EXERCISE # 1

- Q.1 Classify the triangles as scalene, isosceles or equilateral, if their sides are :
 (i) 7 cm, 12 cm, 13 cm (ii) 6 cm, 6 cm, 6 cm (iii) 5 cm, 5 cm, 4 cm
- Q.2 Classify the triangles as acute, obtuse or right, whose angles are : (i) 150°, 10°, 20° (ii) 30°, 60°, 90° (iii) 80°, 40°, 60°
- Q.3 Observe the following figures and classify each of the triangles on the basis of their (a) sides (b) angles

- Q.4 Fill in the blanks with the correct word/symbol to make it a true statement :
 - (i) A triangle has sides.
 - (ii) A triangle has vertices.
 - (iii) A triangle has angles.
 - (iv) A triangle has parts.
 - (v) A triangle whose no two sides are equal is know as

Power by: VISIONet Info Solution Pvt. Ltd

- (vi) A triangle whose two sides are equal is known as
- (vii) A triangle one of whose angles is 90° is known as
- (viii) A triangle whose all the angles are of measure less than 90° is known as
- (ix) A triangle whose one angle is more than 90° is known as
- (x) A triangle whose all the sides are equal is known as
- Q.5 In each of the following, state if the statement is true (T) or false (F) :
 - (i) A triangle has three sides.
 - (ii) A triangle may have four vertices.
 - (iii) Any three line segments make up a triangle.
 - (iv) The interior of a triangle includes its vertices.
 - (v) The triangular region includes the vertices of the corresponding triangle.
 - (vi) The vertices of a triangle are three collinear points.
 - (vii)An equivalent triangle is an isosceles also.
 - (viii) Every right triangle is scalene.
 - (ix) Each acute triangle is an equilateral.
 - (x) No isosceles triangle is obtuse.
- **Q.6** Answer the following in "yes" or "no" :
 - (i) Can an isosceles triangle be a right triangle ?
 - (ii) Can a right triangle be a scalene triangle ?
 - (iii) Can a right triangle be an equilateral triangle?
 - (iv) Can an obtuse triangle be an isosceles triangle?
- **Q.7** Fill in the blanks with suitable words/symbols so as to make the statement true :
 - (i) A median of a triangle is the that joins a vertex to the ...of the opposite side.
 - (ii) Medians of a triangle are
 - (iii) The point of concurrence of the medians of a triangle is called of the triangle.

Mob no. : +91-9350679141

1

- (iv) The centroid of a Δ lies in of the triangle.
- (v) The centroid of a Δ divides each median in the ratio
- Q.8 Fill in the blanks with suitable word(s)/symbol(s) to make each of the following statements correct :
 - (i) An altitude of a triangle is a from a vertex to the opposite side.
 - (ii) The point of concurrence of the altitudes (Produced, if necessary) of a triangle is called its
 - (iii) If $\triangle ABC$ is right angled at C, then two of the altitudes of the triangle are and
 - (iv) If H is the orthocentre of ΔABC, then BH is perpendicular to the line containing the side.....
 - (v) In a right triangle, the orthocentre is at
- Q.9 If in the $\triangle ABC$, D is the mid-point of \overline{BC} , and P is foot of the perpendicular from A to the side BC, then

- (i) AD is the of $\triangle ABC$.
- (ii) AP is the on side BC.
- (iii) Is $m \overline{AD} = m \overline{AP}$?
- Q.10 Draw rough sketches for the following :
 - (i) In \triangle ABC, the medians BE and CF of the triangle.
 - (ii) In ΔDEF , the medians EB and FA.
 - (iii) In $\triangle PQR$, the altitudes PM and QN.
 - (iv) In Δ LMN, LP is an altitude lies in the exterior of the Δ .

(i) What do you understand by the term median?

- (ii) What do you understand by the term midpoint of a line segment ?
- (iii) How many medians can a triangle have ?
- (iv) Does a median lie wholly in the interior of the triangle? If you think that this is not true, draw the figure and justify your answer.
- (v) Can you find the mid-point of a line? If no, justify your answer ?
- (vi) How many altitudes can a triangle have ?
- (vii) Will an altitude always lie in the interior of the triangle? If you think that this need not be true, draw a rough sketch to show such a case.
- (viii) Can you think of a triangle in which two altitudes of the triangle are its sides?
- (ix) Can the altitudes and medians be same for a triangle ?
- Q.12 Observe the following figure and complete the table :

Fig.	Exterior Angles	Corresponding Interior Angles	Adjacent Interior Angles
(i)			
(ii)			

Q.13 In figure, find the measures of x and y.

Q.14 In figure, find the values of x, y and z.

Power by: VISIONet Info Solution Pvt. LtdWebSite : www.edubull.comMob no. : +91-9350679141

2

Q.15 In the figure, $3 \angle BAD = \angle DBA$. Find $\angle CDB$, $\angle DBC$ and $\angle ABC$.

Q.16 In the figure, find (i) $\angle ACD$ (ii) $\angle AED$

- Q.17 One of the exterior angles of a triangle is 145° and the interior opposite angles are in the ratio 2 : 3. Find the measure of angles of the triangle.
- **Q.18** The exterior angles PRS of a triangle PQR is 110° and if $\angle Q = 75^\circ$, find $\angle P$. Is $\angle PRS > \angle P$?
- Q.19 Find the value of unknown angle in the following diagrams :

Q.20	In a	triangle,	find	the	third	angle	when	two
	given angles are :							

- (i) $30^{\circ}, 60^{\circ}$
- (ii) 45°, 45°
- (iii) 25°, 70°
- Q.21 Observe the following table and state which measure forms a triangle :

	Massura of	Sum of	Does the measure,		
S.No.	angles	measure of angles	represent a ∆? if not, why?		
(i)	45°, 62°, 73°				
(ii)	46°, 54°, 80°				
(iii)	30°,40°,110°				
(iv)	45°, 61°, 75°				

Q.22 Find the value of unknown variable in each of the following triangles :

Q.23 Find the values of the x, y and z in the following figures :

Power by: VISIONet Info Solution Pvt. Ltd		
WebSite : www.edubull.com	Mob no. : +91-9350679141	3

- **Q.24** In figure, $\angle C = 50^{\circ}$ and $\angle A = 55^{\circ}$. $\angle CBD$ is the exterior angle.
 - (i) Find the interior adjacent angle.
 - (ii) Find \angle CBD.
 - (iii) Mark interior opposite angles.

- **Q.25** One of angles of a triangle is 80°. The other two angles are equal. Find the measure of these angles.
- Q.26 In the following triangles, equal sides are marked with ||, find the value of x in each case :

Power by: VISIONet Info Solution Pvt. Ltd

WebSite : www.edubull.com

(ii)

Mob no. : +91-9350679141

Q.28 In figure, make a rough sketch of the triangle and name the angles that are equal.

Q.29 All three sides of the large triangle are equal as shown in figure. Find the angles r and s.

Q.30 Find the angles x, y and z in figure.

Q.31 Find the angles f and g in fig.

- Q.32 Is it possible to have a triangle with the following side lengths ?
 (i) 2 cm, 3 cm, 5 cm (ii) 3 cm, 6 cm, 7 cm (iii) 6 cm, 3 cm, 2 cm
- Q.33 Is the sum of any two angles of a triangle always greater than the third angle ?
- **Q.34** Take any point O in the interior of a \triangle ABC in figure. Is :

- (i) OB + OC > BC?
- (ii) OC + OA > CA?
- (iii) OA + OB > AB?
- (iv) BC + CA + AB < 2 (OB + BC + OA)
- Q.35 AD is a median of triangle ABC in figure. Is AB + BC + CA > 2AD ?

- **Q.36** ABCD is a quadrilateral. Is AB + BC + CD + DA > AC + BD?
- Q.37 O is any point in the interior of a triangle PQR and QO produced meets PR at S (figure). Is

- (i) PQ + PS > OQ + OS?
- (iii) PQ + PS + SR > OQ + OS + SR?
- (iv) PQ + PR > OQ + OR?
- (v) PQ + QR + PR > OP + OQ + OR?
- Q.38 ABCD is a quadrilateral. Is AB + BC + CD + DA < 2(AC + BD)?
- **Q.39** The lengths of two sides of a triangle are 10 cm and 14 cm. Between what two measures should the length of the third side fall ?
- Q.40 How long should the hypotenuse be in the right-angled triangle in figure.

- Q.41 The sides of a certain triangles are given below. Determine which of them are right-angled triangles.
 - (i) 1.7 cm, 1.5 cm, 0.8 cm
 - (ii) 0.9 cm, 4 cm, 4.1 cm
 - (iii) 4 cm, 5.2 cm, 7 cm
 - (iv) 2.4 cm, 3.2 cm, 7.9 cm
 - (v) 1.8 cm, 8 cm, 8.2 cm
 - (vi) 5 cm, 5.25 cm, 7.25 cm
- Q.42 Find the lengths of the unknown side in these right-angled triangles.

Q.43 Find the unknown length x in figure.

Q.44 PQR is a right-angled triangle right-angled at P. If PQ = 14 cm, PR = 48 cm, find QR.

ANSWER KEY

1. (i) Scalene tria	angle (ii) Equ	ilateral triangle	(iii) Isosceles tri	angle		
2. (i) Obtuse-ang	gled triangle	(ii) Right-angled	l triangle (iii) Ac	ute-angled triang	le	
3. (a) Sides : (i)	Isosceles triangl	e(ii) Scalene triar	ngle (iii) Iso	sceles triangle	(iv) Scalene tria	ngle
(v) Isosceles	triangle	(vi) Isosceles tri	angle			
(b) Angles :	(i) Acute-angled	triangle (ii) Rig	ht-angled triangle	e (iii) Obtuse-ang	led triangle	
(iv) Acute-an	ngled triangle	(v) Obtuse-angle	ed triangle	(vi) Right-angle	d triangle	
4. (i) three	(ii) three	(iii) three	(iv) six	(v) scalene	(vi) isosceles	
(vii) right tri	angle	(viii) acute trian	gle (ix) obt	use triangle	(x) equilateral	
5. (i) T	(ii) F	(iii) F	(iv) F	(v) T	(vi) F	(vii) F
(viii) F	(ix) F	(x) F				
6. (i) Yes	(ii) Yes	(iii) No	(iv) Yes			
7. (i) Line segme	ent, mid-point	(ii) concurrent	(iii) centroid	(iv) interior	(v) 2 : 1	
8. (i) Line segme	ent, perpendicula	r (ii) orth	ocentre	(iii) AC and BC	(iv) AC	
(v) the vertex	x containing the	right angle				
9. (i) Median	(ii) Perpendicula	ar (iii) No	$m\overline{AD} > m\overline{AP}$			
11. (iii) 3	(iv) Yes	(v) No, a line ha	s no end points.	(vi) 3 (vii) No)	
(viii) Yes, (r	ight triangle)	(ix) Yes (in an e	quilateral triangle	e)		
12. For fig. (i) \angle	BAF; ∠ABC, ∠	ACB; ∠BAC	∠CBE; ∠BAC,	∠BCA; ∠ABC	∠ACD; ∠ABC,	∠BAC; ∠ACB
For fig. (ii) 2	∠FDR; ∠DEF, ∠	∠DFE; ∠EDF	∠DEQ; ∠EDF,	∠DFE; ∠DEF	\angle EFP; \angle EDF, \angle	∠DEF; ∠EFD
13. x = 105°, y =	= 45°	14. x = 100°, y =	= 145°, z = 35°	15. 72°, 60°, 114	4° 16. (i) 1	135° (ii) 165°
17. 58°, 87°, 35°		18. 35°, yes	19. (i) 110°	(ii) 109°	(iii) 60°	
20. (i) 90°	(ii) 90° (iii) 85°	^o 21. (i) 180°, yes	(ii) 180°, yes	(iii) 180°, yes	(iv) 181°, No	
22. (i) 80°	(ii) 45°	(iii) 25°	23. (i) 60°, 50°,	70° (ii) 105	°, 105°, 45° (iii)	60°, 60°, 60°
24. (i) 75°	(ii) 105°	(iii) $\angle A$ and $\angle C$	25. 50°, 50°	26. (i) 60°	(ii) 45° (iii) 60°	' (iv) 100°
27. (i) 80°, 130°	(ii) 90°, 135°	(iii) 55°, 125°	28. (i) ∠B, ∠C	(ii) $\angle Q$, $\angle R$	(iii) ∠D, ∠E	(iv) $\angle B$, $\angle C$
29. 60°, 30°	30. $x = y = 65^{\circ}$,	$z = 120^{\circ}$	31. 80°, 140°	32. (i) No	(ii) Yes	(iii) No
33. No	34. (i) Yes	(ii) Yes	(iii) Yes	(iv) No	35. Yes	36. Yes
37. (i) Yes	(ii) Yes	(iii) Yes	(iv) Yes	(v) Yes	38. No	
39. Between 4 cr	m and 24 cm.	40. 13 feet	41. (i), (ii) , (v)	and (vi)		
42. (i) 5 cm	(ii) 12 cm	(iii) 25 cm	(iv) 8 cm	(v) 9 cm	43. 96	44. 50 cm
Power by: VISIONe WebSite : www.eduk	t Info Solution Pvt. I bull.com	Ltd Mob no. : +	91-9350679141			7

Power by: VISIONet Info Solution Pvt. Ltd WebSite : www.edubull.com

Mob no. : +91-9350679141

EXERCISE # 2

- Q.1 An exterior angle of a triangle is of measure 80° and one of its interior angles is of measure 45°. Find the measure of the other interior opposite angle.
- **Q.2** If the two interior opposite angles of an exterior angle are complementary, then what is the measure of the exterior angle? Also write the type of the Δ .
- **Q.3** If the measure of two interior opposite angles of an exterior angle are equal in magnitude and also complementary, then find the measure of the exterior angle and interior opposite angles.
- Q.4 The two interior opposite angles of an extrior angle of a triangle are 20° and 70°. Find the measure of the exterior angle.
- Q.5 Comment on the interior opposite angles, when the exterior angle is :
 - (i) an acute angle
 - (ii) an obtuse angle
 - (iii) a right angle
- Q.6 Can the exterior angles of a triangle be a straight angle ?
- Q.7 An exterior angle of a triangle is 135° and the interior opposite angles are in the ratio 1 : 4. Find the angles of the triangle.
- Q.8 In the following figure, find (i) $m \angle 1$ (ii) $m \angle 2$ (iii) $m \angle 3$ (iv) $m \angle 4$

65° 300

Q.9 In the figure, find the values of x, y and z.

- **Q.10** Three angles of a Δ are equal. Find the angles.
- Q.11 In the figure, BE \perp BC & \angle C = 70°, \angle EBD = 40°. Find \angle A and \angle CBA.

Q.12 In figure, find sum of the angles : $\angle DOA + \angle OAB + \angle ABC + \angle BCD + \angle CDO$. [Hint : Sum of angles asked in the question is equal to sum of the angles of all the triangles in the figure.]

- **Q.13** In a right-angled Δ , one acute angle is of 35°, find the other acute angle.
- **Q.14** The angles of a Δ are in the ratio 2 : 3 : 4. Find the angles.
- **Q.15** In a right-angled Δ , one acute angle is twice the other, find the measure of angles.
- **Q.16** In a Δ , two angles are of equal measure and the third angle is 20° more than equal angles. Find the angles.

Power by: VISIONet Info Solution Pvt. Ltd		
WebSite : www.edubull.com	Mob no. : +91-9350679141	9

- **Q.17** The acute angles of a right-angled Δ are in the ratio 2 : 3. Find the angles of the triangle.
- **Q.18** The three angles of a Δ are in the ratio 1 : 1 : 1. Find all the angles of the triangle. Classify the triangle in two different ways.
- Q.19 Think and state whether the following statements are true (T) or false (F). Also justify your answer.
 - (i) A triangle can have two right angles.
 - (ii) A triangle can have two obtuse angles.
 - (iii) Each angle of a triangle can be less than 60°.
 - (iv) A triangle can have all the three angles equal to 60° .
- **Q.20** In the figure, $\angle BAC = 3 \angle ABC$, and $\angle ACD = 100^{\circ}$, find $\angle ABC$:

- Q.21 A 10.10 m long ladder placed against a wall. The ladder reached a window 9.9 m height from the ground. Find the distance of the foot of the ladder from the wall.
- Q.22 Two poles of heights 6 m and 11 m stand vertically on a plane ground. If the distance between their feet is 12 m, determine the distance between their tops.
- Q.23 If the square of the hypotenuse of an isosceles right-angled triangle is 512 cm^2 , find the length of each side.
- Q.24 A ladder reaches a window which is 12 m above the ground on one side of the street. Keeping its foot at the same point, the ladder is turned to the other side of the street to reach a window 9 cm height. Find the width of the street if the length of the ladder is 15 m.

- Q.25 Using Pythagoras theorem, find the length of second diagonal of a rhombus whose side is 5 cm and one of the diagonals is 6 cm.
- **Q.26** A man goes 120 m due east and then 160 m due north. How far is he from the starting point ?
- **Q.27** ABC is an isosceles right-angled triangle, rightangled at C. Prove that $AB^2 = 2AC^2$.
- Q.28 ABC is a triangle, right angled at B. If AB = 12 cm and BC = 9 cm, find AC.
- Q.29 PQR is a triangle, right angled at R. If PQ = 26 cm, PR = 10 cm, find QR.
- Q.30 A ladder 25 m long reaches a window of a building 20 m above the ground (see figure below). Determine the distance of the foot of the ladder from the building.

- **Q.31** Which of the following can be the sides of a right triangle :
 - (i) 24 cm, 7 cm, 25 cm
 - (ii) 1.6 cm, 4 cm, 3.8 cm
 - (iii) 4 cm, 3 cm, 5 cm
- **Q.32** A tree is broken at a height of 2.5 m from the ground and its top touches the ground at a distance of 6 m from the base of the tree. Find the original height of the tree.
- **Q.33** Angles B and C of $\triangle ABC$ are 40° and 50°. Write which of the following is true : (i) $AB^2 + BC^2 = AC^2$ (ii) $AC^2 + BC^2 = AB^2$ (iii) $AB^2 + AC^2 = BC^2$
- Q.34 Find the perimeter of the rectangle whose length and a diagonal are 24 cm and 25 cm respectively.

Power by: VISIONet Info Solution Pvt. Ltd		
WebSite : www.edubull.com	Mob no. : +91-9350679141	10

- Q.35 A ladder 15 dm long reaches a window which is 12 dm above the ground on one side of a street. Keeping its foot at the same point, the ladder is turned to the other side of the street to reach a window 9 dm high. Find the width of the street.
- Q.36 A man goes 12 m due west and then 5 m due south. How far is he away from his initial position ?
- Q.37 Find the perimeter of the rhombus whose diagonals measure 24 cm and 10 cm.
- Q.38 In each of the following there are three positive numbers. State if these numbers could possibly be the lengths of the sides of a triangle :

- Q.39 In the following figure, D is the mid point on the side BC of \triangle ABC. Complete each of the following statements using symbol '=', '<' or '>' so as to make it true :
 - (i) AD _____ AB + BD
 - (ii) AD _____ AC + DC

R

(iii) AD
$$\frac{1}{2}$$
 (AB + AC + BC)

D

- **Q.40** S is a point in the interior of $\triangle PQR$ as shown in figure. State which of the following statements are true or false :
 - (i) PS + QS < PQ(ii) PS + SR > PR(iii) QS + SR = QRP R
- Q.41 The lengths of two sides of a triangle are 12 cm and 15 cm. Between what two measures should be length of the third side fall?
- **Q.42** In figure, PQR is a triangle and S is any point in its interior. Show that SQ + SR < PQ + PR.

[**Hint.** Produce QS which intersects PR at point T on producing]

ANSWER KEY 1. 35° **2.** 90°, right triangle **3.** 90°, 45°, 45° 4.90° 6. No 7. 27°, 108°, 45° **8.** (i) 100° (ii) 80° **9.** $x = 110^{\circ}$, $y = 70^{\circ}$, $z = 110^{\circ}$ (iii) 50° (iv) 130° **10.** 60°, 60°, 60° 11. 60°, 50° **13.** 55° 14. 40°, 60°, 80° **12.** 540° **16.** $53\frac{1}{3}^{\circ}$, $53\frac{1}{3}^{\circ}$, $73\frac{1}{2}^{\circ}$ 15.30°, 60° 17. 36°, 54°, 90° **18.** 60°, 60°, 60° Acute-angled triangle (on the basis of angles) and Equilateral triangle (on the basis of sides) 19. (i) False (ii) False (iii) False (iv)True **20.** 25° **21.** 2m **22.** 13 m **23.** Each side = 16 cm **24.** 21 m 25.8 cm **26.** 200 m **28.** 15 cm **29.** 24 cm **30.** 15 m **31.** (i) Yes (ii) No (iii) Yes **32.** 9 m **33.** (iii) **34.** 62 cm **35.** 21 dm **36.** 13 m (iv) no **37.** 52 cm 38. (i) Yes (ii) Yes (iii) Yes **39.** (i) < (ii) < (iii) < 40. (i) F (ii) T (iii) F **41.** Between 3 cm and 27 cm