EXERCISE-I

Properties of gases

- 1. Which one of the following statements is not correct about the three states of matter *i.e.* solid, liquid and gaseous
 - (A) Molecules of a solid possess least energy whereas those of a gas possess highest energy
 - (B) The density of solid is highest whereas that of gases is lowest
 - (C) Gases like liquids possess definite volumes
 - (D) Molecules of a solid possess vibratory motion
- **2.** The temperature and pressure at which ice, liquid water and water vapour can exist together are
 - (A) $0^{\circ}C, 1$ atm (B) $2^{\circ}C, 4.7$ atm
 - (C) $0^{\circ}C, 4.7 mm$ (D) $-2^{\circ}C, 4.7 mm$
- **3.** Which of the following is true about gaseous state
 - (A) Thermal energy = Molecular attraction
 - (B) Thermal energy >> Molecular attraction
 - (C) Thermal energy << Molecular attraction
 - (D) Molecular forces >> Those in liquids
- 4. Kinetic energy of molecules is highest in(A) Gases (B) Solids
 - (C) Liquids (D) Solutions
- 5. Which of the following statement is correct
 - (A) In all the three states the molecules possess random translational motion
 - (B) Gases cannot be converted into solids without passing through liquid state
 - (C) One of the common property of liquids and gases is viscosity
 - (D) According to Boyle's law V/P is constant at constant T
- 6. 2gm of O_2 at $27^{\circ}C$ and 760mm of Hg pressure has volume (A) 1.5 *lit*. (B) 2.8 *lit*.

(C) 11.2 *lit*. (D) 22.4 *lit*.

- 7. Pressure of a gas in a vessel can be measured by
 - (A) Barometer (B) Manometer
 - (C) Stalgometer (D) All the baove
- 8. Volume occupied by a gas at one atmospheric pressure and $0^{\circ}C$ is V mL. Its volume at 273 K will be
 - (A) *V ml* (B) *V*/2 *ml* (C) 2 *V* (D) None of these
- **9.** Which one of the following statements is wrong for gases
 - (A) Gases do not have a definite shape and volume
 - (B) Volume of the gas is equal to the volume of the container confining the gas
 - (C) Confined gas exerts uniform pressure on the walls of its container in all directions
 - (D) Mass of the gas cannot be determined by weighing a container in which it is enclosed
- **10.** Which of the following exhibits the weakest intermolecular forces

(A)	NH_3		(B)	HCl

(C)	Не	(D)	H_2O

Ideal gas equation and laws

- 11. A 10 g of a gas at atmospheric pressure is cooled from 273°C to 0°C keeping the volume constant, its pressure would become
 (A) 1/2 atm
 (B) 1/273 atm
 (C) 2 atm
 (D) 273 atm
- **12.** Pressure remaining the same, the volume of a given mass of an ideal gas increases for every degree centigrade rise in temperature by definite fraction of its volume at

(A) $0^{\circ} C$

- (B) Its critical temperature
- (C) Absolute zero
- (D) Its Boyle temperature

13. A certain sample of gas has a volume of 0.2 *litre* measured at 1 *atm*. pressure and $0^{\circ}C$. At the same pressure but at $273^{\circ}C$, its volume will be

(A) 0.4 <i>litres</i>	(B) 0.8 <i>litres</i>
(C) 27.8 <i>litres</i>	(D) 55.6 <i>litres</i>

14. 400 cm^3 of oxygen at 27° C were cooled to $-3^{\circ}C$ without change in pressure. The contraction in volume will be

(A) 40 cm^3	(B) 30 cm^3
(C) 44.4 cm^3	(D) 360 <i>cm</i>

- **15.** The pressure *p* of a gas is plotted against its absolute temperature *T* for two different constant volumes, V_1 and V_2 . When $V_1 > V_2$, the
 - (A) Curves have the same slope and do not intersect
 - (B) Curves must intersect at some point other than T = 0
 - (C) Curve for V_2 has a greater slope than that for V_1
 - (D) Curve for V_1 has a greater slope than that for V_2
- 16. Two closed vessels of equal volume containing air at pressure P_1 and temperature T_1 are connected to each other through a narrow tube. If the temperature in one of the vessels is now maintained at T_1 and that in the other at T_2 , what will be the pressure in the vessels

(A)
$$\frac{2P_1T_1}{T_1 + T_2}$$
 (B) $\frac{T_1}{2P_1T_2}$
(C) $\frac{2P_1T_2}{T_1 + T_2}$ (D) $\frac{2p_1}{T_1 + T_2}$

- **17.** "One gram molecule of a gas at N.T.P. occupies 22.4 *litres.*" This fact was derived from
 - (A) Dalton's theory
 - (B) Avogadro's hypothesis
 - (C) Berzelius hypothesis
 - (D) Law of gaseous volume

- **18.** In a closed flask of 5 *litres*, 1.0 g of H_2 is heated from 300 to 600 K. which statement is not correct
 - (A) Pressure of the gas increases
 - (B) The rate of collision increases
 - (C) The number of moles of gas increases
 - (D) The energy of gaseous molecules increases
- 19. Which one of the following statements is false
 - (A) Avogadro number = 6.02×10^{21}
 - (B) The relationship between average velocity (\overline{v}) and root mean square velocity (u) is $\overline{v} = 0.9213 u$
 - (C) The mean kinetic energy of an ideal gas is independent of the pressure of the gas
 - (D) The root mean square velocity of the gas can be calculated by the formula $(3RT/M)^{1/2}$
- **20.** The compressibility of a gas is less than unity at STP. Therefore
 - (A) $V_m > 22.4 \ litres$ (B) $V_m < 22.4 \ litres$
 - (C) $V_m = 22.4 \ litres$ (D) $V_m = 44.8 \ litres$
- **21.** Select one correct statement. In the gas equation, PV = nRT
 - (A) n is the number of molecules of a gas
 - (B) *V* denotes volume of one mole of the gas
 - (C) n moles of the gas have a volume V
 - (D) *P* is the pressure of the gas when only one mole of gas is present
- **22.** The correct value of the gas constant R is close to
 - (A) 0.082 litre-atmopshere K
 - (B) 0.082 *litre-atmosphere* K^{-1} mol⁻¹
 - (C) 0.082 *litre-atmosphere*⁻¹ *K mole*⁻¹
 - (D) 0.082 $litre^{-1}$ atmosphere⁻¹ K mol
- **23.** S.I. unit of gas constant *R* is
 - (A) 0.0821 *litre atm* K^{-1} *mole*⁻¹
 - (B) 2 calories K^{-1} mole⁻¹
 - (C) 8.31 *joule* K^{-1} *mole*⁻¹
 - (D) None

- **24.** Gas equation PV = nRT is obeyed by (A) Only isothermal process
 - (B) Only adiabatic process
 - (C) Both (A) and (B)
 - (D) None of these
- **25.** For an ideal gas number of moles per litre in terms of its pressure *P*, gas constant *R* and temperature *T* is
 - (A) PT/R (B) PRT

(C) P/RT (D) RT/P

- 26. Two separate bulbs contain ideal gases A and B. The density of gas A is twice that of gas B. The molecular mass of A is half that of gas B. The two gases are at the same temperature. The ratio of the pressure of A to that of gas B is
 - (A) 2 (B) 1/2
 - (C) 4 (D) 1/4
- 27. 16 g of oxygen and 3 g of hydrogen are mixed and kept at 760 mm pressure and $0^{\circ}C$. The total volume occupied by the mixture will be nearly

(A) 22.4 <i>litres</i>	(B) 33.6 <i>litres</i>
(C) 448 <i>litres</i>	(D) 44800 ml

28. Pure hydrogen sulphide is stored in a tank of $100 \ litre$ capacity at $20^{\circ} C$ and $2 \ atm$ pressure. The mass of the gas will be

(A) 34 g	(B) 340 g
(C) 282.4 g	(D) 28.24 g

29. At N.T.P. the volume of a gas is found to be 273 ml. What will be the volume of this gas at 600 mm Hg and 273° C

(A) 391.8 <i>mL</i>	(B) 380 ml
(C) 691.6 <i>ml</i>	(D) 750 ml

30. One *litre* of a gas weighs 2 g at 300 K and 1 *atm* pressure. If the pressure is made 0.75 *atm*, at which of the following temperatures will one *litre* of the same gas weigh one *gram*

(A) 450 <i>K</i>	(B) 600 <i>K</i>

(D) 900 K

31. If three unreactive gases having partial pressures P_A , P_B and P_C and their moles are 1, 2 and 3 respectively then their total pressure will be

(A)
$$P = P_A + P_B + P_C$$
 (B) $P = \frac{P_A + P_B + P_C}{6}$
(C) $P = \frac{\sqrt{P_A + P_B + P_C}}{3}$ (D) None

32. Dalton's law of partial pressure will not apply to which of the following mixture of gases

(A) H_2 and SO_2 (B) H_2 and Cl_2 (C) H_2 and CO_2 (D) H_2 and SO_2

- **33.** Which of the following mixtures of gases does not obey Dalton's law of partial pressure
 - (A) O_2 and CO_2 (B) N_2 and O_2
 - (C) Cl_2 and O_2 (D) NH_3 and HCl
- **34.** To which of the following gaseous mixtures is Dalton's law not applicable

(A) $Ne + He + SO_2$	(B) $NH_3 + HCl + HBr$
(C) $O_2 + N_2 + CO_2$	(D) $N_2 + H_2 + O_2$

- **35.** Equal amounts of two gases of molecular weight 4 and 40 are mixed. The pressure of the mixture is 1.1 *atm*. The partial pressure of the light gas in this mixture is
 - (A) 0.55 atm
 (B) 0.11 atm
 (C) 1 atm
 (D) 0.12 atm
- **36.** A gas diffuse 1/5 times as fast as hydrogen. Its molecular weight is

(A) 50	(B) 25
(C) $25\sqrt{2}$	(D) 50√2

- **37.** The molecular weight of a gas which diffuses through a porous plug at 1/6th of the speed of hydrogen under identical conditions is
 - (A) 27 (B) 72 (C) 36 (D) 48
- **38.** Molecular weight of a gas that diffuses twice as rapidly as the gas with molecular weight 64 is
 - (A) 16 (B) 8
 - (C) 64 (D) 6.4

States of Matter

39. The densities of hydrogen and oxygen are 0.09 and 1.44 $g L^{-1}$. If the rate of diffusion of hydrogen is 1 then that of oxygen in the same units will be

(A) 4	(B) 1/4
(C) 16	(D) 1/16

40. If rate of diffusion of *A* is 5 times that of *B*, what will be the density ratio of *A* and *B*

(A) 1/25	(B) 1/5
(C) 25	(D) 4

41. If 4 g of oxygen diffuse through a very narrow hole, how much hydrogen would have diffused under identical conditions

(A) 16 g	(B) 1 g
	–

(C) 1/4 g	(D) 64 g
-----------	----------

42. A gas diffuse at a rate which is twice that of another gas *B*. The ratio of molecular weights of *A* to *B* is

(A) 1.0	(B) 0.75
(C) 0.50	(D) 0.25

43. Two grams of hydrogen diffuse from a container in 10 *minutes*. How many *grams* of oxygen would diffuse through the same container in the same time under similar conditions

(A) 0.5 g			(B) 4 g
(C) 6 g			(D) 8 g
	•	1:00	0 1

44. The rate of diffusion of methane at a given temperature is twice that of *X*. The molecular weight of *X* is

(A) 64.0	(B) 32.0
(C) 40.0	(D) 80.0

45. $X \ ml$ of H_2 gas effuses through a hole in a container in 5 *seconds*. The time taken for the effusion of the same volume of the gas specified below under identical condition is

(A) 10 seconds : He	(B) 20 seconds : O_2

(C) 25 seconds : CO (D) 55 seconds : CO_2 46. Volume of 4.4 g of CO_2 at NTP is

	0	2
(A) 22.4 <i>L</i>		(B) 44.8 <i>L</i>
(C) 2.24 <i>L</i>		(D) 4.48 <i>L</i>

47.	The energy of an ideal gas depends only on its	
	(A) Pressure	(B) Volume
	(C) Number of moles	(D) Temperature
48.	A bottle of cold drink	contains 200 ml liquid
	in which CO_2 is 0.1	molar. Suppose CO ₂
	behaves like an ideal g	gas, the volume of the
	dissolved CO_2 at STP i	S
	(A) 0.224 <i>litre</i>	(B) 0.448 <i>litre</i>
	(C) 22.4 <i>litre</i>	(D) 2.24 <i>litre</i>

49. The vapour density of a gas is 11.2. The volume occupied by 11.2 g of this gas at N.T.P. is
(A) 1 L
(B) 11 2 L

(C) 22.4
$$L$$
 (D) 20 L

- **50.** A pre-weighed vessel was filled with oxygen at N.T.P. and weighted. It was then evacuated, filled with SO_2 at the same temperature and pressure, and again weighted. The weight of oxygen will be
 - (A) The same as that of SO_2

(B)
$$\frac{1}{2}$$
 that of SO_2

(C) Twice that of SO_2

- (D) One fourth that of SO_2
- **51.** At what pressure a quantity of gas will occupy a volume of 60 ml, if it occupies a volume of 100ml at a pressure of 720mm? (while temperature is constant) :
 - (A) 700 mm
 (B) 800 mm
 (C) 100 mm
 (D) 1200 mm
- **52.** At constant temperature and pressure which gas will diffuse first H_2 or O_2 ?
 - (A) Hydrogen
 - (B) Oxygen
 - (C) Both will diffuse in same time
 - (D) None of the above
- 53. When a jar containing gaseous mixture of equal volumes of CO_2 and H_2 is placed in a solution of sodium hydroxide, the solution level will
 - (A) Rise (B) Fall
 - (C) Remain constant (D) Become zero

54. At S.T.P. $1g CaCO_3$ on decomposition gives CO_2

(A) 22.4 litre	(B) 2.24 litre
(C) 0.224 litre	(D) 11.2 litre

55. At NTP, the density of a gas, whose molecular weight is 45 is

(A) 44.8 gm/litre	(B) 11.4 gm/litre
-------------------	-------------------

(C) 2 gm/ litre (D) 3 gm/litre

- **56.** What is the ratio of diffusion rate of oxygen and hydrogen
 - (A) 1 : 4 (B) 4 : 1
 - (C) 1 : 8 (D) 8 : 1
- **57.** The maximum number of molecules is present in (A) 0.5 g of H_2 gas
 - (B) 10 g of O_2 gas
 - (C) 15 L of H_2 gas at STP
 - (D) 5 L of N_2 gas at STP
- **58.** One litre oxygen gas at STP will weigh
 - (A) 1.43 g (B) 2.24 g
 - (C) 11.2 g (D) 22.4 g
- 59. How will you separate mixture of two gases(A) Fractional distillation technique
 - (B) Grahams law of diffusion technique
 - (C) Osmosis
 - (D) Chromatography
- **60.** The rate of diffusion of hydrogen gas is
 - (A) 1.4 times to He gas (B) Same as He gas
 - (C) 5 times to *He* gas (D) 2 times to *He* gas

Molecular theory of gases and collisions

61. According to kinetic theory of gases, the energy per mole of a gas is equal to

(A) 1.5 <i>RT</i>	(B) <i>RT</i>
(C) 0.5 <i>RT</i>	(D) 2.5 <i>RT</i>

62. Internal energy and pressure of a gas per unit volume are related as

(A)
$$P = \frac{2}{3}E$$
 (B) $P = \frac{3}{2}E$

(C)
$$P = \frac{1}{2}E$$
 (D) $P = 2E$

- 63. The translational kinetic energy of an ideal gas depends only on its(A) Pressure(B) Force
 - (C) Temperature (D) Molar mass
- **64.** Helium atom is two times heavier than a hydrogen molecule at 298 K, the average kinetic energy of helium is
 - (A) Two times that of a hydrogen molecule
 - (B) Same as that of a hydrogen molecule
 - (C) Four times that of a hydrogen molecule
 - (D) Half that of a hydrogen molecule
- **65.** Which of the following is valid at absolute zero
 - (A) Kinetic energy of the gas becomes zero but the molecular motion does not become zero
 - (B) Kinetic energy of the gas becomes zero and molecular motion also becomes zero
 - (C) Kinetic energy of the gas decreases but does not become zero
 - (D) None of the above
- **66.** With increase of pressure, the mean free path
 - (A) Decreases (B) Increases
 - (C) Does not change (D) Becomes zero
- **67.** Which one of the following statements is NOT true about the effect of an increase in temperature on the distribution of molecular speeds in a gas
 - (A) The most probable speed increases
 - (B) The fraction of the molecules with the most probable speed increases
 - (C) The distribution becomes broader
 - (D) The area under the distribution curve remains the same as under the lower temperature
- **68.** If *P*, *V*, *M*, *T* and *R* are pressure, volume, molar mass, temperature and gas constant respectively, then for an ideal gas, the density is given by

(A)
$$\frac{RT}{PM}$$
 (B) $\frac{P}{RT}$
(C) $\frac{M}{V}$ (D) $\frac{PM}{RT}$

69.	An	ideal	gas	will	have	maximum	density
	whe	en					

- (A) P = 0.5 atm, T = 600 K
- (B) P = 2 atm, T = 150 K
- (C) P = 1 atm, T = 300 K
- (D) P = 1.0 atm, T = 500 K
- 70. If the inversion temperature of a gas is $-80^{\circ}C$, then it will produce cooling under Joule-Thomson effect at
 - (A) 298 *K* (B) 273 *K*
 - (C) 193 *K* (D) 173 *K*
- 71. Absolute zero is defined as the temperature
 - (A) At which all molecular motion ceases
 - (B) At which liquid helium boils
 - (C) At which ether boils
 - (D) All of the above
- 72. Consider the following statements :
 - (1) Joule-Thomson experiment is isoenthalpic as well as adiabatic.
 - (2) A negative value of μ_{JT} (Joule Thomson coefficient corresponds to warming of a gas on expansion.
 - (3) The temperature at which neither cooling nor heating effect is observed is known as inversion temperature.

Which of the above statements are correct

- (A) 1 and 2 (B) 1 and 3
- (C) 2 and 3 (D) 1, 2 and 3
- **73.** Vibrational energy is
 - (A) Partially potential and partially kinetic
 - (B) Only potential
 - (C) Only kinetic
 - (D) None of the above
- 74. At the same temperature and pressure, which of the following gases will have the highest kinetic energy per mole
 - (A) Hydrogen (B) Oxygen

(C) Methane (D) All the same

- **75.** Dimensions of pressure are the same as that of (A) Energy
 - (B) Force
 - (C) Energy per unit volume
 - (D) Force per unit volume

363 1	
Molecular	sneeds
moncular	specus

- 76. At 27° C, the ratio of rms velocities of ozone to oxygen is
 - (A) $\sqrt{3/5}$ (B) $\sqrt{4/3}$ (C) $\sqrt{2/3}$ (D) 0.25
- 77. The average kinetic energy of an ideal gas per molecule in SI units at $25^{\circ}C$ will be (A) $6.17 \times 10^{-21} kJ$ (B) $6.17 \times 10^{-21} J$
 - (C) $6.17 \times 10^{-20} J$ (D) $6.17 \times 10^{-20} J$
- **78.** At what temperature the *RMS* velocity of SO_2 be same as that of O_2 at 303 *K*
 - (A) 273 *K* (B) 606 *K* (C) 303 *K* (D) 403 *K*
- **79.** Among the following gases which one has the lowest root mean square velocity at $25^{\circ} C$
 - (A) SO_2 (B) N_2 (C) O_2 (D) Cl_2
- 80. The root mean square velocity of an ideal gas in a closed container of fixed volume is increased from $5 \times 10^4 \ cm \ s^{-1}$ to $10 \times 10^4 \ cm \ s^{-1}$. Which of the following statement correctly explains how the change is accomplished
 - (A) By heating the gas, the temperature is doubled
 - (B) By heating the gas, the pressure is quadrupled (*i.e.* made four times)
 - (C) By heating the gas, the temperature is quadrupled
 - (D) By heating the gas, the pressure is doubled
- **81.** The ratio between the root mean square velocity of H_2 at 50 K and that of O_2 at 800 K is

(A) 4	(B) 2
(C) 1	(D) 1/4

82. The root mean square velocity of an ideal gas at constant pressure varies density (D) as

(A) d^2	(B) <i>d</i>
(C) \sqrt{d}	(D) $1/\sqrt{d}$

- **83.** Consider a mixture of SO_2 and O_2 kept at room temperature. Compared to the oxygen molecule, the SO_2 molecule will hit the wall with
 - (A) Smaller average speed
 - (B) Greater average speed
 - (C) Greater kinetic energy
 - (D) Greater mass
- 84. The *rms* speed of N_2 molecules in a gas is *u*. If the temperature is doubled and the nitrogen molecules dissociate into nitrogen atoms, the *rms* speed becomes
 - (A) u/2 (B) 2u(C) 4u (D) 14u
- **85.** Choose the correct arrangement, where the symbols have their usual meanings
 - (A) $\overline{u} > u_p > u_{rms}$ (B) $u_{rms} > \overline{u} > u_p$ (C) $u_p > \overline{u} > u_{rms}$ (D) $u_p > u_{rms} > \overline{u}$
- **86.** The ratio of most probable velocity to that of average velocity is
 - (A) $\pi/2$ (B) $2/\pi$ (C) $\sqrt{\pi}/2$ (D) $2/\sqrt{\pi}$
- 87. The r.m.s. velocity of a certain gas is v at 300K. The temperature, at which the r.m.s. velocity becomes double
 - (A) 1200*K* (B) 900*K*
 - (C) 600K (D) 150K
- **88.** The r.m.s. velocity of a gas depends upon
 - (A) Temperature only
 - (B) Molecular mass only
 - (C) Temperature and molecular mass of gas
 - (D) None of these
- **89.** What is the pressure of 2 mole of NH_3 at

 $27^{\circ}C$ when its volume is 5 litre in vander Waal's equation (a = 4.17, b = 0.03711)

- (A) 10.33 atm (B) 9.33 atm
- (C) 9.74 atm (D) 9.2 atm

90. The root mean square velocity of one mole of a monoatomic having molar mass M is U_{rms} . The relation between the average kinetic energy (E) of the U_{rms} is

(A)
$$U_{rms} = \sqrt{\frac{3E}{2M}}$$
 (B) $U_{rms} = \sqrt{\frac{2E}{3M}}$
(C) $U_{rms} = \sqrt{\frac{2E}{M}}$ (D) $U_{rms} = \sqrt{\frac{E}{3M}}$

Real gases and Vander waal's equation

- **91.** Any gas shows maximum deviation from ideal gas at
 - (A) $0^{\circ}C$ and 1 atmospheric pressure
 - (B) $100^{\circ}C$ and 2 atmospheric pressure
 - (C) $-100^{\circ}C$ and 5 atmospheric pressure
 - (D) $500^{\circ} C$ and 1 atmospheric pressure
- **92.** The temperature at which the second virial coefficient of real gas is zero is called
 - (A) Critical temperature
 - (B) Eutetic point
 - (C) Boiling point
 - (D) Boyle's temperature
- **93.** When is deviation more in the behaviour of a gas from the ideal gas equation PV = nRT
 - (A) At high temperature and low pressure
 - (B) At low temperature and high pressure
 - (C) At high temperature and high pressure
 - (D) At low temperature and low high pressure
- **94.** Vander Waal's constants '*a*' and '*b*' are related with.... respectively
 - (A) Attractive force and bond energy of molecules
 - (B) Volume and repulsive force of molecules
 - (C) Shape and repulsive forces of molecules
 - (D) Attractive force and volume of the molecules
- **95.** Gas deviates from ideal gas nature because molecules
 - (A) Are colourless
 - (B) Attract each other
 - (C) Contain covalent bond
 - (D) Show Brownian movement

- **96.** The temperature at which real gases obey the ideal gas laws over a wide range of pressure is called
 - (A) Critical temperature
 - (B) Boyle temperature
 - (C) Inversion temperature
 - (D) Reduced temperature
- **97.** At low pressure, the Vander Waal's equation is reduced to

(A)
$$Z = \frac{pV_m}{RT} = 1 - \frac{ap}{RT}$$
 (B) $Z = \frac{pV_m}{RT} = 1 + \frac{b}{RT}p$
(C) $pV_m = RT$ (D) $Z = \frac{pV_m}{RT} = 1 - \frac{a}{RT}$

98. At high temperature and low pressure, the Vander Waal's equation is reduced to

(A)
$$\left(p + \frac{a}{V_m^2}\right)(V_m) = RT$$

(B) $pV_m = RT$
(C) $p(V_m - b) = RT$
(D) $\left(p + \frac{a}{V_m^2}\right)(V_m - b) = RT$

- **99.** When helium is allowed to expand into vacuum, heating effect is observed. Its reason is that
 - (A) Helium is an ideal gas
 - (B) Helium is an inert gas
 - (C) The inversion temperature of helium is very low
 - (D) The boiling point of helium is the lowest among the elements
- 100. In van der Waal's equation of state of the gas law, the constant 'b' is a measure of
 - (A) Volume occupied by the molecules
 - (B) Intermolecular attraction
 - (C) Intermolecular repulsions
 - (D) Intermolecular collisions per unit volume

Liquefaction of gases

- **101.**Which set of conditions represents easiest way to liquefy a gas
 - (A) Low temperature and high pressure
 - (B) High temperature and low pressure
 - (C) Low temperature and low pressure
 - (D) High temperature and high pressure
- **102.**Adiabatic demagnetisation is a technique used for
 - (A) Adiabatic expansion of a gas
 - (B) Production of low temperature
 - (C) Production of high temperature
 - (D) None
- 103. An ideal gas can't be liquefied because
 - (A) Its critical temperature is always above $0^{\circ} C$
 - (B) Its molecules are relatively smaller in size
 - (C) It solidifies before becoming a liquid
 - (D) Forces operative between its molecules are negligible
- **104.**However great the pressure, a gas cannot be liquefied above its
 - (A) Boyle temperature
 - (B) Inversion temperature
 - (C) Critical temperature
 - (D) Room temperature
- **105.**An ideal gas obeying kinetic theory of gases can be liquefied if
 - (A) Its temperature is more than critical temperature T_c
 - (B) Its pressure is more than critical pressure P_c
 - (C) Its pressure is more than P_c at a temperature less than T_c
 - (D) It cannot be liquefied at any value of P and T

Gas	a (atm $L^2 \text{ mol}^{-2}$)	b (L mol ⁻¹)
W	4.0	0.027
Х	8.0	0.030
Y	6.0	0.032
Ζ	12.0	0.027

106. The Vander Waal's parameters for gases *W*, *X*, Y and *Z* are

Which one of these gases has the highest critical temperature

(A) W	$(\mathbf{B})X$
(C) <i>Y</i>	(D) Z

107. The Vander Waal's constant 'a' for the gases O_2, N_2, NH_3 and CH_4 are 1.3, 1.390, 4.170 and 2.253 $L^2 atm mol^{-2}$ respectively. The gas which can be most easily liquefied is

(A) O_2 (B) N_2

(C) NH_3 (D) CH_4

- **108.**A gas can be liquefied
 - (A) Above its critical temperature
 - (B) At its critical temperature
 - (C) Below its critical temperature
 - (D) At any temperature
- **109.** A gas has a density of 2.68 g/L at stp. Identify the gas

(A) NO_2 (B) Kr

(C) COS (D) SO_2

110.Weight of 112 *ml* of oxygen at NTP on liquefaction would be

- (A) 0.32 g (B) 0.64 g
- (C) 0.16 g (D) 0.96 g