EXERCISE-I

Expansion of binomial theorem

- 1. The value of $(\sqrt{5} + 1)^5 (\sqrt{5} 1)^5$ is (A) 252 (B) 352 (C) 452 (D) 532
- 2. In the expansion of the following expression

 $1 + (1 + x) + (1 + x)^{2} + \dots + (1 + x)^{n}$

the coefficient of $x^k (0 \le k \le n)$ is

- (A) ${}^{n+1}C_{k+1}$ (B) ${}^{n}C_{k}$
- (C) ${}^{n}C_{n-k-1}$ (D) None of these
- 3. The larger of $99^{50} + 100^{50}$ and 101^{50} is (A) $99^{50} + 100^{50}$ (B) Both are equal (C) 101^{50} (D) None of these
- 4. $(1+x)^n nx 1$ divisible (where $n \in N$) (A) by 2x (B) by x^2 (C) by $2x^3$
 - (D) All of these

5. If $T_0, T_1, T_2, \dots, T_n$ represent the terms in the expansion of $(x + a)^n$, then $(T_0 - T_2 + T_4 - \dots)^2 + (T_1 - T_3 + T_5 - \dots)^2 =$ (A) $(x^2 + a^2)$ (B) $(x^2 + a^2)^n$ (C) $(x^2 + a^2)^{1/n}$ (D) $(x^2 + a^2)^{-1/n}$

General term, Coefficient of any power of *x*, Independent term, Middle term and Greatest term and Greatest coefficient

6. In $\left(\sqrt[3]{2} + \frac{1}{\sqrt[3]{3}}\right)^n$ if the ratio of 7th term from the beginning to the 7th term from the end is $\frac{1}{6}$, then n = (A) 7 (B) 8 (C) 9 (D) None of these

If coefficient of $(2r+3)^{\text{th}}$ and $(r-1)^{\text{th}}$ 7. terms in the expansion of $(1+x)^{15}$ are equal, then value of r is (A) 5 (B) 6 (D) 3 (C) 4 If x^4 occurs in the r^{th} term in the 8. expansion of $\left(x^4 + \frac{1}{x^3}\right)^{15}$, then r =(A) 7 (B) 8 (C) 9 (D) 10 If the $(r+1)^{th}$ term in the expansion of 9. $\left(\sqrt[3]{\frac{a}{\sqrt{b}}} + \sqrt{\frac{b}{\sqrt[3]{a}}}\right)^{21}$ has the same power of a and b, then the value of r is (A) 9 (B) 10 (C) 8(D) 6 10. If the third term in the binomial expansion of $(1+x)^m$ is $-\frac{1}{8}x^2$, then the rational value of *m* is (A) 2 (B) 1/2(C) 3 (D) 4 The first 3 terms in the expansion of 11. $(1 + ax)^n$ $(n \neq 0)$ are 1, 6x and $16x^2$. Then the value of *a* and *n* are respectively (A) 2 and 9 (B) 3 and 2 (C) 2/3 and 9 (D) 3/2 and 6 12. If the coefficients of T_r, T_{r+1}, T_{r+2} terms of $(1 + x)^{14}$ are in A.P., then r =(A) 6 **(B)** 7 (D) 9 (C) 8Coefficient of x in the expansion of 13. $\left(x^2 + \frac{a}{x}\right)^5$ is (A) $9a^2$ (B) $10a^3$ (C) $10a^2$ (D) 10a

14.	If the coefficients	of p^{th} , $(p+1)^{th}$ and	20.	If in the expansion of $(1+x)^m(1-x)^n$, the
	$(p+2)^{th}$ terms in	the expansion of		coefficient of x and x^2 are 3 and -6
	$(1+x)^n$ are in A.P., t	hen		respectively, then m is
	(A) $n^2 - 2np + 4p^2 =$	= 0		(A) 6 (B) 9 (C) 12 (D) 24
	(B) $n^2 - n(4p+1) +$	$4p^2 - 2 = 0$	21.	(C) 12 (D) 24 If x^{m} occurs in the expansion of
	(C) $n^2 - n(4p+1) +$	$4p^2 = 0$		$(1)^{2n}$
	(D) None of these			$\left(x + \frac{1}{x^2}\right)$, then the coefficient of x^m is
15.	In the expansion	a of $\left(\frac{a}{x}+bx\right)^{12}$, the		(A) $\frac{(2n)!}{(m)!(2n-m)!}$
	coefficient of x^{-10} wi	ll be		(2n)!3!3!
	(A) $12a^{11}$	(B) $12b^{11}a$		(B) $\frac{1}{(2n-m)!}$
	(C) $12a^{11}b$	(D) $12a^{11}b^{11}$		(2n)!
16.	The coefficient of x^5	³ in the following		(C) $\frac{2n-m}{(2n-m)(4n+m)}$
	expansion $\sum_{m=100}^{100} C_{m}$	$(x-3)^{100-m}.2^{m}$ is		$\begin{pmatrix} 3 \end{pmatrix}^{1} \begin{pmatrix} 3 \end{pmatrix}^{2}$
	m=0			(D) None of these
	(A) ${}^{100}C_{47}$	(B) ${}^{100}C_{53}$	22.	If coefficients of 2^{na} , 3^{ra} and 4^{tn} terms in
	(C) $-^{100}$ C ₅₃	(D) $-^{100}C_{100}$		the binomial expansion of $(1+x)^n$ are in
17.	The coefficient of z	x^{32} in the expansion of		A.P., then $n^2 - 9n$ is equal to
	$\begin{pmatrix} & 4 & 1 \end{pmatrix}^{15}$			(A) - 7 $(B) 7$
	$\left(\begin{array}{c} x & -\frac{1}{x^3} \end{array} \right)$ is		1 2	(C) 14 (D) - 14 In the companying of $(1 + m + m^3 + m^4)^{10}$ the
	(A) ${}^{15}C_5$	(B) ${}^{15}C_6$	23.	In the expansion of $(1 + x + x + x)$, the
	(C) ${}^{15}C_4$	(D) ${}^{15}C_7$		coefficient of x^{+} is
18.	If the coefficients	of x^7 and x^8 in		(A) C_4 (B) C_4
	$\left(2+\frac{x}{3}\right)^n$ are equal, then <i>n</i> is		24	(C) 210 (D) 510 If $coefficients of (2n+1)^{th}$ terms and
			24.	If coefficients of $(21+1)$ term and
	(A) 56	(B) 55		(r+2) term are equal in the expansion of
	(C) 45	(D) 15		$(1+x)^{r}$, then the value of r will be
19.	The coefficient of	x ³ in the expansion of		(A) 14 (B) 15 (C) 12 (D) 16
	$\begin{pmatrix} 1 \end{pmatrix}^7$		25	(C) 15 (D) 10 If the coefficient of A^{th} term in the
	$\begin{pmatrix} x \\ x \end{pmatrix}$ is		23.	expansion of $(a + b)^n$ is 56 then <i>n</i> is
	(A) 14	(B) 21		(A) 12 (B) 10
	(C) 28	(D) 35		$(C) \qquad (D) \qquad (D) \qquad (D) \qquad (C) \qquad (D) $

(C) 8 (D) 6

26.	If in the expansion	ion of $(1+x)^{21}$, the	33.
	coefficients of x ^r and	nd x^{r+1} be equal, then r	
	is equal to		
	(A) 9	(B) 10	
	(C) 11	(D) 12	
27.	The term independer	nt of x in the expansion	
	of $\left(\sqrt{\frac{x}{3}} + \frac{3}{2x^2}\right)^{10}$ w	vill be	34.
	(A) 3/2	(B) 5/4	
	(C) 5/2	(D) None of these	
28.	The term independent	nt of x in the expansion	
	of $\left(\frac{1}{2}x^{1/3} + x^{-1/5}\right)^8 v$	vill be	
	(A) 5	(B) 6	
	(C) 7	(D) 8	35.
29.	In the expansion of	$\left(\frac{3x^2}{2} - \frac{1}{3x}\right)^9$, the term	
	independent of x is		
	(A) ${}^{9}C_{3}.\frac{1}{6^{3}}$	(B) ${}^{9}C_{3}\left(\frac{3}{2}\right)^{3}$	36.
	$(C) {}^{9}C_{3}$	(D) None of these	
30.	The term indep	pendent of x in	
	$\left(2x-\frac{1}{2x^2}\right)^{12}$ is		
	(A) – 7930	(B) – 495	
	(C) 495	(D) 7920	37.
31.	In the expansion of	$f\left(x+\frac{2}{x^2}\right)^{15}$, the term	
	independent of x is		
	(A) ${}^{15}C_6 2^6$	(B) ${}^{15}C_5 2^5$	
	(C) ${}^{15}C_4 2^4$	(D) ${}^{15}C_{s}2^{8}$	
32.	The term independent	nt of x in the expansion	
	of $\left(x^2 - \frac{1}{x}\right)^9$ is	1	
	(A) 1	(B) –1	
	(C) - 48	(D) None of these	

(A) $\frac{160}{9}$ (B) $\frac{80}{9}$ (C) $\frac{160}{27}$ (D) $\frac{80}{3}$ 4. The term independent of *x* in the expansion

of $\left(2x + \frac{1}{3x}\right)^6$ is

The term independent of x in the expansion

$$\left(x^{2} - \frac{1}{3x}\right)^{9} \text{ is}$$
(A) $\frac{28}{81}$
(B) $\frac{28}{243}$
(C) $-\frac{28}{243}$
(D) $-\frac{28}{81}$

5. The term independent of *x* in the expansion

of
$$\left(2x - \frac{3}{x}\right)^{6}$$
 is
(A) 4320 (B) 216
(C) - 216 (D) - 4320

6. The coefficient of middle term in the expansion of $(1 + x)^{10}$ is

(A)
$$\frac{10!}{5!6!}$$
 (B) $\frac{10!}{(5!)^2}$
(C) $\frac{10!}{5!7!}$ (D) None of these

37. The middle term in the expansion of $(1+x)^{2n}$ is

(A)
$$\frac{(2n)!}{n!} x^2$$

(B) $\frac{(2n)!}{n!(n-1)!} x^{n+1}$
(C) $\frac{(2n)!}{(n!)^2} x^n$
(D) $\frac{(2n)!}{(n+1)!(n-1)!} x^n$

18

Bionomial Theorem

38. The greatest coefficient in the expansion of $(1+x)^{2n+2}$ is

(A) $\frac{(2n)!}{(n!)^2}$	(B) $\frac{(2n+2)!}{\{(n+1)!\}^2}$
(C) $\frac{(2n+2)!}{n!(n+1)!}$	(D) $\frac{(2n)!}{n!(n+1)!}$

39. The greatest term in the expansion of $\sqrt{3}\left(1+\frac{1}{\sqrt{3}}\right)^{20}$ is (A) $\frac{25840}{9}$ (B) $\frac{24840}{9}$ (C) $\frac{26840}{9}$ (D) None of these

40. If *n* is even positive integer, then the condition that the greatest term in the expansion of $(1 + x)^n$ may have the greatest coefficient also, is

(A)
$$\frac{n}{n+2} < x < \frac{n+2}{n}$$
 (B)
$$\frac{n+1}{n} < x < \frac{n}{n+1}$$

(C)
$$\frac{n}{n+4} < x < \frac{n+4}{4}$$
 (D) None of these

Properties of binomial coefficients

41.
$$C_1 + 2C_2 + 3C_3 + 4C_4 + \dots + nC_n =$$

(A) 2^n (B) n. 2^n
(C) n. 2^{n-1} (D) n. 2^{n+1}
42. $\frac{C_0}{1} + \frac{C_2}{3} + \frac{C_4}{5} + \frac{C_6}{7} + \dots =$
(A) $\frac{2^{n+1}}{n+1}$ (B) $\frac{2^{n+1}-1}{n+1}$
(C) $\frac{2^n}{n+1}$ (D) None of these

43.	$\frac{C_0}{1} + \frac{C_1}{2} + \frac{C_2}{3} + \dots + \frac{C_n}{n+1} =$			
	(A) $\frac{2^n}{n+1}$ (B) $\frac{2^n-1}{n+1}$			
	(C) $\frac{2^{n+1}-1}{n+1}$ (D) None of these			
44.	$\frac{1}{1!(n-1)!} + \frac{1}{3!(n-3)!} + \frac{1}{5!(n-5)!} + \dots =$			
	(A) $\frac{2^n}{n!}$; for all even values of <i>n</i>			
	(B) $\frac{2^{n-1}}{n!}$; for all values of <i>n i.e.</i> , all even			
	odd values			
	(C) 0			
	(D) None of these			
45.	The sum to $(n+1)$ terms of the following			
	series $\frac{C_0}{2} - \frac{C_1}{3} + \frac{C_2}{4} - \frac{C_3}{5} + \dots$ is			
	(A) $\frac{1}{n+1}$ (B) $\frac{1}{n+2}$			
	(C) $\frac{1}{n(n+1)}$ (D) None of these			
46.	If a and d are two complex numbers, then			
	the sum to $(n+1)$ terms of the following			
	series			

$$aC_0 - (a + d)C_1 + (a + 2d)C_2 - \dots$$
 is
(A) $\frac{a}{2^n}$ (B) na

47.

$$(1+x)^{15} = C_0 + C_1 x + C_2 x^2 + \dots + C_{15} x^{15},$$

then $C_2 + 2C_3 + 3C_4 + \dots + 14C_{15} =$
(A) 14.2^{14} (B) $13.2^{14} + 1$
(C) $13.2^{14} - 1$ (D) None of these

Bionomial Theorem

48. The value of $\frac{C_1}{C_1} + \frac{C_3}{C_3}$		$\frac{C_3}{C_3} + \frac{C_5}{C_5} + \dots$ is equal	54.	The value of	
	2 4 6			${}^{4n}C_0 + {}^{4n}C_4 + {}^{4n}C_8 + \dots + {}^{4n}C_{4n}$ is	
	to			(A) $2^{4n-2} + (-1)^n 2^{2n-2}$	⁻¹ (B) $2^{4n-2} + 2^{2n-1}$
	(A) $\frac{2^n - 1}{n+1}$	(B) $n.2^{n}$		(C) $2^{2n-1} + (-1)^n 2^{4n-1}$	⁻² (D) None of these
	2^n	$2^{n} + 1$	55.	The sum of the last of	eight coefficients in the
	$(C) - \frac{1}{n}$	(D) $\frac{1}{n+1}$		expansion of $(1 + x)^{1}$	¹⁵ is
49.	In the expansion of	of $(1+x)^n$ the sum of		(A) 2^{16}	(B) 2^{15}
	coefficients of odd p	bowers of x is		(C) 2^{14}	(D) None of these
	(A) $2^{n} + 1$	(B) $2^n - 1$	56.	If $(1+x)^n = C_0 + C_0$	$C_1 x + C_2 x^2 + \dots + C_n x^n$,
	(C) 2^{n}	(D) 2^{n-1}		then the value of	
50.	$C_0 - C_1 + C_2 - C_3 +$	$-\dots+(-1)^n C_n$ is equal		$C_0 + 2C_1 + 3C_2 + \dots$	$(n+1)C_n$ will be
	to			(A) $(n+2)2^{n-1}$	(B) $(n+1)2^n$
	(A) 2^{n}	(B) $2^n - 1$		(C) $(n+1)2^{n-1}$	(D) $(n+2)2^n$
	(C) 0	(D) 2^{n-1}	57.	The value of ${}^{15}C_0^2 - {}^{1}$	15 C ₁ ² + 15 C ₂ ² 15 C ₁₅ ²
51.	Coefficients of x ^r	$[0 \le r \le (n-1)]$ in the		is	1 2 10
	expansion of			(A) 15	(B) – 15
	$(x+3)^{n-1} + (x+3)^{n-2}$	(x+2)		(C) 0	(D) 51
	+ $(x + 3)^{n-3}(x + 2)^{2}$ + + $(x + 2)^{n-1}$		58.	$2C_0 + \frac{2^2}{2}C_1 + \frac{2^3}{3}C_2 + \dots + \frac{2^{11}}{11}C_{10}$	
	(A) $C_r(3 - 2)$ (B) $C_r(3^{n-r} - 2^{n-r})$			$3^{11}-1$	$2^{11} - 1$
	(D) $C_r(3 - 2)$			(A) $\frac{11}{11}$	(B) $-\frac{11}{11}$
	(C) $C_r(3 + 2)$			(C) $11^3 - 1$	(D) $11^2 - 1$
52	(D) None of these		59.	$(C) - \frac{11}{11}$	(D) $-\frac{11}{11}$
52.	expansion of $(\alpha^2 x^2 - 2\alpha x \pm 1)^{51}$ vanishes			If $(1+x)^n = C_0 + C_1$	$x + C_2 x^2 + \dots + C_n x^n$,
	then the value of α is			then $C_0C_2 + C_1C_3 +$	$C_2C_4 + C_{n-2}C_n$ equals
	(A) 2	(B) -1		(A) $(2n)!$	
	(C) 1	(D) - 2		(n+1)!(n+2)!	
53.	If $x + y = 1$, then $\sum_{r=1}^{n}$	$\int_{0}^{1} r^{2} C_{r} x^{r} y^{n-r}$ equals		(B) $\frac{(2n)!}{(n-2)!(n+2)!}$	
	(A) <i>nxy</i>	(B) $nx(x+yn)$		(C) $\frac{(2n)!}{(2n)!}$	
	(C) $nx(nx + y)$	(D) None of these		(n)!(n+2)!	
				(D) $\frac{(2n)!}{(n-1)!(n+2)!}$	
				(

					Dionomiai Theorem
60.	0. If $(1+x)^n = C_0 + C_1 x + C_2 x^2 + + C_n x^n$,		Binomial theorem for any index		
	then the value of	$C_0 + C_2 + C_4 + C_6 + \dots$	66.	The coefficient o	of x^3 in the expansion of
	(A) 2^{n-1}	(B) 2^{n-1}		$\frac{(1+3x)^2}{1-2x}$ will be	
	(C) 2^{n}	(D) $2^{n-1} - 1$		(A) 8	(B) 32
61.	The sum of coeffic	ients in $(1 + x - 3x^2)^{2134}$ is		(C) 50	(D) None of these
	(A) - 1	(B) 1	67.	If $ x < 1$ then the	e coefficient of x ⁿ in the
	(C) 0	(D) 2^{2134}		expansion of (1 +	$x + x + x^{2} +)^{2}$ will be
62.	The sum of coeffic	eients in the expansion of		(A) 1	(B) <i>n</i>
	$(1 + x + x^2)^n$ is			(C) $n + 1$	(D) None of these
	(A) 2	(B) 3^{n}	68.	If $ x > 1$, then (1-	$+x)^{-2} =$
	(C) 4^{n}	(D) 2^{n}		(A) $1 - 2x + 3x^2 - 3$	
63.	The sum of the coe	efficients in the		(B) $1 + 2x + 3x^2 - $	
expansion of $(1 + x - 3x^2)^{3148}$ is			(C) $1 - \frac{2}{3} + \frac{3}{3} - \frac{3}{3}$		
	(A) 7	(B) 8		(C) T X X^2 .	
	(C) – 1	(D) 1		(D) $\frac{1}{x^2} - \frac{2}{x^3} + \frac{3}{x^4}$	
64.	If $a_k = \frac{1}{k(k+1)}$,	for $k = 1, 2, 3, 4, \dots, n$,	69.	If $ x < 1$, then in the	he expansion of
	$\binom{n}{2}$			$(1+2x+3x^2+4x)$	$(x^3 +)^{1/2}$, the coefficient
	then $\left \sum_{k=1}^{\infty} a_k \right =$			of x ⁿ is	
	$\begin{pmatrix} k=1 \end{pmatrix}$			(A) <i>n</i>	(B) n+1
	(A) $\left(\frac{\pi}{n+1}\right)$			(C) 1	(D) – 1
	$(\mathbf{n} + \mathbf{i})^2$		70.	The approximate	value of (7.995) ^{1/3} correct
	(B) $\left(\frac{n}{n+1}\right)$			to four decimal pl	aces is [
	(n+1)			(A) 1.9995	(B) 1.9996
	$(C)\left(\frac{n}{n}\right)^4$			(C) 1.9990	(D) 1.9991
	(n+1)	$\left(n+1\right)$		$1 - \frac{1}{8} + \frac{1}{8} \cdot \frac{3}{16} - \frac{1 \cdot 3 \cdot 5}{8 \cdot 16 \cdot 24} + \dots =$	
	(D) $\left(\frac{n}{n+1}\right)$			2	$\sqrt{2}$
65	In the expansion of	$f(1+x)^5$ the sum of the		(A) $\frac{-}{5}$	(B) $\frac{\sqrt{2}}{5}$
03.	coefficient of the t	$(1 + \lambda)$, the sum of the		2	
		(D) 14		(C) $\overline{\sqrt{5}}$	(D) None of these

(A) 80	(B) 16

(C) 32 (D) 64

78.
79.
80
00.
Mı
sig
81.
87
02.

(D) $1 - (1 + y)^{-1/3}$

 $[\sqrt{1 + x^{2}} - x]^{-1} \text{ in ascending powers of } x,$ when |x| < 1, is (A) 0 (B) $\frac{1}{2}$ (C) $-\frac{1}{2}$ (D) 1 9. $1 + \frac{1}{4} + \frac{1.3}{4.8} + \frac{1.3.5}{4.8.12} + \dots =$ (A) $\sqrt{2}$ (B) $\frac{1}{\sqrt{2}}$

The coefficient of x in the expansion of

(C)
$$\sqrt{3}$$

(D) $\frac{1}{\sqrt{3}}$
If x is positive, the first negative $\sqrt{27/5}$ is

80. If x is positive, the first negative term in the expansion of $(1 + x)^{27/5}$ is (A) 7th term (B) 5th term

(C) 8^{th} term (D) 6^{th}

Multinomial theorem, Terms free from radical sign in the expansion of $(a^{1/p} + b^{1/q})$, Problems regarding to three/four consecutive terms or coefficients

- 81. In the expansion of $(5^{1/2} + 7^{1/8})^{1024}$, the number of integral terms is (A) 128 (B) 129 (C) 130 (D) 131
- 82. The number of terms which are free from radical signs in the expansion of $(y^{1/5} + x^{1/10})^{55}$ is
 - (A) 5 (B) 6
 - (C) 7 (D) None of these

83.	Let $R = (5\sqrt{5} + 11)^2$	and $f = R - [R]$,	87.	If a_1, a_2, a_3, a_4 are the	he coefficients of any
	where [.] denotes	the greatest integer		four consecutive terr	ns in the expansion of
	function. The value of <i>R</i> . <i>f</i> is			$(1+x)^n$ then $a_1 + a_1$	$a_3 = a_3$
	(A) 4^{2n+1}	(B) 4^{2n}		$a_1 + a_2$	$a_{3} + a_{4}$
	(C) 4^{2n-1}	(D) 4^{-2n}		$(\mathbf{A}) \xrightarrow{\mathbf{a}_2}$	(B) $\frac{1}{a_2}$
84.	The greatest integer	less than or equal to		$a_{2} + a_{3}$	(D) $2(a_2 + a_3)$
	$(\sqrt{2}+1)^{6}$ is			$(C) \frac{2a_2}{2}$	(D) $\frac{2a_3}{2}$
	(A) 196	(B) 197		$a_{2} + a_{3}$	$(D)' a_2 + a_3$
	(C) 198	(D) 199	88.	The number of in	itegral terms in the
85. If number of terms in the expansion		in the expansion of		expansion of $(5^{1/2} + 7^{1/6})^{642}$ is	
	$(x - 2y + 3z)^n$ are 45	b, then $n=$		(A) 106	(B) 108
	(A) 7	(B) 8		(C) 103	(D) 109
	(C) 9	(D) None of these	89.	The expression $(2 +$	$\sqrt{2}$) ⁴ has value, lying
86.	Find the value of			between	
	$(18^3 + 7^3 +$	3.18.7.25)		(A) 134 and 135	(B) 135 and 136
$3^{6} + 6.243.2 + 15.81.4 + 20.27.8 + 15.9.16 + 6.3.32 + 64$		4	(C) 136 and 137 (D) Nor	(D) None of these	
	(A) 1 (C) 25	(B) 5 (D) 100	90.	The digit in the unit place of the number	
				$(183!) + 3^{183}$ is	
				(A) 7	(B) 6

(C) 3

(D) 0