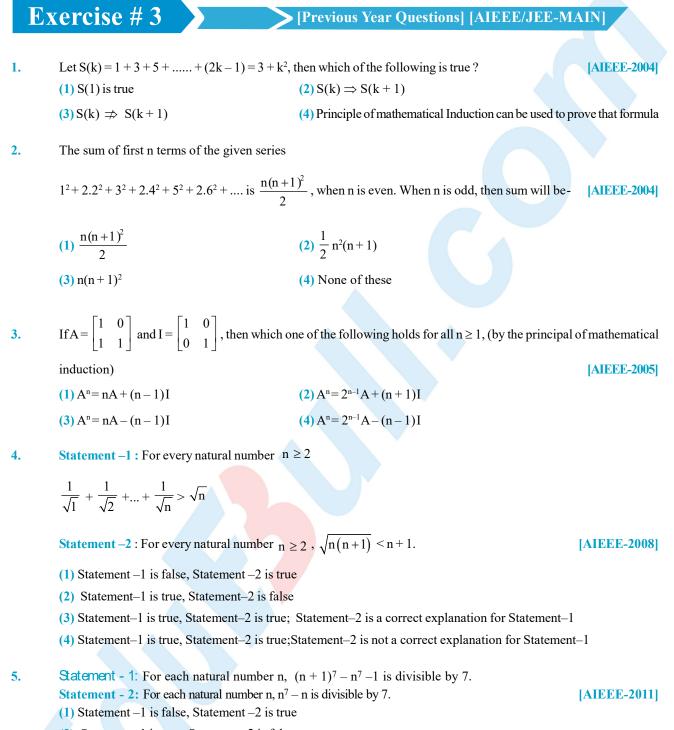
MATHS FOR JEE MAIN & ADVANCED

23.	The inequality $n! > 2^{n-1}$ is true-				
	(A) for all $n > 1$	(B) for all $n > 2$	(C) for all $n \in N$	(D) None of these	
24.	$1+2+3++n < \frac{(n+2)^2}{8}, n \in \mathbb{N}$, is true for				
	$(\mathbf{A}) \mathbf{n} \ge 1$	(B) $n \ge 2$	(C) all n	(D) none of these	
25.	For all $n \in N$, $7^{2n} - 48n - 2$	l is divisible by-			
	(A) 25	(B) 26	(C) 1234	(D) 2304	
26.	A student was asked to p	rove a statement by inducti	on. He proved		
	(i) $P(5)$ is true and				
	(ii) Truth of $P(n) \Rightarrow$	truth of $p(n+1)$, $n \in N$			
	On the basis of this, he co	ould conclude that P(n) is tr	ue for		
	(A) no $n \in N$	(B) all $n \in N$	(C) all $n \ge 5$	(D) None of these	
27.	$\frac{1}{1.3} + \frac{1}{3.5} + \frac{1}{5.7} + \dots$	upto n terms is-			
	(A) $\frac{1}{2n+1}$	(B) $\frac{n}{2n+1}$	(C) $\frac{1}{2n-1}$	(D) $\frac{2n}{3(n+1)}$	
	211 + 1	211 1 1		(-) 3(n+1)	
28.		n +ve integer and its cube is			
• •	(A) 4	(B) 6	(C) 9	(D) None of these	
29.	For all $n \in N$, Σn	a 112	a 12		
	$(\mathbf{A}) < \frac{(2n+1)^2}{8}$	(B) > $\frac{(2n+1)^2}{8}$	$(C) = \frac{(2n+1)^2}{8}$	(D) None of these	
30.	If P is a prime number the	en n ^p – <mark>n is div</mark> isible by p wl			
	(A) natural number greate	er than 1	(B) odd number		
	(C) even number		(D) None of these		
31.	For natural number n, 2^{n} ($(n-1)! < n^n$, if-			
	(A) n < 2	(B) n > 2	(C) n≥2	(D) never	
32.	For all $n \in N$, $\cos\theta \cos 2\theta \cos 4\theta \dots \cos 2^{n-1}\theta$ equals to-				
	(A) $\frac{\sin 2^n \theta}{2^n \sin \theta}$	(B) $\frac{\sin 2^n \theta}{\sin \theta}$	(C) $\frac{\cos 2^n \theta}{2^n \cos 2\theta}$	(D) $\frac{\cos 2^n \theta}{2^n \sin \theta}$	
33.	If $x \neq y$, then for every natural number n, $x^n - y^n$ is divisible by				
	(A) x-y	(B) x + y	(C) $x^2 - y^2$	(D) all of these	
34.	$1.2^2 + 2.3^2 + 3.4^2 + \dots$ upto n terms, is equal to-				
	(A) $\frac{1}{12}$ n(n+1) (n+2) (n	+3)	(B) $\frac{1}{12}$ n(n+1) (n+2) (n	+5)	
	(C) $\frac{1}{12}$ n(n+1) (n+2) (3n)	n+5)	(D) None of these		

MATHEMATICAL INDUCTION

35.	35. If n is a natural number then $\left(\frac{n+1}{2}\right)^n \ge n!$ is true when-				
	(A) $n > 1$	(B) $n \ge 1$	(C) n > 2	(D) Never	
36.	The n th term of the series $4 + 14 + 30 + 52 + 80 + 114 + \dots$ is-				
	(A) $5n-1$	(B) $2n^2 + 2n$	(C) $3n^2 + n$	(D) $2n^2 + 2$	
37.	The sum of the series $\frac{3}{1^2} + \frac{5}{1^2 + 2^2} + \frac{7}{1^2 + 2^2}$	$\frac{1}{2}$ + 3 ² + upto n terms			
	(A) $\frac{2n}{n+1}$	(B) $\frac{3n}{n+1}$	(C) $\frac{3n}{2(n+1)}$	(D) $\frac{6n}{n+1}$	
35.	$n^3 + (n+1)^3 + (n+2)^3$ is	divisible for all $n \in N$ by			
	(A) 3	(B) 9	(C) 27	(D) 81	
39.	If $n \in N$, then $11^{n+2} + 12^2$	ⁿ⁺¹ is divisible by-			
	(A) 113	(B) 123	(C) 133	(D) None of these	
40.	$\frac{1}{2} + \frac{3}{4} + \frac{7}{8} + \frac{15}{16} + \dots$ upto n terms equal to-				
	(A) $n + \frac{1}{2^n}$	(B) $2n + \frac{1}{2^n}$	(C) $n-1+\frac{1}{2^n}$	(D) $n+1+\frac{1}{2^n}$	

Exercise # 2 [Subjective Type Questions] By using PMI, prove that $2 + 4 + 6 + + 2n = n (n + 1), n \in N$ 1. Prove that $1+2+3+...+n < \frac{1}{8} (2n+1)^2, n \in \mathbb{N}.$ 2. Let P(n) be the statement " $n^3 + n$ is divisible by 3". Write P(1), P(4)3. Prove that $2^n > n, n \in N$. 4. 5. Use the principle of mathematical induction to prove that n(n + 1)(n + 2) is a multiple of 6 for all natural numbers n. Prove that $\sin\theta + \sin2\theta + \dots + \sin\left(\frac{n+1}{2}\right)n\theta = \sin\frac{n\theta}{2}\theta\sin\frac{\theta}{2}$ cosec for all $n \in \mathbb{N}$. 6. Prove that $\frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^n} = 1 - \frac{1}{2^n}$, $n \in \mathbb{N}$. 7. By using PMI, prove that $1.3 + 2.3^2 + 3.3^3 + \dots + n.3^n = \frac{(2n-1)3^{n+1} + 3}{4}, n \in \mathbb{N}$ 8. 9. If 3²ⁿ, where n is a natural number, is divided by 8, prove that the remainder is always 1. Prove that $1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \dots + \frac{1}{n^2} < 2 - \frac{1}{n}$ where $n (> 1) \in N$, by using P.M.I 10. Prove that $2n + 7 < (n + 3)^2$, $n \in N$. Using this, prove that 11. $(n+3)^2 \le 2^{n+3}, n \in \mathbb{N}.$



- (2) Statement-1 is true, Statement-2 is false
- (3) Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1
- (4) Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for Statement-1

ANSWER KEY

EXERCISE - 1

 1. C
 2. D
 3. A
 4. A
 5. C
 6. C
 7. A
 8. D
 9. D
 10. A
 11. B
 12. C
 13. D

 14. A
 15. D
 16. A
 17. A
 18. B
 19. A
 20. C
 21. B
 22. C
 23. B
 24. D
 25. D
 26. C

 27. B
 28. B
 29. A
 30. A
 31. B
 32. A
 33. A
 34. C
 35. B
 36. C
 37. D
 38. B
 39. C

 40. C
 C
 24. D
 25. D
 26. C
 26. C
 27. B
 28. B
 29. A
 30. A
 31. B
 32. A
 33. A
 34. C
 35. B
 36. C
 37. D
 38. B
 39. C

EXERCISE - 3

1. 2 **2.** 2 **3.** 3 **4.** 3 **5.** 2

