EXERCISE-I

Solution of quadratic equations and Nature of roots

- If $x^2 + y^2 = 25$, xy = 12, then x =1. (B) {3, -3} (A) {3, 4} (C) $\{3, 4, -3, -4\}$ (D) $\{-3, -3\}$ The solution set of the equation 2. $x^{\log_x(1-x)^2} = 9$ is (A) $\{-2, 4\}$ (B) {4} (C) $\{0, -2, 4\}$ (D) None of these Let one root of $ax^2 + bx + c = 0$ where 3. a, b, c are integers be $3 + \sqrt{5}$, then the other root is (A) $3 - \sqrt{5}$ (B) 3 (C) $\sqrt{5}$ (D) None of these The number of real solutions of the 4. equation $|x|^2 - 3|x| + 2 = 0$ are (A) 1 (B) 2 (C) 3 (D) 4 The number of real roots of the equation 5. $e^{\sin x} - e^{-\sin x} - 4 = 0$ are (A) 1 (B) 2
- (C) Infinite (D) None 6. The number of real solutions of the equation $|x^{2} + 4x + 3| + 2x + 5 = 0$ are (A) 1 (B) 2
 - (C) 3 (D) 4
- 7. The roots of the given equation $(p-q)x^2 + (q-r)x + (r-p) = 0$ are
 - (A) $\frac{p-q}{r-p}$,1 (B) $\frac{q-r}{p-q}$,1 (C) $\frac{r-p}{p-q}$,1 (D) $1, \frac{q-r}{p-q}$
- If a root of the equation $x^2 + px + 12 = 0$ is 8. 4, while the roots of the equation $x^{2} + px + q = 0$ are same, then the value of q will be (A) 4 (B) 4/49 (C) 49/4 (D) None of these 9. How many the equation roots $x - \frac{2}{x-1} = 1 - \frac{2}{x-1}$ have (A) One (B) Two (D) None (C) Infinite The solution of the equation $x + \frac{1}{x} = 2$ will 10. be (A) 2, -1 (B) 0, -1, $-\frac{1}{5}$ $(C) -1, -\frac{1}{5}$ (D) None of these If $\log_2 x + \log_x 2 = \frac{10}{2} = \log_2 y + \log_y 2$ and 11. $x \neq y$, then x + y =(A) 2 (B) 65/8 (C) 37/6 (D) None of these The value of $x = \sqrt{2 + \sqrt{2 + \sqrt{2 + \dots}}}$ is 12. (A) - 1**(B)** 1 (C) 2(D) 3 13. The value of x in the given equation $4^{x} - 3^{x-\frac{1}{2}} = 3^{x+\frac{1}{2}} - 2^{2x-1}$ is
 - (A) $\frac{4}{3}$ (B) $\frac{3}{2}$
 - (C) $\frac{2}{1}$ (D) $\frac{5}{3}$

			Quadratic Equation
14.	The equation $e^x - x - 1 = 0$ has	22.	If the roots of the equations
	(A) Only one real root $x = 0$		$px^{2} + 2qx + r = 0$ and $qx^{2} - 2\sqrt{prx} + q = 0$
	(B) At least two real roots		be real, then
	(C) Exactly two real roots		(A) $p = q$ (B) $q^2 = pr$
	(D) Infinitely many real roots		(C) $p^2 = qr$ (D) $r^2 = pq$
15.	The equation $\sqrt{(x+1)} - \sqrt{(x-1)} = \sqrt{(4x-1)}$	• •	
	has	23.	If the roots of the equation $ax^2 + x + b = 0$
	(A) No solution		be real, then the roots of the equation
	(B) One solution		$x^2 - 4\sqrt{abx} + 1 = 0$ will be
	(C) Two solutions		(A) Rational (B) Irrational
	(D) More than two solutions		(C) Real (D) Imaginary
16.	The equation $\log_e x + \log_e(1+x) = 0$ can	24.	If one of the roots of the equation
	be written as		$x^{2} + ax + b = 0$ and $x^{2} + bx + a = 0$ is
	(A) $x^2 + x - e = 0$ (B) $x^2 + x - 1 = 0$		coincident, then the numerical value of
	(C) $x^2 + x + 1 = 0$ (D) $x^2 + xe - e = 0$		(a + b) is
			(A) 0 (B) -1
17.	If $x = \sqrt{6 + \sqrt{6 + \sqrt{6 + \dots \text{to } \infty}}}$, then		(C) 2 (D) 5
	(A) x is an irrational number	25.	The equation $x^{(3/4)(\log_2 x)^2 + (\log_2 x) - 5/4} = \sqrt{2}$ has
	(B) $2 < x < 3$		(A) At least one real solution
	(C) $x = 3$		(B) Exactly three real solutions
	(D) None of these		(C) Exactly one irrational solution
18.	The real roots of the equation		(D) All the above
	$x^{2} + 5 x + 4 = 0$ are	26.	If $a > 0, b > 0, c > 0$ then both the roots of
	(A) – 1, 4 (B) 1, 4		the equation $ax^2 + bx + c = 0$
	(C) - 4, 4 (D) None of these		(A) Are real and negative
19.	A real root of the equation		(B) Have negative real parts
	$\log_4 \{ \log_2 (\sqrt{x+8} - \sqrt{x}) \} = 0$ is		(C) Are rational numbers
	(A) 1 (B) 2		(D) None of these
	(C) 3 (D) 4	27.	The value of k for which
20.	$\{x \in R : x-2 = x^2\} =$		$2x^2 - kx + x + 8 = 0$ has equal and real
	(A) $\{-1, 2\}$ (B) $\{1, 2\}$		roots are
	(A) $\{-1, 2\}$ (B) $\{1, 2\}$ (C) $\{-1, -2\}$ (D) $\{1, -2\}$		(A) -9 and -7 (B) 9 and 7
21.	The roots of the given equation $(D) \{1, -2\}$		(C) -9 and 7 (D) 9 and -7
<i>4</i> 1.	$2(a^{2} + b^{2})x^{2} + 2(a + b)x + 1 = 0 \text{ are}$	28.	The roots of the quadratic equation
			$2x^2 + 3x + 1 = 0$, are
	(A) Rational (B) Irrational		(A) Irrational (B) Rational
	(C) Real (D) Imaginary		(C) Imaginary (D) None of these

29. If l, m, n are real and $l \neq m$, then the roots of the equation

$$(1-m)x^{2} - 5(1+m)x - 2(1-m) = 0$$
 are

- (A) Complex
- (B) Real and distinct
- (C) Real and equal
- (D) None of these

30. If the roots of the equation $x^{2} - 8x + (a^{2} - 6a) = 0$ are real, then (A) -2 < a < 8 (B) 2 < a < 8(C) $-2 \le a \le 8$ (D) $2 \le a \le 8$

31. The condition for the roots of the equation, $(c^2 - ab)x^2 - 2(a^2 - bc)x + (b^2 - ac) = 0$ to be equal is

to be equal is

- (A) a = 0 (B) b = 0(C) c = 0 (D) None of these
- 32. If $b_1b_2 = 2(c_1 + c_2)$, then at least one of the equations $x^2 + b_1x + c_1 = 0$ and
 - $x^{2} + b_{2}x + c_{2} = 0$ has

(A) Real roots

- (B) Purely imaginary roots
- (C) Imaginary roots
- (D) None of these
- 33. The value of k for which the quadratic equation, $kx^2 + 1 = kx + 3x 11x^2$ has real and equal roots are

(A) -11, -3
(B) 5, 7
(C) 5, -7
(D) None of these

- 34. The expression $y = ax^2 + bx + c$ has always the same sign as *c* if
 - (A) $4ac < b^2$ (B) $4ac > b^2$
 - (C) $ac < b^2$ (D) $ac > b^2$

The value of *m* for which the equation

35.

$$\frac{a}{x+a+m} + \frac{b}{x+b+m} = 1$$

has roots equal in magnitude but opposite in sign is

(A)
$$\frac{a+b}{a-b}$$
 (B) 0
(C) $\frac{a-b}{a+b}$ (D) $\frac{2(a-b)}{a+b}$

36. The roots of the equation

$$(a^{2} + b^{2})t^{2} - 2(ac + bd)t + (c^{2} + d^{2}) = 0$$
are equal, then
(A) $ab = dc$ (B) $ac = bd$
(C) $ad + bc = 0$ (D) $\frac{a}{b} = \frac{c}{d}$
37. For what values of k will the equation

For what values of k will the equation

$$x^{2} - 2(1+3k)x + 7(3+2k) = 0$$
 have equal
roots

(A)
$$1, -\frac{10}{9}$$
 (B) $2, -\frac{10}{9}$
(C) $3, -\frac{10}{9}$ (D) $4, -\frac{10}{9}$

38. If the roots of equation $x^2 + a^2 = 8x + 6a$ are real, then

(A)
$$a \in [2,8]$$
(B) $a \in [-2,8]$ (C) $a \in (2,8)$ (D) $a \in (-2,8)$

39. Let $p,q \in \{1,2,3,4\}$. The number of equations of the form $px^2 + qx + 1 = 0$ having real roots is (A) 15 (B) 9

40. For what value of k will the equation $x^{2} - (3k - 1)x + 2k^{2} + 2k$ have equal roots (A) 5 (B) 9 (C) D d (A) = 1 (D) (D) 6

(C) Both (A) and (B) (D) 0

Quadratic Equation

Relation between roots and coefficients

- 41. If α and β are the roots of the equation $2x^2 - 3x + 4 = 0$, then the equation whose roots are α^2 and β^2 is
 - (A) $4x^2 + 7x + 16 = 0$
 - (B) $4x^2 + 7x + 6 = 0$
 - (C) $4x^2 + 7x + 1 = 0$
 - (D) $4x^2 7x + 16 = 0$
- 42. If α and β are the roots of the equation $x^2 - a(x+1) - b = 0$ then $(\alpha + 1)(\beta + 1) =$ (A) b (B) - b (C) 1 - b (D) b - 1
- 43. If α,β be the roots of the equation $2x^2 - 2(m^2 + 1)x + m^4 + m^2 + 1 = 0$, then $\alpha^2 + \beta^2 =$ (A) 0 (B) 1
 - (C) m (D) m^2
- 44. If the ratio of the roots of the equation $ax^{2} + bx + c = 0$ be p:q, then
 - (A) $pqb^2 + (p+q)^2 ac = 0$
 - (B) $pqb^2 (p+q)^2 ac = 0$
 - (C) $pqa^2 (p+q)^2 bc = 0$
 - (D) None of these
- 45. If α , β are the roots of the equation $ax^{2} + bx + c = 0$, then $\frac{\alpha}{a\beta + b} + \frac{\beta}{a\alpha + b} =$ (A) $\frac{2}{a}$ (B) $\frac{2}{b}$
 - (C) $\frac{2}{c}$ (D) $-\frac{2}{a}$
- 46. If the sum of the roots of the equation $ax^{2} + bx + c = 0$ be equal to the sum of their squares, then
 - (A) a(a + b) = 2bc (B) c(a + c) = 2ab(C) b(a + b) = 2ac (D) b(a + b) = ac

47. If the roots of the equation $\frac{\alpha}{x-\alpha} + \frac{\beta}{x-\beta} = 1$ be equal in magnitude but opposite in sign, then $\alpha + \beta =$ (A) 0 **(B)** 1 (C) 2(D) None of these If α, β be the roots of the equation 48. $x^{2} - 2x + 3 = 0$, then the equation whose roots are $\frac{1}{\alpha^2}$ and $\frac{1}{\beta^2}$ is (A) $x^2 + 2x + 1 = 0$ (B) $9x^2 + 2x + 1 = 0$ (C) $9x^2 - 2x + 1 = 0$ (D) $9x^2 + 2x - 1 = 0$ If α , β are the roots of $x^2 + px + 1 = 0$ and **49**. γ , δ are the roots of $x^2 + qx + 1 = 0$, then $q^2 - p^2 =$ (A) $(\alpha - \gamma)(\beta - \gamma)(\alpha + \delta)(\beta + \delta)$ (B) $(\alpha + \gamma)(\beta + \gamma)(\alpha - \delta)(\beta + \delta)$ (C) $(\alpha + \gamma)(\beta + \gamma)(\alpha + \delta)(\beta + \delta)$ (D) None of these If α, β be the roots of $x^2 - px + q = 0$ and **50**. α',β' be the roots of $x^2 - p'x + q' = 0$, then the value of $(\alpha - \alpha')^2 + (\beta - \alpha')^2 + (\alpha - \beta')^2 + (\beta - \beta')^2$ is (A) $2\{p^2 - 2q + p'^2 - 2q' - pp'\}$ (B) $2\{p^2 - 2q + p'^2 - 2q' - qq'\}$ (C) $2\{p^2 - 2q - p'^2 - 2q' - pp'\}$

(D) $2\{p^2 - 2q - p'^2 - 2q' - qq'\}$ If the roots of the equation $Ax^2 + Bx + C = 0$ are α, β and the roots of

51.

the equation $x^2 + px + q = 0$ are α^2, β^2 , then value of *p* will be

(A)
$$\frac{B^2 - 2AC}{A^2}$$
 (B) $\frac{2AC - B^2}{A^2}$
(C) $\frac{B^2 - 4AC}{A^2}$ (D) None of these

- 52. The quadratic equation whose one root is $\frac{1}{2+\sqrt{5}}$ will be (A) $x^2 + 4x - 1 = 0$ (B) $x^2 + 4x + 1 = 0$ (C) $x^2 - 4x - 1 = 0$ (D) $\sqrt{2}x^2 - 4x + 1 = 0$
- 53. If the roots of the equation $x^2 + x + 1 = 0$ are α, β and the roots of the equation
 - $x^{2} + px + q = 0$ are $\frac{\alpha}{\beta}, \frac{\beta}{\alpha}$ then p is equal

to

- (A) -2 (B) -1 (C) 1 (D) 2
- 54. If α, β are the roots of the equation $x^2 + ax + b = 0$ then the value of $\alpha^3 + \beta^3$ is equal to

(A) $-(a^3 + 3ab)$	(B) $a^3 + 3ab$
(C) $-a^3 + 3ab$	(D) $a^3 - 3ab$

- 55. If the sum of the roots of the equation $x^{2} + px + q = 0$ is three times their difference, then which one of the following is true
 - (A) $9p^2 = 2q$ (B) $2q^2 = 9p$ (C) $2p^2 = 9q$ (D) $9q^2 = 2p$
- 56. If the roots of the equation $x^{2} + 2mx + m^{2} - 2m + 6 = 0$ are same, then the value of *m* will be (A) 3 (B) 0
 - (C) 2 (D) -1
- **57.** If the roots of the given equation

 $(2k+1)x^2 - (7k+3)x + k + 2 = 0$

are reciprocal to each other, then the value of k will be

(A) 0	(B) 1
(C) 2	(D) 3

		e I
58.	If the roots	of the equation
	$ax^2 + bx + c = 0$ are	1 and 21, then
	(A) $b^2 = 9ac$	(B) $2b^2 = 9ac$
	(C) $b^2 = -4ac$	(D) $a^2 = c^2$
59.	The sum of the roots	of a equation is 2 and
	sum of their cubes is	98, then the equation
	is	
	(A) $x^2 + 2x + 15 = 0$	(B) $x^2 + 15x + 2 = 0$
	(C) $2x^2 - 2x + 15 = 0$	$O(D) x^2 - 2x - 15 = 0$
60.	If the roots	of the equation
	$ax^2 + bx + c = 0$ are	α,β , then the value of
	$\alpha\beta^2 + \alpha^2\beta + \alpha\beta$ will	be
	c(a-b)	(\mathbf{D}) 0
	(A) $\frac{c(a-b)}{a^2}$	(B) 0
	(C) $-\frac{bc}{a^2}$	(D) None of these
	a^2	(D) None of these
61.	If the roots	of the equation
		real and of the form
	$\frac{\alpha}{\alpha}$ and $\frac{\alpha+1}{\alpha}$,	then the value of
	$(a + b + c)^2$ is	
	(A) $b^2 - 4ac$	(B) $b^2 - 2ac$
	(C) $2b^2 - ac$	(D) None of these
62.	If the ratio of the root	s of $ax^2 + 2bx + c = 0$
	is same as the ra	atio of the roots of
	$px^2 + 2qx + r = 0$, the	en
	(A) $\frac{b}{ac} = \frac{q}{pr}$	(B) $\frac{b^2}{ac} = \frac{q^2}{pr}$
	ac pr	ac pr
	(C) $\frac{2b}{ac} = \frac{q^2}{pr}$	(D) None of these
	(c) $\frac{1}{ac} = \frac{1}{pr}$	(D) None of these
63.	Roots of	the equation
	$x^{2} + bx - c = 0(b, c)$	(0) are
	(A) Both positive	(B) Both negative

(C) Of opposite sign (D) None of these

					Quadratic Equation
64.	If p and q are the	roots of the equation	71.	The harmonic mea	n of the roots of the
	$x^{2} + pq = (p+1)x$, t	then $q=$		equation	
	(A) –1	(B) 1		$(5+\sqrt{2})x^2 - (4+\sqrt{2})x^2$	$(5)x + 8 + 2\sqrt{5} = 0$ is
	(C) 2	(D) None of these		(A) 2	(B) 4
65.	If the roots of ax ²	$+bx+c=0$ are α,β		(C) 6	(D) 8
	and the roots of	$Ax^2 + Bx + C = 0$ are	72.	If the roots of x^2	bx + c = 0 are two
	er la Chathan E	$B^2 - 4AC$ is equal to		consecutive integers	, then $b^2 - 4c$ is
	$\alpha - \kappa, p - \kappa, \text{then}$	$\frac{b^2 - 4AC}{b^2 - 4ac}$ is equal to		(A) 1	(B) 2
				(C) 3	(D) 4
	(A) 0	(B) 1	73.	If α and β are	roots of the equation
	(C) $\left(\frac{A}{a}\right)^2$	$(d)\left(a\right)^2$		$Ax^2 + Bx + C = 0, t$	hen value of $\alpha^3 + \beta^3$ is
	((11)		(A) $\frac{3ABC - B^3}{\Lambda^3}$	(B) $\frac{3ABC+B^3}{A^3}$
66.		ots of $x^2 + px + q = 0$,		Λ	Α
	then			(C) $\frac{B^3 - 3ABC}{A^3}$	(D) $\frac{B^3 - 3ABC}{D^3}$
	(A) $p = 1, q = -2$		74.	A If a B are the r	oots of the equation
	(C) $p = 1, q = 0$		/4.		
67.	-	e quadratic equation,		$x^{2} - (1 + n^{2})x + \frac{1}{2}(1 + n^{2})x$	$(+n^2 + n^4) = 0$
		-i) = 0 is 2 – i, then the		then the value of α^2	
	other root is				
	$(\mathbf{A}) - i$	$(\mathbf{B}) i$		(A) $2n$ (C) n^2	(B) n^3
(0)	(C) $2+i$		75		
68.	-	ation $5x^2 - 7x + k = 0$	75.	-	which one root of the $p = 0$ is the square of
	k is	ch other, then value of			p = 0 is the square of
	(A) 5	(B) 2		the other, are (A) 125 only	(B) 125 and -216
	(C) 1/5	(D) 1		(C) 125 and 215	
69.		$+6=0$ are α,β , then	76.		the squares of roots of
				$x^2 - 3x + 1 = 0$	1
	$\frac{1}{\alpha} + \frac{1}{\beta} =$			(A) 5	(B) 7
	(A) 6/7	(B) 7/6		(C) 9	(D) 10
	(C) 7/10	(D) 8/9	77.	Sum of roots is	-1 and sum of their
70.	If α,β are the ro	ots of $x^2 - 2x + 4 = 0$,		reciprocals is $\frac{1}{6}$, the	n equation is
	then $\alpha^5 + \beta^5$ is equal	l to		0	
	(A) 16	(B) 32		(A) $x^{-} + x - 6 = 0$	(B) $x^2 - x + 6 = 0$
	(C) 64	(D) None of these		(C) $6x^2 + x + 1 = 0$	(D) $x^2 - 6x + 1 = 0$

78. If the sum of the roots of the equation $x^{2} + px + q = 0$ is equal to the sum of their squares, then (A) $p^2 - q^2 = 0$ (B) $p^2 + q^2 = 2q$ (C) $p^2 + p = 2q$ (D) None of these If α , β are roots of $x^2 - 3x + 1 = 0$, then the 79. equation whose roots are $\frac{1}{\alpha - 2}, \frac{1}{\beta - 2}$ is (A) $x^{2} + x - 1 = 0$ (B) $x^{2} + x + 1 = 0$ (C) $x^2 - x - 1 = 0$ (D) None of these 80. The equation formed by decreasing each root of $ax^2 + bx + c = 0$ by 1 is $2x^{2} + 8x + 2 = 0$, then (A) a = -b(B) b = -c(D) b = a + c(C) c = -aIf $\alpha \neq \beta$ but $\alpha^2 = 5\alpha - 3$ and $\beta^2 = 5\beta - 3$, 81. then the equation whose roots are α/β and β/α is (A) $3x^2 - 25x + 3 = 0$ (B) $x^2 + 5x - 3 = 0$ (C) $x^2 - 5x + 3 = 0$ (D) $3x^2 - 19x + 3 = 0$ Difference between the corresponding roots 82. of $x^{2} + ax + b = 0$ and $x^{2} + bx + a = 0$ is same and $a \neq b$, then (A) a + b + 4 = 0(B) a + b - 4 = 0(D) a - b + 4 = 0(C) a - b - 4 = 083. Product of real roots of the equation $t^2 x^2 + |x| + 9 = 0$ (A) Is always positive (B) Is always negative (C) Does not exist (D) None of these 84. If the roots of equation the $12x^{2} - mx + 5 = 0$ are in the ratio 2 : 3, then m =(A) $5\sqrt{10}$ (B) $3\sqrt{10}$ (C) $2\sqrt{10}$ (D) None of these

If one root of the equation $x^2 + px + q = 0$ 85. is $2 + \sqrt{3}$, then values of p and q are (A) - 4, 1(B) 4, -1(C) 2, $\sqrt{3}$ (D) $-2, -\sqrt{3}$ The condition that one root of the equation 86. $ax^{2} + bx + c = 0$ is three times the other is (B) $3b^2 + 16ac = 0$ (A) $b^2 = 8ac$ (C) $3b^2 = 16ac$ (D) $b^2 + 3ac = 0$ The equation whose roots are reciprocal of 87. roots of the equation the $3x^2 - 20x + 17 = 0$ is (A) $3x^2 + 20x - 17 = 0$ (B) $17x^2 - 20x + 3 = 0$ (C) $17x^2 + 20x + 3 = 0$ (D) None of these 88. If α , β are the roots of the equation $x^2 + 2x + 4 = 0$, then $\frac{1}{\alpha^3} + \frac{1}{\beta^3}$ is equal to (A) $-\frac{1}{2}$ (B) $\frac{1}{2}$ (D) $\frac{1}{4}$ (C) 32 89.

The equation of the smallest degree with real coefficients having 1+i as one of the root is (A) $x^{2} + x + 1 = 0$ (B) $x^{2} - 2x + 2 = 0$ (C) $x^2 + 2x + 2 = 0$ (D) $x^2 + 2x - 2 = 0$ 90. Let two numbers have arithmetic mean 9 and geometric mean 4. Then these numbers are the roots of the quadratic equation

- (A) $x^2 18x 16 = 0$ (B) $x^2 - 18x + 16 = 0$
- (C) $x^2 + 18x 16 = 0$
- (D) $x^2 + 18x + 16 = 0$

Condition for common roots, Quadratic expressions and Position of roots

- 91. If x be real, then the minimum value of $x^2 8x + 17$ is (A) -1 (B) 0
- (C) 1 (D) 2 92. If x is real, then the maximum and minimum values of expression $\frac{x^2 + 14x + 9}{x^2 + 2x + 3}$ will be (A) 4, -5 (B) 5, -4 (C) -4, 5 (D) - 4, -5
- 93. If x is real, the expression $\frac{x+2}{2x^2+3x+6}$ takes all value in the interval
 - (A) $\left(\frac{1}{13}, \frac{1}{3}\right)$ (B) $\left[-\frac{1}{13}, \frac{1}{3}\right]$ (C) $\left(-\frac{1}{3}, \frac{1}{13}\right)$ (D) None of these
- 94. If $x^2 + px + 1$ is a factor of the expression $ax^3 + bx + c$, then (A) $a^2 + c^2 = -ab$ (B) $a^2 - c^2 = -ab$
 - (C) $a^2 c^2 = ab$ (D) None of these
- 95. If x, y, z are real and distinct, then $u = x^{2} + 4y^{2} + 9z^{2} - 6yz - 3zx - zxy$
 - always(A) Non-negative(B) Non-positive(C) Zero(D) None of these

is

- 96. If x be real, then the maximum value of $5+4x-4x^2$ will be equal to (A) 5 (B) 6
 - $\begin{array}{c} (A) \\ (C) \\ 1 \\ (D) \\ 2 \\ (D)$
- 97. If x is real, the function $\frac{(x-a)(x-b)}{(x-c)}$ will assume all real values, provided
 - will assume all real values, provided (A) a > b > c (B) a < b < c(C) a > c < b (D) a < c < b

		C
98.		the maximum and of the expression
		of the expression
	$\frac{x^2 - 3x + 4}{x^2 + 3x + 4}$ will be	
	(A) 2, 1	(B) $5, \frac{1}{5}$
	(C) $7, \frac{1}{7}$	(D) None of these
99.	If x is real, t	hen the value of
	$\frac{x^2 + 34x - 71}{x^2 + 2x - 7} \text{ does n}$	ot lie between
	(A) –9 and –5	(B) –5 and 9
	(C) 0 and 9	(D) 5 and 9
100.		value of $x^2 - 6x + 13$
	will not be less than	
	(A) 4 (C) 7	(B) 6
101	(C) 7	(D) 8 $(1 - 2^{2} - 2^{2} + 2^{2} + 2^{2} + 4^{2})$
101.		of $x^2 - 3x + 3$ in the
	interval $(-3, 3/2)$ is	(D) 5
	(A) 3/4 (C) -15	(B) 5 (D) -20
102	If the roots of $x^2 + x - x^2$	× /
102.	(A) $2 < a < 3$	
	(C) -3 < a < 3	
103.		of the equation
	$x^{2} - 2ax + a^{2} + a - 3$	= 0 are real and less
	than 3, then	
	(A) a < 2	(B) $2 \le a \le 3$
	(C) $3 < a \le 4$	(D) a > 4
104.		value of $x^2 - 6x + 10$
	is	
	(A) 1 (C) 2	(B) 2 (D) 10
105	(C) 3 Let α, β be	(D) 10 the rests of
105.	· •	
		The value of λ for
	which $\alpha^2 + \beta^2$ is min	
	$(\mathbf{A}) 0$	(B) 1
	(C) 2	(D) 3

\mathbf{n} Ale E **،** ،

ution of quadratic inequations and Miscellaneous equations $x^2 + 2ax + 10 - 3a > 0$ for all $x \in \mathbb{R}$, then A) $-5 < a < 2$ (B) $a < -5$ (D) $2 < a < 5$ (D) $1, 2, 2, 2, 2$ (D) $1, 2, 1, 2$ (D) $1, 2, 1$	111. 112.	(C) 5 (D) 7 If two roots of the equation $x^3 - 3x + 2 = 0$ are same, then the roots will be (A) 2, 2, 3 (B) 1, 1, -2 (C) -2, 3, 3 (D) -2, -2, 1 If a,b,c are real and $x^3 - 3b^2x + 2c^3$ is divisible by x - a and x - b, then (A) a = -b = -c (B) a = 2b = 2c (C) a = b = c, a = -2b = -2c (D) None of these
$x^{2} + 2ax + 10 - 3a > 0 \text{ for all } x \in \mathbb{R},$ then A) $-5 < a < 2$ (B) $a < -5$ (D) $2 < a < 5$ the roots of the equation $4^{4} - 4x^{3} + 6x^{2} - 4x + 1 = 0$ are A) 1, 1, 1, 1 (B) 2, 2, 2, 2 (C) 3, 1, 3, 1 (D) 1, 2, 1, 2 the roots of the equation	112.	are same, then the roots will be (A) 2, 2, 3 (B) 1, 1, -2 (C) -2, 3, 3 (D) -2, -2, 1 If a, b, c are real and $x^3 - 3b^2x + 2c^3$ is divisible by x - a and x - b, then (A) a = -b = -c (B) a = 2b = 2c (C) a = b = c, a = -2b = -2c
Then (A) $-5 < a < 2$ (B) $a < -5$ (D) $2 < a < 5$ (D) $2 < a < 5$ (D) $2 < a < 5$ (E) $a > 5$ (D) $2 < a < 5$ (E) $a > 5$ (D) $2 < a < 5$ (E) $a > 5$ (E) $2 < a < 5$ (E) $a > 5$ (E) $2 < a < 5$ (E) $2 < a < 5$ (E) $2 < a < 5$ (E) $2 < 3 < 5$ (E) $2 < 2 < 2 < 2$ (E) $3 = 1, 3, 1$ (E) $2 < 2, 2, 2$ (E) $3 = 1, 3, 1$ (D) $1, 2, 1, 2$ (E) $3 = 1, 3, 1$ (D) $1, 2, 1, 2$ (E) $3 = 1, 3, 1$ (D) $1, 2, 1, 2$ (E) $3 = 1, 3, 1$ (E) $3 = 1, 3, 1$ (E) $3 = 1, 3, 1$ (E) $3 = 1, 3, 5$ (E) $3 = 1, 3, 1$ (E) $3 = 1, 3, 5$ (E) $3 = 1, 3, 1$ (E) $3 = 1, 3, 5$ (E) $3 = 1, 3, 1$ (E) $3 = 1, 3, 5$ (E) $3 = 1, 3, 5$ (E		(A) 2, 2, 3 (B) 1, 1, -2 (C) -2, 3, 3 (D) -2, -2, 1 If a, b, c are real and $x^3 - 3b^2x + 2c^3$ is divisible by x - a and x - b, then (A) a = -b = -c (B) a = 2b = 2c (C) a = b = c, a = -2b = -2c
A) 1, 1, 1, 1 (B) 2, 2, 2, 2 C) 3, 1, 3, 1 (D) 1, 2, 1, 2 the roots of the equation		(C) $a = b = c$, $a = -2b = -2c$
$x^3 - 14x^2 + 7x - 1 = 0$ are in G.P., then he roots are	113.	If α , β and γ are the roots of $x^3 + 8 = 0$, then the equation whose roots are α^2 , β^2 and γ^2 is
(B) 2, 4, 8 (C) 3, 6, 12 (D) None of these (D) None of these (D) None of the equation $x^{3} + 16x^{2} - 9x - 36 = 0$ is zero, then the pots are	114.	(A) $x^{3} - 8 = 0$ (B) $x^{3} - 16 = 0$ (C) $x^{3} + 64 = 0$ (D) $x^{3} - 64 = 0$. If α, β, γ are the roots of the equation $x^{3} + 4x + 1 = 0$, then $(\alpha + \beta)^{-1} + (\beta + \gamma)^{-1} + (\gamma + \alpha)^{-1} =$
A) 1, 2 -2 (B) $-2, \frac{2}{3}, -\frac{2}{3}$ (D) $-4, \frac{3}{2}, -\frac{3}{2}$ ne root of the following given equation $x^{5} - 14x^{4} + 31x^{3} - 64x^{2} + 19x + 130 = 0$	115.	(A) 2 (B) 3 (C) 4 (D) 5 If the sum of two of the roots of $x^3 + px^2 + qx + r = 0$ is zero, then $pq =$ (A) $-r$ (B) r (C) 2 r (D) $-2r$
	$x^{3} + 16x^{2} - 9x - 36 = 0$ is zero, then the obtaine A) 1, 2 -2 (B) $-2, \frac{2}{3}, -\frac{2}{3}$ (D) $-4, \frac{3}{2}, -\frac{3}{2}$ ne root of the following given equation $x^{5} - 14x^{4} + 31x^{3} - 64x^{2} + 19x + 130 = 0$	The sum of the two foots of the equation $x^{3} + 16x^{2} - 9x - 36 = 0$ is zero, then the sots are (A) 1, 2 - 2 (B) $-2, \frac{2}{3}, -\frac{2}{3}$ (D) $-4, \frac{3}{2}, -\frac{3}{2}$ (115. The root of the following given equation $x^{5} - 14x^{4} + 31x^{3} - 64x^{2} + 19x + 130 = 0$