EXERCISE-I

Reversible and Irreversible reaction

- 1. A reversible reaction is one which
 - (A) Proceeds in one direction
 - (B) Proceeds in both directions
 - (C) Proceeds spontaneously
 - (D) All the statements are wrong
- **2.** Which of the following is a characteristic of a reversible reaction
 - (A) Number of moles of reactants and products are equal
 - (B) It can be influenced by a catalyst
 - (C) It can never proceed to completion
 - (D) None of the above
- 3. The reaction $CaCO_3 = CaO + CO_2(g)$ goes to completion in lime kiln because
 - to completion in mile kin becaus
 - (A) Of the high temperature
 - (B) *CaO* is more stable than $CaCO_3$
 - (C) CaO is not dissociated
 - (D) CO_2 escapes continuously
- 4. In the given reaction $N_2 + O_2 = 2NO$, equilibrium means that
 - (A) Concentration of reactants is changing where as concentration of products is constant
 - (B) Concentration of all substances is constant
 - (C) Concentration of reactants is constant where as concentration of products is changing
 - (D) Concentration of all substances is changing
- 5. Which of the following reactions is reversible

(A)
$$H_2 + I_2 \longrightarrow 2HI$$

- (B) $H_2SO_4 + Ba(OH)_2 \longrightarrow BaSO_4 + 2H_2O$
- (C) $NaCl + AgNO_3 \longrightarrow NaNO_3 + AgCl$
- (D) $Fe + S \longrightarrow FeS$

Equilibrium state

- **6.** In any chemical reaction, equilibrium is supposed to be establish when
 - (A) Mutual opposite reactions undergo
 - (B) Concentration of reactants and resulting products are equal
 - (C) Velocity of mutual reactions become equal
 - (D) The temperature of mutual opposite reactions become equal
- 7. Which of the following conditions represents an equilibrium
 - (A) Freezing of ice in a open vessel, temperature of ice is constant
 - (B) Few drops of water is present along with air in a balloon, temperature of balloon is constant
 - (C) Water is boiling in an open vessel over stove, temperature of water is constant
 - (D) All the statements (A), (B) and (C) are correct for the equilibrium
- 8. When rate of forward reaction becomes equal to backward reaction, this state is termed as
 - (A) Chemical equilibrium
 - (B) Reversible state
 - (C) Equilibrium
 - (D) All of these
- 9. In chemical reaction A = B, the system will be known in equilibrium when
 - (A) A completely changes to B
 - (B) 50% of A changes to B
 - (C) The rate of change of *A* to *B* and *B* to *A* on both the sides are same
 - (D) Only 10% of A changes to B
- 10. A chemical reaction is at equilibrium when
 - (A) Reactants are completely transformed into products
 - (B) The rates of forward and backward reactions are equal
 - (C) Formation of products is minimised
 - (D) Equal amounts of reactants and products are present

- **11.** Theory of 'active mass' indicates that the rate of chemical reaction is directly proportional to the
 - (A) Equilibrium constant
 - (B) Properties of reactants
 - (C) Volume of apparatus
 - (D) Concentration of reactants
- **12.** The rate at which substances react depends on their
 - (A) Atomic weight
 - (B) Molecular weight
 - (C) Equivalent weight
 - (D) Active mass
- 13. Which is false
 - (A) The greater the concentration of the substances involved in a reaction, the lower the speed of the reaction
 - (B) The point of dynamic equilibrium is reached when the reaction rate in one direction just balances the reaction rate in the opposite direction
 - (C) The dissociation of weak electrolyte is a reversible reaction
 - (D) The presence of free ions facilitates chemical changes
- **14.** Chemical equations convey quantitative information on the
 - (A) Type of atoms/molecules taking part in the reaction
 - (B) Number of atoms/molecules of the reactants and products involved in the reaction
 - (C) Relative number of moles of reactants and products involved in the reaction
 - (D) Quantity of reactant consumed and quantity of product formed
- 15. In the thermal decomposition of potassium chlorate given as $2K ClO_3 \longrightarrow 2KCl + 3O_2$, law of mass action
 - (A) Cannot be applied
 - (B) Can be applied
 - (C) Can be applied at low temperature
 - (D) Can be applied at high temp. and pressure

Law of equilibrium and Equilibrium constant

- 16. The decomposition of N_2O_4 to NO_2 is carried out at 280K in chloroform. When equilibrium has been established, 0.2 mol of N_2O_4 and 2×10^{-3} mol of NO_2 are present in 2 litre solution. The equilibrium constant for reaction $N_2O_4 = 2NO_2$ is
 - (A) 1×10^{-2} (B) 2×10^{-3}
 - (C) 1×10^{-5} (D) 2×10^{-5}
- **17.** Concentration of a gas is expressed in the following terms in the calculation of equilibrium constant
 - (A) No. of molecules per litre
 - (B) No. of grams per litre
 - (C) No. of gram equivalent per litre
 - (D) No. of molecules equivalent per litre
- **18.** The unit of equilibrium constant K for the reaction A + B = C would be
 - (A) mol litre⁻¹ (B) litre mol⁻¹
 - (C) *mol litre* (D) Dimensionless
- **19.** In a reaction A+B=C+D, the concentrations of *A*, *B*, *C* and *D* (in moles/litre) are 0.5, 0.8, 0.4 and 1.0 respectively. The equilibrium constant is (A) 0.1 (B) 1.0 (C) 10 (D) ∞
- **20.** In a chemical equilibrium A+B = C+D, when one mole each of the two reactants are mixed, 0.6 mole each of the products are formed. The equilibrium constant calculated is (A) 1 (B) 0.36 (C) 2.25 (D) 4/9
- **21.** For the reaction $2SO_2 + O_2 = 2SO_3$, the units of K_c are
 - (A) $litre mole^{-1}$ (B) $mol \ litre^{-1}$
 - (C) $(mol \ litre^{-1})^2$ (D) $(litre \ mole^{-1})^2$

- **22.** A quantity of PCl_5 was heated in a 10 litre vessel at $250^{\circ}C$; $PCl_5(g) = PCl_3(g) + Cl_2(g)$. At equilibrium the vessel contains 0.1 mole of PCl_5 0.20 mole of PCl_3 and 0.2 mole of Cl_2 . The equilibrium constant of the reaction is (A) 0.02 (B) 0.05 (C) 0.04 (D) 0.025
- 23. A mixture of 0.3 mole of H_2 and 0.3 mole of I_2 is allowed to react in a 10 *litre* evacuated flask at 500°C. The reaction is $H_2 + I_2 = 2HI$, the K is found to be 64. The amount of unreacted I_2 at equilibrium is
 - (A) 0.15 mole (B) 0.06 mole

(C) 0.03 mole (D) 0.2 mole

24. In a chemical equilibrium, the rate constant of the backward reaction is 7.5×10^{-4} and the equilibrium constant is 1.5. So the rate constant of the forward reaction is

(A) 5×10^{-4} (B) 2×10^{-3} (C) 1.125×10^{-3} (D) 9.0×10^{-4}

- **25.** 28 g of N_2 and 6 g of H_2 were kept at $400^{\circ}C$ in 1 *litre* vessel, the equilibrium mixture contained 27.54g of NH_3 . The approximate value of κ_c for the above reaction can be (in *mole*⁻² *litre*²)
 - (A) 75 (B) 50 (C) 25 (D) 100
- 26. 4.5 moles each of hydrogen and iodine heated in a sealed ten litre vessel. At equilibrium, 3 moles of *HI* were found. The equilibrium constant for $H_2(g) + I_2(g) = 2HI(g)$ is

(A) 1 (B) 10
---------	-------

- (C) 5 (D) 0.33
- 27. An equilibrium mixture of the reaction $2H_2S(g) = 2H_2(g) + S_2(g)$ had 0.5 mole H_2S , 0.10 mole H_2 and 0.4 mole S_2 in one litre vessel. The value of equilibrium constant (K) in mole litre⁻¹ is

(A) 0.004	(B) 0.008
(C) 0.016	(D) 0.160

- **28.** At 3000 K the equilibrium pressures of CO_2 , CO and O_2 are 0.6,0.4 and 0.2 atmospheres respectively. K_p for the reaction, $2CO_2 = 2CO + O_2$ is (A) 0.089 (B) 0.0533 (C) 0.133 (D) 0.177
- **29.** The rate constant for forward and backward reactions of hydrolysis of ester are 1.1×10^{-2} and 1.5×10^{-3} per minute respectively. Equilibrium constant for the reaction is $CH_3COOC_2H_5 + H_2O = CH_3COOH + C_2H_5OH$ (A) 4.33 (B) 5.33 (C) 6.33 (D) 7.33
- **30.** At a certain temp. $2HI = H_2 + I_2$ Only 50% *HI* is dissociated at equilibrium. The equilibrium constant is
 - (A) 0.25 (B) 1.0 (C) 3.0 (D) 0.50
- **31.** 15 moles of H_2 and 5.2 moles of I_2 are mixed and allowed to attain equilibrium at $500^{\circ}C$. At equilibrium, the concentration of *HI* is found to be 10 moles. The equilbrium constant for the formation of *HI* is
 - (A) 50 (B) 15 (C) 100 (D) 25
- **32.** In a chemical reaction equilibrium is established when
 - (A) Opposing reaction ceases
 - (B) Concentration of reactants and products are equal
 - (C) Velocity of opposing reaction is the same as that of forward reaction
 - (D) Reaction ceases to generate heat
- **33.** For the reaction $H_2 + I_2 = 2HI$, the equilibrium concentration of H_2 , I_2 and HI are 8.0, 3.0 and 28.0 *mol per litre* respectively, the equilibrium constant of the reaction is (A) 30.66 (B) 32.66
 - (C) 34.66 (D) 36.66

- **34.** Change in volume of the system does not alter the number of moles in which of the following equilibrium
 - (A) $N_{2(g)} + O_{2(g)} = 2NO_{(g)}$ (B) $PCl_{5(g)} = PCl_{3(g)} + Cl_{2(g)}$ (C) $N_{2(g)} + 3H_{2(g)} = 2NH_{3(g)}$ (D) $SO_2Cl_{2(g)} = SO_{2(g)} + Cl_{2(g)}$
- **35.** The rate of forward reaction is two times that of reverse reaction at a given temperature and identical concentration. $K_{\text{equilibrium}}$ is
 - (A) 2.5 (B) 2.0 (C) 0.5 (D) 1.5
- **36.** In the reaction $PCl_{5(g)} = PCl_{3(g)} + Cl_{2(g)}$.
 - The equilibrium concentrations of PCl_5 and PCl_3 are 0.4 and 0.2 *mole/litre* respectively. If the value of K_c is 0.5 what is the concentration of Cl_2 in *moles/litre*
 - (A) 2.0 (B) 1.5 (C) 1.0 (D) 0.5
- **37.** In Haber process 30 *litres* of dihydrogen and 30 *litres* of dinitrogen were taken for reaction which yielded only 50% of the expected product. What will be the composition of gaseous mixture under the aforesaid condition in the end
 - (A) 20 *litres* ammonia, 25 *litres* nitrogen, 15 *litres* hydrogen
 - (B) 20 *litres* ammonia, 20 *litres* nitrogen, 20 *litres* hydrogen
 - (C) 10 *litres* ammonia, 25 *litres* nitrogen, 15 *litres* hydrogen
 - (D) 20 *litres* ammonia, 10 *litres* nitrogen, 30 *litres* hydrogen
- **38.** For the reaction equilibrium $N_2O_4 = 2NO_{2(g)}$, the concentrations of N_2O_4 and NO_2 at equilibrium are 4.8×10^{-2} and 1.2×10^{-2} mol litre⁻¹ respectively. The value of K_c for the reaction is

(A) 3.3×10^2 mol litre⁻¹ (B) 3×10^{-1} mol litre⁻¹ (C) 3×10^{-3} mol litre⁻¹ (D) 3×10^3 mol litre⁻¹

- **39.** 3.2 moles of hydrogen iodide were heated in a sealed bulb at $444^{\circ}C$ till the equilibrium state was reached. Its degree of dissociation at this temperature was found to be 22%. The number of moles of hydrogen iodide present at equilibrium are (A) 2.496 (B) 1.87
 - (C) 2 (D) 4
- 40. 56 g of nitrogen and 8 g hydrogen gas are heated in a closed vessel. At equilibrium 34 g of ammonia are present. The equilibrium number of moles of nitrogen, hydrogen and ammonia are respectively
 - (A) 1,2,2 (B) 2,2,1 (C) 1,1,2 (D) 2,1,2
- **41.** In the reaction, $H_2 + I_2 = 2HI$. In a 2 litre flask 0.4 moles of each H_2 and I_2 are taken. At equilibrium 0.5 moles of HI are formed. What will be the value of equilibrium constant, K_c

(A) 20.2	(B) 25.4
(C) 0.284	(D) 11.1

42. Ammonia carbonate when heated to $200^{\circ}C$ gives a mixture of NH_3 and CO_2 vapour with a density of 13.0. What is the degree of dissociation of ammonium carbonate

43. 2 mol of N_2 is mixed with 6 mol of H_2 in a closed vessel of one litre capacity. If 50% of N_2 is converted into NH_3 at equilibrium, the value of K_c for the reaction $N_{2(g)} + 3H_{2(g)}$ = $2NH_{3(g)}$ is

(A) 4/27	(B) 27/4
(C) 1/27	(D) 24

- 44. For a reaction $H_2 + I_2 = 2HI$ at 721K, the value of equilibrium constant is 50. If 0.5 mols each of H_2 and I_2 is added to the system the value of equilibrium constant will be
 - (A) 40 (B) 60 (C) 50 (D) 30

- **45.** What is the effect of halving the pressure by doubling the volume on the following system at 500°C $H_{2(g)} + I_{2(g)} = 2HI_{(g)}$
 - (A) Shift to product side
 - (B) Shift to product formation
 - (C) Liquefaction of HI
 - (D) No effect

K_p & K_c Relationship and Characteristics of K

46. Two gaseous equilibria $SO_{2(g)} + \frac{1}{2}O_{2(g)}$ = $SO_{3(g)}$ and $2SO_{3(g)} = 2SO_{2(g)} + O_{2(g)}$ have equilibrium constants K_1 and K_2 respectively at 298 K. Which of the following relationships between K_1 and K_2 is correct

(A)
$$K_1 = K_2$$

(B) $K_2 = K_1^2$
(C) $K_2 = \frac{1}{K_1^2}$
(D) $K_2 = \frac{1}{K_1}$

47. $H_2 + I_2 = 2HI$

In the above equilibrium system if the concentration of the reactants at $25^{\circ}C$ is increased, the value of K_c will

(A) Increase

- (B) Decrease
- (C) Remains the same
- (D) Depends on the nature of the reactants
- **48.** At a given temperature, the equilibrium constant for reaction $PCl_5(g)$ = $PCl_3(g) + Cl_2(g)$ is 2.4×10^{-3} . At the same temperature, the equilibrium constant for reaction $PCl_3(g) + Cl_2(g) = PCl_5(g)$ is (A) 2.4×10^{-3} (B) -2.4×10^{-3}
 - (A) 2.4×10 (B) -2.4×10 (C) 4.2×10^2 (D) 4.8×10^{-2}
- **49.** For the reaction $C(s) + CO_2(g) = 2CO(g)$, the partial pressure of CO_2 and CO are 2.0 and 4.0 *atm* respectively at equilibrium. The K_p for the reaction is

-	
(A) 0.5	(B) 4.0
(C) 8.0	(D) 32.0

- **50.** K for the synthesis of HI is 50. K for dissociation of HI is
 - (A) 50 (B) 5 (C) 0.2 (D) 0.02
- **51.** For which one of the following reactions $K_p = K_c$

(A) $N_2 + 3H_2 = 2NH_3$ (B) $N_2 + O_2 = 2NO$ (C) $PCl_5 = PCl_3 + Cl_2$ (D) $2SO_3 = 2SO_2 + O_2$

- **52.** The equilibrium constant for the reversible reaction, $N_2 + 3H_2 = 2NH_3$ is *K* and for the reaction $\frac{1}{2}N_2 + \frac{3}{2}H_2 = NH_3$ the equilibrium constant is *K'*. *K* and *K'* will be related as (A) K = K' (B) $K' = \sqrt{K}$ (C) $K = \sqrt{K'}$ (D) $K \times K' = 1$
- 53. The equilibrium constant (K_p) for the reaction $PCl_5(g) \rightarrow PCl_3(g) + Cl_2(g)$ is 16. If the volume of the container is reduced to one half its original volume, the value of K_p for the reaction at the same temperature will be

54.
$$2NO_2 = 2NO + O_2$$
; $K = 1.6 \times 10^{-12}$
 $NO + \frac{1}{2}O_2 = NO_2K' = ?$
(A) $K' = \frac{1}{K^2}$ (B) $K' = \frac{1}{K}$
(C) $K' = \frac{1}{\sqrt{K}}$ (D) None of these

- 55. The value of K_p for the following reaction $2H_2S(g) = 2H_2(g) + S_2(g)$ is 1.2×10^{-2} at $106.5^{\circ}C$. The value of K_c for this reaction is (A) 1.2×10^{-2} (B) $< 1.2 \times 10^{-2}$ (C) 83 (D) $> 1.2 \times 10^{-2}$
- **56.** If K_c is the equilibrium constant for the formation of NH_3 , the dissociation constant of ammonia under the same temperature will be
 - (A) K_c (B) $\sqrt{K_c}$ (C) K_c^2 (D) $1/K_c$

57. 3.2 moles of hydrogen iodide were heated in a scaled bulb at 444°C till the equilibrium was reached. The degree of dissociation of *HI* at this temperature was found to be 22%. The number of moles of hydrogen iodide present at equilibrium are

(A) 1.87	(B) 2.496

(C) 4.00	(D) 2.00
----------	----------

58. The K_c for $H_{2(g)} + I_{2(g)} = 2HI_{(g)}$ is 64. If the volume of the container is reduced to one-half of its original volume, the value of the equilibrium constant will be

(A) + 28 (B) 64 (C) 32 (D) 16

59. A reversible reaction $H_2 + Cl_2 = 2HCl$ is carries out in one litre flask. If the same reaction is carried out in two litre flask, the equilibrium constant will be

(A) Decreased	(B) Doubled
(C) Halved	(D) Same

60. For the reaction $2NO_{2(g)} = 2NO_{(g)} + O_{2(g)}$, $K = 1.8 \times 10^{-6}$ at $185^{\circ}C$. At $185^{\circ}C$ the K_c for

$$K_c = 1.8 \times 10^{-3}$$
 at 185 C. At 185 C the
 $NO_{(g)} + \frac{1}{2}O_{2(g)} = NO_{2(g)}$ is
(A) 1.95×10^{-3} (B) 1.95×10^{3}

(C) 7.5×10^2 (D) 0.9×10^6

61. For reaction, 2A(g) = 3C(g) + D(s), the value of K_c will be equal to

(A)
$$K_p(RT)$$
 (B) K_p/RT

(C) =
$$K_p$$
 (D) None of these

62. In the reaction, $A_2(g) + 4B_2(g) = 2AB_4(g)$

 $\Delta H < 0$ the formation of AB_4 is will be favoured at

- (A) Low temperature, high pressure
- (B) High temperature, low pressure
- (C) Low temperature, low pressure
- (D) High temperature, high pressure

- **63.** The formation of SO_3 takes place according to the following reaction, $2SO_2 + O_2 = 2SO_3$; $\Delta H = -45.2 \ kcal$
 - The formation of SO_3 is favoured by
 - (A) Increasing in temperature
 - (B) Removal of oxygen
 - (C) Increase of volume
 - (D) Increasing of pressure
- 64. What is the effect of increasing pressure on the dissociation of PCl_5 according to the equation $PCl_{5(g)} = PCl_{3(g)} + Cl_{2(g)} - x \ cal$
 - (A) Dissociation decreases
 - (B) Dissociation increases
 - (C) Dissociation does not change
 - (D) None of these

65. If equilibrium constants of reaction, $N_2 + O_2$

$$= 2NO \text{ is } K_1 \text{ and } \frac{1}{2}N_2 + \frac{1}{2}O_2 = NO \text{ is } K_2,$$

then

- (A) $K_1 = K_2$ (B) $K_2 = \sqrt{K_1}$ (C) $K_1 = 2K_2$ (D) $K_1 = \frac{1}{2}K_2$
- 66. The vapour density of completely dissociated NH_4Cl would be
 - (A) Slight less than half that of NH_4Cl
 - (B) Half that of NH_4Cl
 - (C) Double that of NH_4Cl
 - (D) Determined by the amount of solid NH_4Cl in the experiment

67. In an equilibrium reaction for which $\Delta G^0 = 0$, the equilibrium constant K =

- (A) 0 (B) 1 (C) 2 (D) 10
- **68.** For a system in equilibrium $\Delta G = 0$ under conditions of constant
 - (A) Temperature and pressure
 - (B) Temperature and volume
 - (C) Energy and volume
 - (D) Pressure and volume

- **69.** A reaction attains equilibrium when the free energy change accompanying it is
 - (A) Positive and large
 - (B) Zero
 - (C) Negative and large
 - (D) Negative and small
- 70. $\Delta G^0(HI,g) \cong +1.7 kJ$. What is the equilibrium constant at 25° C for $2HI(g) \leftrightarrows$ $H_2(g) + I_2(g)$ (A) 24.0 (B) 3.9 (C) 2.0 (D) 0.5

Le-Chaterlier principle and It's application

- **71.** According to Le-chatelier principle, if heat is given to solid-liquid system, then
 - (A) Quantity of solid will reduce
 - (B) Quantity of liquid will reduce
 - (C) Increase in temperature
 - (D) Decrease in temperature
- 72. In the reaction A(g) + 2B(g) = C(g) + QkJ, greater product will be obtained or the forward reaction is favoured by
 - (A) At high temperature and high pressure
 - (B) At high temperature and low pressure
 - (C) At low temperature and high pressure
 - (D) At low temperature and low pressure
- 73. Following gaseous reaction is undergoing in a vessel $C_2H_4 + H_2 = C_2H_6$; $\Delta H = -32.7$ Kcal Which will increase the equilibrium concentration of C_2H_6
 - (A) Increase of temperature
 - (B) By reducing temperature
 - (C) By removing some hydrogen
 - (D) By adding some C_2H_6
- 74. The effect of increasing the pressure on the equilibrium 2A+3B = 3A+2B is
 - (A) Forward reaction is favoured
 - (B) Backward reaction is favoured
 - (C) No effect
 - (D) None of the above

- 75. For the equilibrium $2NO_2(g) = N_2O_4(g)$ +14.6 kcal the increase in temperature would
 - (A) Favour the formation of N_2O_4
 - (B) Favour the decomposition of N_2O_4
 - (C) Not alter the equilibrium
 - (D) Stop the reaction
- **76.** According to Le-chatelier's principle, an increase in the temperature of the following reaction will
 - $N_2 + O_2 = 2NO 43,200 \, kcal$
 - (A) Increase the yield of NO
 - (B) Decrease the yield of *NO*
 - (C) Not effect the yield of NO

(D) Not help the reaction to proceed in forward direction

77. In the manufacture of NH_3 by Haber's process, the condition which would give maximum yield is

 $N_2 + 3H_2 = 2NH_3 + Q kcal$

- (A) High temperature, high pressure and high concentrations of the reactants
- (B) High temperature, low pressure and low concentrations of the reactants
- (C) Low temperature and high pressure
- (D) Low temperature, low pressure and low concentration of H_2
- **78.** Suppose the reaction $PCl_{5(s)} = PCl_{3(s)} + Cl_{2(g)}$ is in a closed vessel at equilibrium stage. What is the effect on equilibrium concentration of $Cl_{2(g)}$ by adding PCl_5 at constant temperature
 - (A) Decreases
 - (B) Increases
 - (C) Unaffected
 - (D) Cannot be described without the value of K_p
- **79.** In which of the following equilibrium reactions, the equilibrium would shift to the right, if total pressure is increased

(A) $N_2 + 3H_2 = 2NH_3$ (B) $H_2 + I_2 = 2HI$

(C) $H_2 + Cl_2 = 2HCl$ (D) $N_2O_4 = 2NO$

- **80.** In which of the following gaseous equilibrium an increase in pressure will increase the yield of the products
 - (A) $2HI = H_2 + I_2$
 - (B) $2SO_2 + O_2 = 2SO_3$
 - (C) $H_2 + Br_2 = 2HBr$
 - (D) $H_2O + CO \Rightarrow H_2 + CO_2$
- **81.** The equilibrium $SO_2Cl_{2(g)} = SO_{2(g)} + Cl_{2(g)}$ is attained at 25°C in a closed container and an inert gas helium is introduced which of the following statement is correct
 - (A) More chlorine is formed
 - (B) Concentration of SO_2 is reduced
 - (C) More SO_2Cl_2 is formed
 - (D) Concentration of SO_2Cl_2 , SO_2 and Cl_2 does not change
- **82.** Which of the following equilibria will shift to right side on increasing the temperature

(A)
$$CO_{(g)} + H_2O_{(g)} = CO_{2(g)} + H_{2(g)}$$

(B) $2SO_{2(g)} + O_{2(g)} = 2SO_{3(g)}$

(C)
$$H_2 O_{(g)} = H_{2(g)} + \frac{1}{2} (O_2)_{(g)}$$

(D) $4HCl_{(g)} + O_{2(g)} = 2H_2 O_{(g)} + 2Cl_{2(g)}$

- **83.** Sodium sulphate dissolves in water with evolution of heat. Consider a saturated solution of sodium sulphate. If the temperature is raised, then according to Le-Chatelier principle
 - (A) More solid will dissolve
 - (B) Some solid will precipitate out from the solution
 - (C) The solution will become supersaturated
 - (D) Solution concentration will remain unchanged
- 84. Consider the equilibrium $N_2(g) + 3H_2(g)$ = $2NH_3(g)$; $\Delta H = -93.6$ KJ. The maximum
 - yield of ammonia is obtained by (A) Decrease of temp. and increase of pressure
 - (B)Increase of temp. and decrease of pressure
 - (C) Decrease of both the temp. and pressure
 - (D) Increase of both the temp. and pressure

- **85.** In the equilibrium AB = A + B; if the equilibrium concentration of A is doubled, the equilibrium concentration of *B* would become:
 - (A) Twice (B) Half (C) $1/4^{th}$ (D) $1/8^{th}$
- 86. Le-Chatelier's principle is applicable only to a(A) System in equilibrium
 - (B) Irreversible reaction
 - (C) Homogeneous reaction
 - (D) Heterogeneous reaction
- 87. In a vessel containing SO_3 , SO_2 and O_2 at equilibrium, some helium gas is introduced so that the total pressure increases while temperature and volume remain constant. According to Le-Chatelier principle the dissociation of SO_3
 - (A) Increases
 - (B) Decreases
 - (C) Remains unaltered
 - (D) Changes unpredictably
- 88. $H_{2(g)} + I_{2(g)} = 2HI_{(g)} \Delta H = +q \ cal$, then formation of *HI*:
 - (A) Is favoured by lowering the temperature
 - (B) Is favoured by increasing the pressure
 - (C) Is unaffected by change in pressure
 - (D) Is unaffected by change in temperature
- **89.** In which of the following equilibrium systems is the rate of the backward reaction favoured by increase of pressure

(A)
$$PCl_5 = PCl_3 + Cl_2$$
 (B) $2SO_2 + O_2 = 2SO_3$
(C) $N_2 + 3H_2 = 2NH_3$ (D) $N_2 + O_2 = 2NO$

- **90.** Which of the following equilibrium is not shifted by increase in the pressure
 - (A) $H_{2(g)} + I_{2(g)} = 2HI_{(g)}$
 - (B) $N_{2(g)} + 3H_{2(g)} = 2NH_{3(g)}$
 - (C) $2CO_{(g)} + O_{2(g)} \approx 2CO_{2(g)}$
 - (D) $2C_{(s)} + O_{2(g)} = 2CO_{(g)}$

- **91.** According to Le–Chatelier's principal adding heat to a solid and liquid in equilibrium with endothermic nature will cause the
 - (A) Temperature to rise
 - (B) Temperature to fall
 - (C) Amount of solid to decrease
 - (D) Amount of liquid to decrease
- **92.** On addition of an inert gas at constant volume to the reaction $N_2 + 3H_2 = 2NH_3$ at equilibrium
 - (A) The reaction remains unaffected
 - (B) Forward reaction is favoured
 - (C) The reaction halts
 - (D) Backward reaction is favoured
- 93. Le-Chatelier principle is not applicable to
 - (A) $H_{2(g)} + I_{2(g)} = 2HI_{(g)}$

(B)
$$Fe_{(S)} + S_{(S)} = FeS_{(S)}$$

(C)
$$N_{2(g)} + 3H_{2(g)} = 2NH_{3(g)}$$

- (D) $N_{2(g)} + O_{2(g)} = 2NO_{(g)}$
- **94.** For the reaction: A + B + Q = C + D, if the temperature is increased, then concentration of the products will
 - (A) Increase (B) Decrease
 - (C) Remain same (D) Become Zero
- **95.** $H_{2(g)} + I_{2(g)} = 2HI_{(g)}$

In this reaction when pressure increases, the reaction direction

(A) Does not change	(B) Forward
(C) Backward	(D) Decrease

- **96.** The formation of nitric oxide by contact process $N_2 + O_2 = 2NO$. $\Delta H = 43.200$ kcal is favoured by
 - (A) Low temperature and low pressure
 - (B) Low temperature and high pressure
 - (C) High temperature and high pressure
 - (D) High temperature and excess reactants concentration

- **97.** The chemical reaction : $BaO_{2(S)}$ = $BaO_{(s)} + O_{2(g)} \cdot \Delta H = + ve$. In equilibrium condition, pressure of O_2 depends upon
 - (A) Increase mass of *BaO*
 - (B) Increase mass of BaO_2
 - (C) Increase in temperature
 - (D) Increase mass of BaO_2 and BaO both
- **98.** The yield of product in the reaction $A_{2(g)} + 2B_{(g)} = C_{(g)} + Q.kJ.$ would be high at
 - (A) High temperature and high pressure
 - (B) High temperature and low pressure
 - (C) Low temperature and high pressure
 - (D) Low temperature and low pressure
- **99.** Which reaction is not effected by change in pressure
 - (A) $H_2 + I_2 = 2HI$ (B) $2C + O_2 = 2CO$
 - (C) $N_2 + 3H_2 = 2NH_3$ (D) $PCl_5 = PCl_3 + Cl_2$
- **100.** The gaseous reaction A + B = 2C + D; +Q is most favoured at
 - (A) Low temperature and high pressure
 - (B) High temperature and high pressure
 - (C) High temperature and low pressure
 - (D) Low temperature and low pressure

Electrical conductors, Arrhenius theory and Ostwald's dilution law

101. If α is the degree of ionization, *C* the concentration of a weak electrolyte and K_a the acid ionization constant, then the correct relationship between α , *C* and K_a is

(A)
$$\alpha^2 = \sqrt{\frac{K_a}{C}}$$
 (B) $\alpha^2 = \sqrt{\frac{C}{K_a}}$
(C) $\alpha = \sqrt{\frac{K_a}{C}}$ (D) $\alpha = \sqrt{\frac{C}{K_a}}$

- **102.** Theory of ionization was given by
 - (A) Rutherford (B) Graham
 - (C) Faraday (D) Arrhenius

		Equinorium
103. An ionizing solvent has	110. The addition of a polar solvent to a solid	
(A) Low value of dielectric constant	electrolyte results in	
(B) High value of dielectric constant	(A) Polarization	(B) Association
(C) A dielectric constant equal to 1	(C) Ionization	(D) Electron transfer
(D) Has a high melting point	111.0.2 molar solution of	formic acid is ionized
104. The extent of ionization increases	3.2%. Its ionization cc	nstant is
(A) With the increase in concentration of	(A) 1×10^{-12}	(B) 2.1×10^{-4}
solute	(C) 1.25×10^{-6}	(D) 1×10^{-14}
(B) On addition of excess water to solution	112. The best conductor o	f electricity is a 1.0 M
(C) On decreasing the temperature of solution (C)	solution of	
(D) On stirring the solution vigorously	(A) Boric acid	(B) Acetic acid
105. which is generally true about ionic	(C) Sulphuric acid	(D) Phosphoric acid
(A) Have low boiling point	113. The colour of an electro	olyte solution depends on
(B) Have low melting point	(A) The nature of the a	anion
(C) Soluble in non polar solvents	(B) The nature of the c	cation
(D) Conduct electricity in the fused state	(C) The nature of both	the ions
106. Vant hoff factor of $BaCl_2$ of conc. 0.01M is	(D) The nature of the s	solvent
1.08 Percentage dissociation of $RaCl$ on this	114.Ionisation depends up	on
1.96. Tereentage dissociation of $Bact_2$ of this	(A) Pressure	(B) Volume
(A) 40 (B) 60	(C) Dilution	(D) None of these
(A) 43 (B) 03 (C) 80 (D) 98	115. The values of dissoci	ation constants of some
107 In which of the following solutions ions are	acids (at $25^{\circ}C$) are as	follows. Indicate which
present	is the strongest acid in	water
(A) Sucrose in water	(A) 1.4×10^{-2}	(B) 1.6×10^{-4}
(B) Sulphur in CS_2	(C) 4.4×10^{-10}	(D) 4.3×10^{-7}
(C) Caesium nitrate in water		
(D) Ethanol in water	Acids a	and Bases
108. The following equilibrium exists inaqueous		
solution, $CH_3COOH = CH_3COO^- + H^+$ if dil	116. The conjugate base of	NH_2^{-1} is
<i>HCl</i> is added, without change in temperature,	(A) NH_3	(B) NH^{2-}
the	(C) NH_4^+	(D) N_3^-
(A) Concentration of CH_3COO^- will increase	117. The strength of an	acid depends on its
(B) Concentration of CH_3COO^- will decrease	tendency to	
(C) The equilibrium constant will increase	(A) Accept protons	(B) Donate protons
(D) The equilibrium constant will decrease	(C) Accept electrons	(D) Donate electrons
109. Which will not affect the degree of ionisation	118. Which is not a electrop	ohile

- 109. Which will not affect the degree of ionisation
 - (A) Temperature (B) Concentration
 - (C) Type of solvent (D) Current

(C) $(CH_3)_3 C^+$ (D) NH_3

(B) *BF*₃

(A) $AlCl_3$

119. Ammonia gas dissolv	ves in water to give	127. 10 <i>ml</i> of $1 M H_2$	$_{2}SO_{4}$ will completely
NH_4OH . In this reaction	on water acts as	neutralise	
(A) An acid	(B) A base	(A) 10 ml of 1 M Na	OH solution
(C) A salt	(D) A conjugate base	(B) 10 ml of 2 M N	aOH solution
120. In the equilibrium		(C) 5 ml of 2 M KO	<i>H</i> solution
$CH_{3}COOH + HF \neq CH_{3}COOH + HF$	$H_3COOH_2^+ + F^-$	(D) 5 ml of 1 M Na.	$_{2}CO_{3}$ solution
(A) F^{-} is the conjugate	acid of CH ₃ COOH	128. When 100 <i>ml</i> of 1 <i>M</i>	<i>NaOH</i> solution is mixed
(B) F^{-} is the conjugate	base of HF	with 10 ml of 10 M	$M_{1}H_{2}SO_{4}$, the resulting
(C) CH_3COOH is the	ne conjugate acid of	mixture will be	
$CH_3COOH_2^+$		(A) Acidic	(B) Alkaline
(D) $CH_2COOH_2^+$ is 1	the conjugate base of	(C) Neutral	(D) Strongly alkaline
СН СООН		129. The <i>pH</i> indicators are	e
		(A) Salts of strong aci	ids and strong bases
121. H^{+} is a		(B) Salts of weak acid	ls and weak bases
(A) Lewis acid		(C) Either weak acids or weak bases	
(B) Lewis base		(D) Either strong acid	s or strong bases
(C) Bronsted-Lowry ba	ise	130. Which of the followin	ng is not Lewis acid
(D) None of the above	DO talvas alass in	(A) BF_3	(B) $AlCl_3$
following steps	$_{3}PO_{4}$ takes place in	(C) $FeCl_3$	(D) <i>PH</i> ₃
(Λ) 1	(\mathbf{B}) 2	131. The strength of an	acid depends on its
(\mathbf{R}) 1 (\mathbf{C}) 3	$(\mathbf{D}) 2$ $(\mathbf{D}) 4$	tendency to	I
123 . The aqueous solution	of disodium hydrogen	(A) Accept protons	(B) Donate protons
phosphate is		(C) Accept electrons	(D) Donate electrons
(A) Acidic	(B) Neutral	132.In Lewis acid-base	theory, neutralization
(C) Basic	(D) None	reaction may be consi	dered as
124. Which of the following	g is a conjugated acid-	(A) Formation of salt	and water
base pair		(B) Competition for p	rotons by acid and base
(A) HCl, NaOH	(B) NH_4Cl , NH_4OH	(C) Oxidation reduction	on
(C) H_2SO_4 , HSO_4^-	(D) KCN, HCN	(D) Coordinate covale	ent bond formation
125. The solution of strong	g acid and weak base	133. The salt that forms he (A) will Cl	utral solution in water is $(D) M Cl$
NH_4Cl is	-	(A) NH_4Cl	(B) NaCl
(A) Acidic	(B) Basic	(C) Na_2CO_3	(D) K_3BO_3
(C) Neutral	(D) None of the above	134. Which of the following	ng cannot act as a Lewis
126. Lewis base is		or Bronsted acid	
(A) CO_2	(B) <i>SO</i> ₃	(A) BF_3	(B) $AlCl_3$
(\mathbf{C}) SQ	(D) ROH	(C) $SnCl_4$	(D) CCl_4

135. Which one of the following salts gives an	144. The conjugate base of sulphuric acid is	
acidic solution in water	(A) Sodium hydroxide	
(A) CH_3COONa (B) NH_4Cl	(B) Hydrochloric acid	
(C) $NaCl$ (D) CH_3COONH_4	(C) Bisulphate ion (D) Parium hydroxide	
136. The correct order of acid strength is	145. Which is strongest Lewis base	
(A) $HClO < HClO_2 < HClO_3 < HClO_4$	(A) SbH_3 (B) AsH_3	
(B) $HClO_4 < HClO < HClO_2 < HClO_3$	(C) PH_3 (D) NH_3	
(C) $HClO_2 < HClO_3 < HClO_4 < HClO$	146. Which is not example of Bronsted Lowry	
(D) $HClO_4 < HClO_3 < HClO_2 < HClO$	theory $(A) AlCl \qquad (B) H = SO$	
137. The strongest acid is	$(A) AlCl_3 (B) H_2 SO_4 (C) SO_4 (D) HIVO_3 (D) $	
(A) $H_3 AsO_4$ (B) $H_3 AsO_3$	$(C) SO_2 \qquad (D) HNO_3$	
(C) H_3PO_3 (D) H_3PO_4	147.An aqueous solution of sodium carbonate is a salt of	
138. Which of the following is the strongest base	(A) Weak acid and weak base	
(A) $C_2 H_5^-$ (B) $C_2 H_5 COO^-$	(B) Strong acid and weak base	
(C) $C_2 H_5 O^-$ (D) OH^-	(C) Weak acid and strong base	
139. The aqueous solution of which one of the	(D) Strong actu and strong base 148. The acid that results when a base accepts	
following is basic	proton is called	
(A) $HOCl$ (B) $NaHSO_4$	(A) Conjugate base of the acid	
(C) NH_4NO_3 (D) $NaOCl$	(B) Conjugate protonated base	
140. Which of the following is the weakest base	(C) Lewis base (D) Corrigents acid of the base	
(A) $NaOH$ (B) $Ca(OH)_2$	149. Ammonia gas dissolves in water to form	
(C) NH_4OH (D) KOH	NH_4OH . In this reaction water acts as	
141. The aqueous solution of aluminium chloride is	(A) A conjugate base	
acidic due to	(B) A non-polar solvent	
(A) Cation hydrolysis	(C) An acid (D) A hase	
(B) Anion hydrolysis	(D) A base 150 The conjugate base in the following reaction	
(C) Hydrolysis of both anion and cation	$H_2SO_2 + H_2O = H_2O^+ + HSO_2^-$	
(D) Dissociation 142 , HSO^{-} is the conjugate base of	(A) H_2O (B) HSO_4^-	
(A) H^+ (B) H_*SO_*	(C) H_3O^+ (D) SO_2	
(c) SO^{2-} (D) H_2SO_3	Common ion affast Isohydria solutions Solubility	
143 An acid is a compound which furnishes	product. Ionic product of water and Salt	
(Bronsted-Lowry concept)	hydrolysis	
(A) An electron	151 What is the <i>nH</i> value of $\frac{N}{N}$ KOH solution	
(B) A proton	$\frac{1000}{1000}$ Roll solution	
(C) An electron and a proton	(A) 10^{-11} (B) 3	
(D) None of the above	(C) 2 (D) 11	

152. Mohr's salt is a

(A) Normal salt	(B) Acid salt
-----------------	---------------

- (C) Basic salt (D) Double salt
- **153.** Aqueous solution of sodium acetate is
 - (A) Neutral (B) Weakly acidic
 - (C) Strongly acidic (D) Alkaline
- **154.** Which is the correct alternate for hydrolysis constant of NH_4CN

(A)
$$\sqrt{\frac{K_w}{K_a}}$$
 (B) $\frac{K_w}{K_a \times K_b}$
(C) $\sqrt{\frac{K_b}{c}}$ (D) $\frac{K_a}{K_b}$

155.Which of the following salts undergoes hydrolysis

(A) CH_3COONa	(B) KNO_3
(C) NaCl	(D) K_2SO_4

- **156.** The solubility of AgCl in 0.2 M NaClsolution $(K_{sp} \text{ for } AgCl = 1.20 \times 10^{-10})$ is
 - (A) 0.2 M (B) $1.2 \times 10^{-10} M$ (C) $0.2 \times 10^{-10} M$ (D) $0.2 \times 10^{-10} M$
- **157.** The solubility of *AgI* in *NaI* solution is less than that in pure water because
 - (A) AgI forms complex with NaI
 - (B) Of common ion effect
 - (C) Solubility product of *AgI* is less than that of *NaI*
 - (D) The temperature of the solution decreases

158. The solubility product of $BaSO_4$ is 1.5×10^{-9} .

The precipitation in a 0.01 $M Ba^{2+}$ solution will start, on adding H_2SO_4 of concentration

(A) $10^{-9} M$	(B) $10^{-8} M$
(C) $10^{-7} M$	(D) $10^{-6} M$

159. At 20° C, the Ag^+ ion concentration in a saturated solution of Ag_2CrO_4 is 1.5×10^{-4} mole/litre. At 20° C, the solubility product of Ag_2CrO_4 would be

(A) 3.3750×10^{-12} (B) 1.6875×10^{-10} (C) 1.6875×10^{-12} (D) 1.6875×10^{-11} **160.** The solubility of *PbCl*₂ is

(A)
$$\sqrt{K_{sp}}$$
 (B) $\sqrt[3]{K_{sp}}$
(C) $\sqrt[3]{\frac{K_{sp}}{4}}$ (D) $\sqrt{8K_{sp}}$

161. K_{sp} for sodium chloride is 36 $mol^2 / litre^2$. The solubility of sodium chloride is

(A) $\frac{1}{36}$	(B) $\frac{1}{6}$
(C) 6	(D) 3600

- **162.**Sodium chloride is purified by passing hydrogen chloride gas in an impure solution of sodium chloride. It is based on
 - (A) Buffer action
 - (B) Common ion effect
 - (C) Association of salt
 - (D) Hydrolysis of salt
- **163.** If the concentration of lead iodide in its saturated solution at $25^{\circ}C$ be 2×10^{-3} moles per litre, then its solubility product is
 - (A) 4×10^{-6} (B) 8×10^{-12} (C) 6×10^{-9} (D) 32×10^{-9}
- **164.** The precipitate of $CaF_2(K_{sp} = 1.7 \times 10^{-10})$ is obtained when equal volumes of the following are mixed
 - (A) $10^{-4}M Ca^{2+} + 10^{-4}M F^{-}$
 - (B) $10^{-2}M Ca^{2+} + 10^{-3}M F^{-}$

(C) Both

(D) None of these

165. In the reaction: $H_2S \approx 2H^+ + S^{--}$, when

- NH_4OH is added, then
- (A) S^{--} is precipitate
- (B) No action takes places
- (C) Concentration of S^{--} decreases
- (D) Concentration of S^{--} increases
- **166.**Which one of the following salt is most acidic in water
 - (A) $NiCl_2$ (B) $BeCl_2$
 - (C) $FeCl_3$ (D) $AlCl_3$

- **167.** Which of the following aqueous solution will have a pH less than 7.0
 - (A) KNO_3 (B) NaOH
 - (C) $FeCl_3$ (D) 1×10^{-15}
- **168.**Hydrolysis constant for a salt of weak acid and weak base would be

(A)
$$K_h = \frac{K_w}{K_a}$$
 (B) $K_h = \frac{K_w}{K_b}$
(C) $K_h = \frac{K_w}{K_a K_b}$ (D) None of these

- **169.**Which salt will give basic solution on hydrolysis
 - (A) KCN (B) KCl(C) NH_4Cl (D) CH_3COONH_4
- **170.**Which of the following sulphides has the lowest solubility product

(A) FeS	(B) MnS
(C) PbS	(D) ZnS

Hydrogen ion concentration- *p*H scale and Buffer solution

- 171. On adding solid potassium cyanide to water
 - (A) *pH* will increase
 - (B) pH will decrease
 - (C) pH will not change
 - (D) Electrical conductance will not change
- **172.***A* is an aqueous acid; *B* is an aqueous base. They are diluted separately, then
 - (A) *pH* of *A* increases and *pH* of *B* decreases
 - (B) pH of A increases and pH of B decreases till pH in each case is 7
 - (C) pH of A and B increase
 - (D) pH of B and A decrease

173. The compound whose 0.1 *M* solution is basic is

- (A) Ammonium acetate
- (B) Calcium carbonate
- (C) Ammonium sulphate
- (D) Sodium acetate

174. The following reaction is known to occur in body $CO_2 + H_2O \Rightarrow H_2CO_3$ the $H^+ + HCO_3^-$. If CO_2 escapes from the system (A) *pH* will decrease (B) Hydrogen ion concentration will decrease (C) H_2CO_3 concentration will be unaltered (D) The forward reaction will be promoted **175.** For preparing a buffer solution of pH 6 by mixing sodium acetate and acetic acid, the ratio of the concentration of salt and acid should be $(K_a = 10^{-5})$ (A) 1:10 (B) 10 : 1 (C) 100 : 1 (D) 1:100 **176.** The hydrogen ion concentration of 0.1Nsolution of CH_3COOH , which is 30% dissociated, is (A) 0.03 (B) 3.0

- (C) 0.3 (D) 30.0
- **177.** What is the pH of $0.1 M NH_3$

(A) 11.27	(B) 11.13
(C) 12.0	(D) 9.13

- **178.**By adding a strong acid to the buffer solution, the pH of the buffer solution
 - (A) Remains constant (B) Increases
 - (C) Decreases (D) Becomes zero
- **179.**The *pH* of 0.1*M NaOH* is
 - (A) 11 (B) 12 (C) 13 (D) 14
- **180.***pH* of human blood is 7.4. Then H^+ concentration will be
 - (A) 4×10^{-8} (B) 2×10^{-8}
 - (C) 4×10^{-4} (D) 2×10^{-4}
- **181.** The pH of a 0.02 M solution of hydrochloric acid is

(A) 2.0	(B) 1.7
(C) 0.3	(D) 2.2

a = a = b $b = b$	-	
0.62 g is added to 100 ml of change in pri when added to 10 ml and	ıte	
0.1 N (NH) SQ solution What will be the HCl		
(A) 5 ml pure water		
resulting solution (B) $20 ml$ pure water		
(A) Actaic (B) Neutral (C) 10 ml HCl		
(C) Basic (D) None of these (D) Same 20 ml dilute HCl		
183. The <i>pH</i> of the solution is 4. The hydrogen ion 191 . The <i>pOH</i> of beer is 10.0. The hydrogen is	191. The <i>pOH</i> of beer is 10.0. The hydrogen ion	
$(A) 0.5 (D) 10^{-4} (C) concentration will be$		
(A) 9.5 (B) 10 (A) 10^{-2} (B) 10^{-10}		
(C) 10^4 (D) 10^{-2} (C) 10^{-8} (D) 10^{-4}		
184. $NaOH_{(aq)}$, $HCl_{(aq)}$ and $NaCl_{(aq)}$ concentration 192. When a buffer solution of sodium acetate a	nd	
of each is $10^{-3}M$. Their <i>pH</i> will be acetic acid is diluted with water	acetic acid is diluted with water	
respectively (A) Acetate ion concentration increases		
(A) 10, 6, 2 (B) 11, 3, 7 (B) H^+ ion concentration increases		
(C) 10, 2, 6 (D) 3, 4, 7 (C) OH^- ion concentration increases		
185. The <i>pH</i> of $10^{-5}M$ aqueous solution of (D) H^+ ion concentration remain unaltered		
<i>NaOH</i> is 193. What is the <i>nH</i> of $Ba(OH)$, if normality is	10	
(A) 5 (B) 7 (A) A (B) 10 (A) A (B) 10	10	
(C) 9 (D) 11 (A) 4 (D) 10 (C) 7 (D) 9		
186. In a solution of $pH = 5$, more acid is added in 194. What will be the pH of a solution formed	hv	
order to reduce the $pH = 2$. The increase in mixing 40 ml of 0.10 M HCl with 10	oy ml	
hydrogen ion concentration is	af 0.45 M N=QH	
(A) 100 times (B) 1000 times (A) 12 (D) 10		
(C) 3 times (D) 5 times (A) 12 (B) 10 (D) 6		
187. Which solution contains maximum number of 105 The nH of a solution barrier	na	
H^+ ion	ng	
(A) 0.1 M <i>HCl</i> (B) 0.1 M <i>NH</i> ₄ <i>Cl</i> $[H^+] = 10 \times 10^+$ <i>moles / litre</i> will be		
(C) 0.1 M NaHCO ₂ (D) 0.1 M (A) 1 (B) 2		
188 A certain buffer solution contains equal	(
concentration of 3.9×10^{-5} and HV. The K 196. The H^+ ion concentration is 1.0×10^{-5})-0	
concentration of 5.9×10^{-1} and HA . The K_b mole/litre in a solution. Its pH value will be		
for H^- is 10^{-10} . The <i>pH</i> of the buffer is (A) 12 (B) 6		
(A) 4 (B) 7 (C) 18 (D) 24		
(C) 10 (D) 14 197.1 in ph of a solution is the negative for the solution is the solution is the negative for the solution is the negative for the solution is the solution is the solution is the negative for the solution is the solution is the solution is the negative for the solution is the negative for the solution is the so	ve	
189. The defination of <i>pH</i> is logarithm to the base 10 of its hydrogen is	on	
(A) $pH = \log \frac{1}{(B)}$ (B) $pH = \log[H^+]$ (A) Moles per litre		
$[H^+] \qquad (B) \text{ Millimoles per litre}$		
(C) $pH = \log \frac{1}{(D)}$ $pH = \log^{[H^+]}$ (C) Micromoles per litre		
$(C) pH = -\log \frac{(C)}{[H^+]}$ (D) pH = -\log (C) function of spectrum (D) Nanomoles per litre		

			Equilibrium	
198. When 10 ⁻⁸ mole of	f HCl is dissolved in one	203. The concentration	of hydrogen ion in water is	
litre of water, the	<i>pH</i> of the solution will be	(A) 8	(B) 1×10^{-7}	
(A) 8	(B) 7	(C) 7	(D) 1/7	
(C) Above 8	(D) Below 7	204. <i>pH</i> of a 10 <i>M</i> sol	ution of <i>HCl</i> is	
199. The pH of the set	olution containing 10 ml of	(A) Less than 0	(B) 2	
0.1 N NaOH an	d 10 ml of 0.05 N H_2SO_4	(C) 0	(D) 1	
would be	2 4	205. The <i>pH</i> of $1 N H_2 O$ is		
(A) 0	(B) 1	(A) 7	(B) >7	
(C) > 7	(D) 7	(C) <7	(D) 0	
200. The pH of 0.001 molar solution of HCl will be		206. The concentration	206. The concentration of hydrogen ion $[H^+]$ in	
(A) 0 001	(B) 3	0.01 <i>M HCl</i> is		
(C) 2	(D) 6	(A) 10^{12}	(B) 10 ⁻²	
201. If the pH of a s	olution of an alkali metal	(C) 10^{-1}	(D) 10 ⁻¹²	
hydroxide is 13.6, the concentration of		207.A solution of weak acids is diluted by adding		
hydroxide is	hydroxide is an equal volume of water. Which of		of water. Which of the	
(A) Between 0.1 M	I and $1 M$	following will not o	change	
(B) More than 1 M		(A) Strength of the acid		
(C) Less than 0.00	1 <i>M</i>	(B) The value of $[H_3O^+]$		
(D) Between 0.01	M and 1 M	(C) pH of the solution		
202. The pK_a of acet	ylsalicylic acid (aspirin) is	is (D) The degree of dissociation of acid		
3.5. The <i>pH</i> o	f gastric juice in human	208. <i>Ka</i> of H_2O_2 is of the second se	he order of	
stomach is about 2	-3 and the pH in the small	(A) 10^{-12}	(B) 10^{-14}	
intestine is about 8	. Aspirin will be	(C) 10^{-16}	(D) 10^{-10}	
(A) Unionized in t	he small intestine and in the	e 209. Equivalent weight of an acid		
stomach		(A) Depends on the reaction involved		
(B) Completely io and in the	nized in the small intestine	(B) Depends upon the number of oxygen atoms present		
stomach		(C) Is always same		
(C) Ionized in t	he stomach and almost	(D) None of the above		
unionized in th	e small intestine	210. <i>pH</i> scale was introduced by		
(D) Ionized in the	small intestine and almost	(A) Arrhenius	(B) Sorensen	
unionized in th	e stomach	(C) Lewis	(D) Lowry	