# **SOLVED EXAMPLES**

| <b>Ex. 1</b> | The values of x and y satisfying the equation $\frac{(1 + i)x - 2i}{3 + i} + \frac{(2 - 3i)y + i}{3 - i} = i$ are                                                                                                                                                                                                                                                |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sol.         | $\frac{(1+i)x-2i}{3+i} + \frac{(2-3i)y+i}{3-i} = i \qquad \Rightarrow \qquad (4+2i)x + (9-7i)y - 3i - 3 = 10i$                                                                                                                                                                                                                                                   |
|              | Equating real and imaginary parts, we get $2x - 7y = 13$ and $4x + 9y = 3$ .                                                                                                                                                                                                                                                                                     |
|              | Hence $x = 3$ and $y = -1$ .                                                                                                                                                                                                                                                                                                                                     |
| <b>F</b>     |                                                                                                                                                                                                                                                                                                                                                                  |
| Ex. 2        | Find the square root of $7 + 24$ i.                                                                                                                                                                                                                                                                                                                              |
| Sol.         | Let $\sqrt{7+24i} = a + 1b$                                                                                                                                                                                                                                                                                                                                      |
|              | Squaring $a^2 - b^2 + 2iab = 7 + 24i$                                                                                                                                                                                                                                                                                                                            |
|              | Compare real & imaginary parts $a^2 - b^2 = 7 \& 2ab = 24$                                                                                                                                                                                                                                                                                                       |
|              | By solving these two equations<br>We get $a = \pm 4$ , $b = \pm 3$                                                                                                                                                                                                                                                                                               |
|              | we get $a=\pm4, b=\pm5$                                                                                                                                                                                                                                                                                                                                          |
|              | $\sqrt{7+24i} = \pm (4+3i)$                                                                                                                                                                                                                                                                                                                                      |
| Ex. 3        | Find the value of expression $x^4 - 4x^3 + 3x^2 - 2x + 1$ when $x = 1 + i$ is a factor of expression.                                                                                                                                                                                                                                                            |
| Sol.         | x=1+i                                                                                                                                                                                                                                                                                                                                                            |
|              | $\Rightarrow$ x-1=i                                                                                                                                                                                                                                                                                                                                              |
|              | $\Rightarrow$ $(x-1)^2 = -1$                                                                                                                                                                                                                                                                                                                                     |
|              | $\Rightarrow \qquad x^2 - 2x + 2 = 0$                                                                                                                                                                                                                                                                                                                            |
|              | Now $x^4 - 4x^3 + 3x^2 - 2x + 1$                                                                                                                                                                                                                                                                                                                                 |
|              | $= (x^2 - 2x + 2) (x^2 - 3x - 3) - 4x + 7$                                                                                                                                                                                                                                                                                                                       |
|              | :. when $x = 1 + i$ i.e. $x^2 - 2x + 2 = 0$                                                                                                                                                                                                                                                                                                                      |
|              | $x^{4}-4x^{3}+3x^{2}-2x+1 = 0-4(1+i)+7 = -4+7-4i = 3-4i$                                                                                                                                                                                                                                                                                                         |
| <b>Ex. 4</b> | Find modulus and argument for $z = 1 - \sin \alpha + i \cos \alpha$ , $\alpha \in (0, 2\pi)$                                                                                                                                                                                                                                                                     |
| Sol.         | $ z  = \sqrt{(1 - \sin \alpha)^2 + (\cos \alpha)^2} = \sqrt{2 - 2\sin \alpha} = \sqrt{2} \left  \cos \frac{\alpha}{2} - \sin \frac{\alpha}{2} \right $                                                                                                                                                                                                           |
|              | <b>Case I</b> For $\alpha \in \left(0, \frac{\pi}{2}\right)$ , z will lie in I quadrant.                                                                                                                                                                                                                                                                         |
|              | $\operatorname{amp}(z) = \tan^{-1} \frac{\cos \alpha}{1 - \sin \alpha} \Longrightarrow \operatorname{amp}(z) = \tan^{-1} \frac{\cos^2 \frac{\alpha}{2} - \sin^2 \frac{\alpha}{2}}{\left(\cos \frac{\alpha}{2} - \sin \frac{\alpha}{2}\right)^2} = \tan^{-1} \frac{\cos \frac{\alpha}{2} + \sin \frac{\alpha}{2}}{\cos \frac{\alpha}{2} - \sin \frac{\alpha}{2}}$ |
|              | $\Rightarrow \qquad \arg z = \tan^{-1} \tan \left( \frac{\pi}{4} + \frac{\alpha}{2} \right)$                                                                                                                                                                                                                                                                     |
|              | Since $\frac{\pi}{4} + \frac{\alpha}{2} \in \left(\frac{\pi}{4}, \frac{\pi}{2}\right)$                                                                                                                                                                                                                                                                           |
|              | $\therefore \qquad \operatorname{amp}(z) = \left(\frac{\pi}{4} + \frac{\alpha}{2}\right),  z  = \sqrt{2} \left(\cos\frac{\alpha}{2} - \sin\frac{\alpha}{2}\right)$                                                                                                                                                                                               |



**Case II** at  $\alpha = \frac{\pi}{2}$ : z = 0 + 0i|z| = 0amp(z) is not defined. **Case III** For  $\alpha \in \left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$ , z will lie in IV quadrant  $\operatorname{amp}(z) = -\operatorname{tan}^{-1} \operatorname{tan}\left(\frac{\alpha}{2} + \frac{\pi}{4}\right)$ So Since  $\frac{\alpha}{2} + \frac{\pi}{4} \in \left(\frac{\pi}{2}, \pi\right)$  $\therefore \qquad \operatorname{amp}(z) = -\left(\frac{\alpha}{2} + \frac{\pi}{4} - \pi\right) = \frac{3\pi}{4} - \frac{\alpha}{2}, |z| = \sqrt{2}\left(\sin\frac{\alpha}{2} - \cos\frac{\alpha}{2}\right)$ **Case IV** at  $\alpha = \frac{3\pi}{2}$ : z = 2 + 0i|z| = 2amp(z) = 0**Case V** For  $\alpha \in \left(\frac{3\pi}{2}, 2\pi\right)$ , z will lie in I quadrant  $\arg(z) = \tan^{-1} \tan\left(\frac{\alpha}{2} + \frac{\pi}{4}\right)$ Since  $\frac{\alpha}{2} + \frac{\pi}{4} \in \left(\pi, \frac{5\pi}{4}\right)$  $\therefore \qquad \arg z = \frac{\alpha}{2} + \frac{\pi}{4} - \pi = \frac{\alpha}{2} - \frac{3\pi}{4}, |z| = \sqrt{2} \left( \sin \frac{\alpha}{2} - \cos \frac{\alpha}{2} \right)$ **Ex.5** If  $x_n = \cos\left(\frac{\pi}{2^n}\right) + i\sin\left(\frac{\pi}{2^n}\right)$  then  $x_1 x_2 x_3 \dots \infty$  is equal to  $x_{n} = \cos\left(\frac{\pi}{2^{n}}\right) + i\sin\left(\frac{\pi}{2^{n}}\right) = 1 \times e^{i\frac{\pi}{2^{n}}}$  $x_1 x_2 x_3 \dots \infty$  $= e^{i\frac{\pi}{2^{1}}} e^{i\frac{\pi}{2^{2}}} - - - e^{i\frac{\pi}{2^{n}}} = e^{i\left(\frac{\pi}{2} + \frac{\pi}{2^{2}} + \dots + \frac{\pi}{2^{n}}\right)}$  $= \cos\left(\frac{\pi}{2} + \frac{\pi}{2^2} + \frac{\pi}{2^3} + \dots\right) + i\sin\left(\frac{\pi}{2} + \frac{\pi}{2^2} + \frac{\pi}{2^3} + \dots\right) = -1$  $\left( as \ \frac{\pi}{2} + \frac{\pi}{2^2} + \frac{\pi}{2^3} + \dots = \frac{\pi/2}{1 - 1/2} = \pi \right)$ 



Sol.

Fx.6 If 
$$\left|\frac{|z-i|}{|z+i|} = 1$$
, then locus of z is .  
Sol. We have,  $\left|\frac{|z-i|}{|z+i|} = 1 \Rightarrow \left|\frac{|x+i(y-1)|}{|x+i(y+1)|}\right| = 1$   
 $\Rightarrow \left|\frac{|x+i(y-1)|^2}{|x+i(y+1)|^2} = 1 \Rightarrow x^2 + (y-1)^2 = x^2 + (y+1)^2 \Rightarrow 4y = 0; y = 0$ , which is x-axis  
Ex.7 Solve for z if  $z^2 + |z| = 0$   
Sol. Let  $z = x + iy$   
 $\Rightarrow (x+iy)^2 + \sqrt{x^2 + y^2} = 0$   
 $\Rightarrow x^2 - y^2 + \sqrt{x^2 + y^2} = 0$   
 $\Rightarrow x^2 - y^2 + \sqrt{x^2 + y^2} = 0$   
 $\Rightarrow x = 0 \text{ or } y = 0$   
when  $x = 0$   $-y^2 + |y| = 0$   
 $\Rightarrow x = 0$  or  $y = 0$   
 $\Rightarrow x = 0$   
 $\Rightarrow z = 0$   
 $z = 0, z = i, z = -i$   
Fx.8 If  $|z_1 + z_3|^2 - |z_1|^2 + |z_2|^2$  then  $\left(\frac{z_1}{z_2}\right)$  is -  
Sol. Here let  $z_1 = r_1(\cos \theta_1 + i\sin \theta_1) |z_1| = r_1$   
 $z_2 = r_2(\cos \theta_2 + i\sin \theta_2) ||z_2| = r_2$   
 $\therefore (|z_1 + z_3|^2 = ||r_1|^2 \cos \theta_1 + r_2 \cos \theta_2) + i([r_1 \sin \theta_1 + r_2 \sin \theta_2)]^2$   
 $= r_1^2 + r_2^2 + 2r_1r_2 \cos (\theta_1 - \theta_2) = ||z_1|^2 + ||z_2|^2 \text{ if } \cos (\theta_1 - \theta_2) = 0$   
 $\therefore \theta_1 - \theta_2 = \pm \frac{\pi}{2}$   
 $\Rightarrow \operatorname{amp}\left(\frac{a_1}{z_2}\right) = \pm \frac{\pi}{2} \Rightarrow \frac{z_4}{z_2}$  is purely imaginary



**Fx.9** The locus of the complex number z in argand plane satisfying the inequality  

$$\log_{1/2} \left( \frac{|z-1|+4}{3|z-1|-2} \right) > 1 \quad (\text{where} | z-1| \neq \frac{2}{3}) \text{ is -}$$
Sol. We have,  $\log_{1/2} \left( \frac{|z-1|+4}{3|z-1|-2} \right) > 1 = \log_{1/2} \left( \frac{1}{2} \right)$ 

$$\Rightarrow \frac{|z-1|+4}{3|z-1|-2} < \frac{1}{2} \qquad [Q \log_{n} x \text{ is a decreasing function if a < I}]$$

$$\Rightarrow 2|z-1|+8 < 3|z-1|-2 \text{ as } |z-1|>2/3$$

$$\Rightarrow |z-1|>10$$
which is exterior of a circle.
  
**Fx.10** Sketch the region given by  
(i) Arg  $(z-1-i) \ge \pi/3$ 
(ii)  $|z| \le 5 \text{ & Arg } (z-i-1) > \pi/6$ 
Sol.
  
**Fx.11** Shaded region is given by-  
(A)  $|z+2| \ge 6, 0 \le \arg(z) \le \frac{\pi}{3}$ 
(C)  $|z+2| \ge 6, 0 \le \arg(z) \le \frac{\pi}{3}$ 
(C)  $|z+2| \ge 6, 0 \le \arg(z) \le \frac{\pi}{3}$ 
(C)  $|z+2| \ge 6, 0 \le \arg(z) \le \frac{\pi}{3}$ 
(C)  $|z+2| \ge 6, 0 \le \arg(z) \le \frac{\pi}{3}$ 
(D) None of these
  
Sol. Note that AB = 6 and 1 + 3\sqrt{3}i = -2 + 3 + 3\sqrt{3}i = -2 + 6 \left( \frac{1}{2} + \frac{\sqrt{3}}{2} i \right) = -2 + 6 \left( \cos \frac{\pi}{3} + i \sin \frac{\pi}{3} \right)
 $\therefore \qquad \angle BAC = \frac{\pi}{3}$ 

Thus, shaded region is given by  $|z+2| \ge 6$  and  $0 \le \arg(z+2) \le \frac{\pi}{3}$ 



Two different non parallel lines cut the circle |z| = r in point a, b, c, d respectively. Prove that these lines meet Ex. 12

in the point z given by  $z = \frac{a^{-1} + b^{-1} - c^{-1} - d^{-1}}{a^{-1}b^{-1} - c^{-1}d^{-1}}$ Sol. Since point P, A, B are collinear



 $z(\overline{c}-\overline{d}) - \overline{z}(c-d) + (c\overline{d}-\overline{c}d) = 0$ 

On applying (i)  $\times$  (c - d) - (ii) (a - b), we get

$$\therefore \qquad z\left(\overline{a}-\overline{b}\right) (c-d)-z\left(\overline{c}-\overline{d}\right) (a-b)=\left(c\overline{d}-\overline{c}d\right) (a-b)-\left(a\overline{b}-\overline{a}b\right) (c-d) \qquad \dots \dots (iii)$$

.....(ii)

 $D(z_{\star})$ 

$$\Rightarrow \qquad \mathbf{z}\overline{\mathbf{z}} = \mathbf{r}^2 = \mathbf{k} \text{ (say)} \therefore \qquad \overline{\mathbf{a}} = \frac{\mathbf{k}}{\mathbf{a}}, \ \overline{\mathbf{b}} = \frac{\mathbf{k}}{\mathbf{b}}, \ \overline{\mathbf{c}} = \frac{\mathbf{k}}{\mathbf{c}} \text{ etc.}$$

From equation (iii) we get

$$z\left(\frac{k}{a}-\frac{k}{b}\right)(c-d)-z\left(\frac{k}{c}-\frac{k}{d}\right)(a-b) = \left(\frac{ck}{d}-\frac{kd}{c}\right)(a-b) - \left(\frac{ak}{b}-\frac{bk}{a}\right)(c-d)$$
$$\therefore \qquad z = \frac{a^{-1}+b^{-1}-c^{-1}-d^{-1}}{a^{-1}b^{-1}-c^{-1}d^{-1}}$$

If the vertices of a square ABCD are  $z_1, z_2, z_3 \& z_4$  then find  $z_3 \& z_4$  in terms of  $z_1 \& z_2$ . Ex. 13 Sol. Using vector rotation at angle A

$$\frac{z_{3} - z_{1}}{z_{2} - z_{1}} = \frac{|z_{3} - z_{1}|}{|z_{2} - z_{1}|} e^{i\frac{\pi}{4}}$$

$$\Rightarrow |z_{3} - z_{1}| = AC \text{ and } |z_{2} - z_{1}| = AB$$
Also  $AC = \sqrt{2} AB$ 

$$\therefore |z_{3} - z_{1}| = \sqrt{2} |z_{2} - z_{1}|$$

$$\Rightarrow \frac{z_{3} - z_{1}}{z_{2} - z_{1}} = \sqrt{2} \left( \cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right)$$

$$\Rightarrow z_{3} - z_{1} = (z_{2} - z_{1})(1 + i)$$

$$\Rightarrow z_{3} = z_{1} + (z_{2} - z_{1})(1 + i)$$

Similarly  $z_4 = z_2 + (1+i)(z_1 - z_2)$ 



B(3 + 4i)

 $C(Z_3)$ 

4(2+3i)

If A(2+3i) and B(3+4i) are two vertices of a square ABCD (take in anticlock wise order) then find C and D. Ex. 14

Sol. Let affix of C and D are  $z_3$  and  $z_4$  respectively.

⇒

Considering 
$$\angle DAB = 90^{\circ}$$
 and  $AD = AB$   
we get  $\frac{z_4 - (2+3i)}{(3+4i) - (2+3i)} = \frac{AD}{AB}e^{\frac{i\pi}{2}}$   
 $\Rightarrow z_4 - (2+3i) = (1+i)i \Rightarrow z_4 = 2+3i+i-1 = 1+4i$   
and  $\frac{z_3 - (3+4i)}{(2+3i) - (3+4i)} = \frac{CB}{AB}e^{-\frac{i\pi}{2}}$   
 $\Rightarrow z_3 = 3+4i - (1+i)(-i) \Rightarrow z_3 = 3+4i+i-1 = 2+5i$ 

**Ex. 15** Plot the region represented by  $\frac{\pi}{3} \le \arg\left(\frac{z+1}{z-1}\right) \le \frac{2\pi}{3}$  in the Argand plane.

Let us take  $\arg\left(\frac{z+1}{z-1}\right) = \frac{2\pi}{3}$ , clearly z lies on the minor arc of the circle Sol. passing through (1, 0) and (-1, 0). Similarly,  $\arg\left(\frac{z+1}{z-1}\right) = \frac{\pi}{3}$  means that 'z' is lying on the major arc of the circle passing through (1, 0) and (-1, 0). Now if we take any point in the region included between two arcs say  $P_1(z_1)$  we get  $\frac{\pi}{3} \leq \arg\left(\frac{z+1}{z-1}\right) \leq \frac{2\pi}{3}$ Thus  $\frac{\pi}{3} \le \arg\left(\frac{z+1}{z-1}\right) \le \frac{2\pi}{3}$  represents the shaded region (excluding points

**Ex. 16** If  $z_1, z_2 \& z_3$  are the affixes of three points A, B & C respectively and satisfy the condition  $|z_1 - z_2| = |z_1| + |z_2|$ and  $|(2 - i) z_1 + i z_3| = |z_1| + |(1 - i) z_1 + i z_3|$  then prove that  $\triangle$  ABC in a right angled.

#### Sol. $|z_1 - z_2| = |z_1| + |z_2|$

(1, 0) and (-1, 0)).

 $z_1, z_2$  and origin will be collinear and  $z_1, z_2$  will be opposite side of origin Similarly  $|(2 - i) z_1 + i z_3| = |z_1| + |(1 - i) z_1 + i z_3|$ 

 $z_1$  and  $(1 - i) z_1 + iz_3 = z_4$  say, are collinear with origin and lies on same side of origin. ⇒ Let  $z_4 = \lambda z_1$ ,  $\lambda$  real then  $(1 - i) z_1 + i z_3 = \lambda z_1$ 

$$i(z_3 - z_1) = (\lambda - 1) z_1 \qquad \Rightarrow \qquad \frac{(z_3 - z_1)}{-z_1} = (\lambda - 1) i$$
$$\frac{z_3 - z_1}{0 - z_1} = me^{i\pi/2}, m = \lambda - 1 \qquad \Rightarrow \qquad z_3 - z_1 \text{ is perpendicular to the vector } 0 - z_1.$$

also  $z_2$  is on line joining origin and  $z_1$ 

so we can say the triangle formed by  $z_1$ ,  $z_2$  and  $z_3$  is right angled.



i.e.

**Ex.17** If  $\alpha$ ,  $\beta$ ,  $\gamma$  are roots of  $x^3 - 3x^2 + 3x + 7 = 0$  (and  $\omega$  is imaginary cube root of unity), then find the value of

$$\frac{\alpha - 1}{\beta - 1} + \frac{\beta - 1}{\gamma - 1} + \frac{\gamma - 1}{\alpha - 1}.$$
Sol. We have  $x^3 - 3x^2 + 3x + 7 = 0$   
 $\therefore$   $(x - 1)^3 + 8 = 0$   
 $\therefore$   $(x - 1)^3 = (-2)^3$   
 $\Rightarrow$   $\left(\frac{x - 1}{-2}\right)^3 = 1 \Rightarrow \frac{x - 1}{-2} = (1)^{1/3} = 1, \omega, \omega^2$  (cube roots of unity)  
 $\therefore$   $x = -1, 1 - 2\omega, 1 - 2\omega^2$   
Here  $\alpha = -1, \beta = 1 - 2\omega, \gamma = 1 - 2\omega^2$   
 $\therefore$   $\alpha - 1 = -2, \beta - 1 = -2\omega, \gamma - 1 = -2\omega^2$   
Then  $\frac{\alpha - 1}{\beta - 1} + \frac{\beta - 1}{\gamma - 1} + \frac{\gamma - 1}{\alpha - 1} = \left(\frac{-2}{-2\omega}\right) + \left(\frac{-2\omega}{-2\omega^2}\right) = \frac{1}{\omega} + \frac{1}{\omega} + \omega^2 = \omega^2 + \omega^2 + \omega^2$   
Therefore  $\frac{\alpha - 1}{\beta - 1} + \frac{\beta - 1}{\gamma - 1} + \frac{\gamma - 1}{\alpha - 1} = 3\omega^2.$ 

**Ex.18** If z is a point on the Argand plane such that |z - 1| = 1, then  $\frac{z-2}{z}$  is equal to -

Sol. Since |z - 1| = 1,  $\therefore$  let  $z - 1 = \cos \theta + i \sin \theta$ Then,  $z - 2 = \cos \theta + i \sin \theta - 1$ 

$$= -2\sin^2\frac{\theta}{2} + 2i\sin\frac{\theta}{2}\cos\frac{\theta}{2} = 2i\sin\frac{\theta}{2}\left(\cos\frac{\theta}{2} + i\sin\frac{\theta}{2}\right) \qquad \dots (i)$$

and  $z = 1 + \cos \theta + i \sin \theta$ 

$$= 2\cos^2\frac{\theta}{2} + 2i\sin\frac{\theta}{2}\cos\frac{\theta}{2} = 2\cos\frac{\theta}{2}\left(\cos\frac{\theta}{2} + i\sin\frac{\theta}{2}\right) \qquad \dots (ii)$$

From (i) and (ii), we get  $\frac{z-2}{z} = i \tan \frac{\theta}{2} = i \tan (\arg z) \left( Q \arg z = \frac{\theta}{2} \operatorname{from} (ii) \right)$ 

Ex. 19 Let a be a complex number such that |a| < 1 and  $z_1, z_2, \dots, z_n$  be the vertices of a polygon such that  $z_k = 1 + a + a^2 + \dots a^k$ , then show that vertices of the polygon lie within the circle  $\left|z - \frac{1}{1-a}\right| = \frac{1}{|1-a|}$ .

Sol. We have,  $z_k = 1 + a + a^2 + \dots + a^k = \frac{1 - a^{k+1}}{1 - a}$ 

$$\Rightarrow z_{k} - \frac{1}{1-a} = \frac{-a^{k+1}}{1-a} \Rightarrow \left| z_{k} - \frac{1}{1-a} \right| = \frac{\left| a \right|^{k+1}}{\left| 1-a \right|} < \frac{1}{\left| 1-a \right|} \qquad (Q |a| < 1)$$

:. Vertices of the polygon  $z_1, z_2, \dots, z_n$  lie within the circle  $\left| z - \frac{1}{1-a} \right| = \frac{1}{\left| 1-a \right|}$ 



| Ex. 20 | If $z_1 = a + ib$ and $z_2 = c + id$ are complex number such that $ z_1  =  z_2  = 1$ and Re $(z_1\overline{z_2}) = 0$ , then show that the pair of complex numbers $w_1 = a + ic$ and $w_2 = b + id$ satisfies the following                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | (i) $ w_1  = 1$ (ii) $ w_2  = 1$ (iii) Re $(w_1 \overline{w}_2) = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Sol.   | $a = \cos \theta$ , $b = \sin \theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | $c = \cos \phi, d = \sin \phi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|        | Re $(z_1\overline{z}_2) = 0 \implies \theta - \phi = \frac{n\pi}{2} \qquad n = \pm 1 \implies c = \sin \theta, d = -\cos \theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|        | $\Rightarrow$ w <sub>i</sub> = cos $\theta$ + i sin $\theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|        | $w_2 = \sin \theta - i \cos \theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|        | $\Rightarrow  \mathbf{w}_1  = 1,  \mathbf{w}_2  = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|        | $w_1 \overline{w}_2 = \cos\theta \sin\theta - \sin\theta \cos\theta + i(\sin^2\theta - \cos^2\theta) = -i\cos 2\theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        | $\Rightarrow \qquad \operatorname{Re}(\mathbf{w}_1 \overline{\mathbf{w}}_2) = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Ex. 21 | If $\theta \in [\pi/6, \pi/3]$ , $i = 1, 2, 3, 4, 5$ and $z^4 \cos\theta_1 + z^3 \cos\theta_2 + z^2 \cos\theta_3 + z \cos\theta_4 + \cos\theta_5 = 2\sqrt{3}$ , then show that $ z  > \frac{3}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Sol.   | Given that $\cos\theta_1 \cdot z^4 + \cos\theta_2 \cdot z^3 + \cos\theta_3 \cdot z^2 + \cos\theta_4 \cdot z + \cos\theta_5 = 2\sqrt{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        | or $\left \cos\theta_1 \cdot z^4 + \cos\theta_2 \cdot z^3 + \cos\theta_3 \cdot z^2 + \cos\theta_4 \cdot z + \cos\theta_5\right  = 2\sqrt{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|        | $2\sqrt{3} \le \left \cos\theta_1 \cdot z^4\right  + \left \cos\theta_2 \cdot z^3\right  + \left \cos\theta_3 \cdot z^2\right  + \left \cos\theta_4 \cdot z\right  + \left \cos\theta_5\right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|        | $\Rightarrow  \theta_i \in [\pi/6, \pi/3]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        | $\therefore \qquad \frac{1}{2} \le \cos \theta_{i} \le \frac{\sqrt{3}}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        | $2\sqrt{3} \le \frac{\sqrt{3}}{2} z ^4 + \frac{\sqrt{3}}{2} z ^3 + \frac{\sqrt{3}}{2} z ^2 + \frac{\sqrt{3}}{2} z  + \frac{\sqrt{3}}{2} z ^2 + \frac{\sqrt{3}}{2} z ^$ |
|        | $\Rightarrow \qquad 3 \le  z ^4 +  z ^3 +  z ^2 +  z  \qquad \Rightarrow \qquad 3 <  z  +  z ^2 +  z ^3 +  z ^4 +  z ^5 + \dots \infty$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        | $\Rightarrow \qquad 3 < \frac{ z }{1- z } \qquad \Rightarrow \qquad 3-3 z  <  z $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|        | $\Rightarrow  4 z  > 3 \qquad \therefore \qquad  z  > \frac{3}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Ex. 22 | If $z_1$ and $z_2$ are two complex numbers and C > 0, then prove that $ z_1 + z_2 ^2 \le (1 + C)  z_1 ^2 + (1 + C^{-1}) z_2 ^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Sol.   | We have to prove that : $ z_1 + z_2 ^2 \le (1 + C)  z_1 ^2 + (1 + C^{-1}) z_2 ^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|        | i.e. $ \mathbf{z}_1 ^2 +  \mathbf{z}_2 ^2 +  \mathbf{z}_1 ^2 +  \mathbf{z}_1 ^2 +  \mathbf{z}_1 ^2 + (1 + C^{-1}) \mathbf{z}_2 ^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        | or $\mathbf{z}_1 \overline{\mathbf{z}}_2 + \overline{\mathbf{z}}_1 \mathbf{z}_2 \leq \mathbf{C}  \left  \mathbf{z}_1 \right ^2 + \mathbf{C}^{-1}  \left  \mathbf{z}_2 \right ^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|        | or $C z_1 ^2 + \frac{1}{C} z_2 ^2 - z_1\overline{z}_2 - \overline{z}_1z_2 \ge 0$ (using Re $(z_1\overline{z}_2) \le  z_1\overline{z}_2 $ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        | or $\left(\sqrt{C} z_1  - \frac{1}{\sqrt{C}} z_2 \right)^2 \ge 0$ which is always true.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |



**Ex.23** Let  $z_1$  and  $z_2$  be complex numbers such that  $z_1 \neq z_2$  and  $|z_1| = |z_2|$ . If  $z_1$  has positive real part and  $z_2$  has negative

imaginary part, then show that  $\frac{z_1 + z_2}{z_1 - z_2}$  is purely imaginary.

Sol.  $z_1 = r (\cos \theta + i \sin \theta), \quad -\frac{\pi}{2} < \theta < \frac{\pi}{2}$   $z_2 = r (\cos \phi + i \sin \phi), \quad -\pi < \phi < 0$  $\Rightarrow \quad \frac{z_1 + z_2}{z_1 - z_2} = -i \cot \left(\frac{\theta - \phi}{2}\right), \quad -\frac{\pi}{4} < \frac{\theta - \phi}{2} < \frac{3\pi}{4}$ 

Hence purely imaginary

Ex. 24 Two given points P & Q are the reflection points w.r.t. a given straight line

if the given line is the right bisector of the segment PQ. Prove that the two points denoted by the complex numbers  $z_1 \& z_2$  will be the reflection points for the straight line  $\overline{\alpha} z + \alpha \overline{z} + r = 0$  if and only if;  $\overline{\alpha} z_1 + \alpha \overline{z}_2 + r = 0$ , where r is real and  $\alpha$  is non zero complex constant.

**Sol.** Let 
$$P(z_1)$$
 is the reflection point of  $Q(z_2)$  then the perpendicular bisector of  $z_1 \& z_2$  must be the line

.....(i)

$$\overline{\alpha}z + \alpha \overline{z} + r = 0$$

Now perpendicular bisector of  $z_1 \& z_2$  is,  $|z - z_1| = |z - z_2|$ 

or  $(z-z_1)(\overline{z}-\overline{z}_1) = (z-z_2)(\overline{z}-\overline{z}_2)$  $-z\overline{z}_1 - z_1\overline{z} + z_1\overline{z}_1 = -z\overline{z}_2 - z_2\overline{z} + z_2\overline{z}_2$ 

 $(\overline{zz} \text{ cancels on either side})$ 

 $\cap$ 

or

Comparing (i) & (ii)  $\frac{\overline{\alpha}}{\overline{z_2} - \overline{z_1}} = \frac{\alpha}{z_2 - z_1} = \frac{r}{z_1 \overline{z_1} - z_2 \overline{z_2}} = \lambda$ 

 $(\overline{z}_2 - \overline{z}_1)z + (z_2 - z_1)\overline{z} + z_1\overline{z}_1 - z_2\overline{z}_2 = 0$  .....(ii)

$$\therefore \quad \overline{\alpha} = \lambda(\overline{z}_2 - \overline{z}_1) \qquad \dots \dots (iii)$$

$$\alpha = \lambda(z_2 - z_1) \qquad \dots \dots (iv)$$

$$\mathbf{r} = \lambda(z_1 \overline{z}_1 - z_2 \overline{z}_2) \qquad \dots \dots (v)$$

Multiplying (iii) by  $z_1$ ; (iv) by  $\overline{z}_2$  and adding

$$\overline{\alpha}z_1 + \alpha\overline{z}_2 + r = 0$$

Note that we could also multiply (iii) by  $z_2 \&$  (iv) by  $\overline{z}_1 \&$  add to get the same result.

**Ex. 25** If  $z_1, z_2, z_3$  are complex numbers such that  $\frac{2}{z_1} = \frac{1}{z_2} + \frac{1}{z_3}$ , show that the points represented by  $z_1, z_2, z_3$  lie on a circle passing through the origin.



Sol. We have, 
$$\frac{2}{z_1} = \frac{1}{z_2} + \frac{1}{z_3}$$
  
 $\Rightarrow \quad \frac{1}{z_1} - \frac{1}{z_2} = \frac{1}{z_3} - \frac{1}{z_1} \Rightarrow \frac{z_2 - z_1}{z_1 z_2} = \frac{z_1 - z_3}{z_1 z_3}$ 
 $\Rightarrow \quad \frac{z_2 - z_1}{z_3 - z_1} = \frac{-z_2}{z_3} \Rightarrow \arg\left(\frac{z_2 - z_1}{z_3 - z_1}\right) = \arg\left(\frac{-z_2}{z_3}\right)$ 
 $\arg\left(\frac{z_2 - z_1}{z_3 - z_1}\right) = \pi + \arg\left(\frac{z_2}{z_3}\right)$ 
 $\Rightarrow \quad \text{or } \beta = \pi - \arg\left(\frac{z_2}{z_3}\right) = \pi - \alpha = \alpha + \beta = \pi$ 

Thus the sum of a pair of opposite angle of a quadrilateral is 180°. Hence, the points 0,  $z_1$ ,  $z_2$  and  $z_3$  are the vertices of a cyclic quadrilateral i.e. lie on a circle.







| 11. | Let A, B, C represent the complex numbers $z_1, z_2, z_3$ respectively on the complex plane. If the circumcentre of the triangle ABC lies at the origin, then the orthocentre is represented by the complex number :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                              |                                                                       |                                            |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------|
|     | (A) $z_1 + z_2 - z_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>(B)</b> $z_2 + z_3 - z_1$                                                                                                 | (C) $z_3 + z_1 - z_2$                                                 | <b>(D)</b> $z_1 + z_2 + z_3$               |
| 12. | If $(1+i)(1+2i)(1+3i)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\dots (1 + ni) = \alpha + i\beta$ then 2.5                                                                                  | $10 \dots (1 + n^2) =$                                                |                                            |
|     | $(\mathbf{A}) \alpha - \mathbf{i}\beta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>(B)</b> $\alpha^2 - \beta^2$                                                                                              | (C) $\alpha^2 + \beta^2$                                              | (D) none of these                          |
| 13. | $\sin^{-1}\left\{\frac{1}{i}(z-1)\right\}$ , where                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | z is nonreal, can be the an                                                                                                  | ngle of a triangle if                                                 |                                            |
|     | (A) $\operatorname{Re}(z) = 1$ , $\operatorname{Im}(z) = 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                              | <b>(B)</b> $\operatorname{Re}(z) = 1, 0 < \operatorname{Im}(z) \le 1$ | \$1                                        |
|     | $(\mathbf{C}) \operatorname{Re}(z) + \operatorname{Im}(z) = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                              | (D) none of these                                                     |                                            |
| 14. | If $z = \frac{\pi}{4} (1+i)^4 \left( \frac{1-\sqrt{\pi}}{\sqrt{\pi}+1} \right)^4 \left( \frac{1-\sqrt{\pi}}{\sqrt{\pi}+1$ | $\left(\frac{i}{i} + \frac{\sqrt{\pi} - i}{1 + \sqrt{\pi} i}\right)$ , then $\left(\frac{ z }{\operatorname{amp}(z)}\right)$ | $\overline{z}$ ) equals                                               |                                            |
|     | <b>(A)</b> 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>(B)</b> π                                                                                                                 | <b>(C)</b> 3π                                                         | <b>(D)</b> 4                               |
| 15. | If $1, \alpha_1, \alpha_2, \dots, \alpha_{2008}$ a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | re (2009) <sup>th</sup> roots of unity, t                                                                                    | hen the value of $\sum_{r=1}^{2008} r(\alpha_r +$                     | $\alpha_{2009-r}$ ) equals                 |
|     | (A) 2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>(B)</b> 2008                                                                                                              | ( <b>C</b> ) 0                                                        | <b>(D)</b> – 2009                          |
| 16. | If $x^2 + x + 1 = 0$ , then the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | numerical value of                                                                                                           |                                                                       |                                            |
|     | $\left(x+\frac{1}{x}\right)^2 + \left(x^2+\frac{1}{x^2}\right)^2 +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\left(x^{3}+\frac{1}{x^{3}}\right)^{2}+\left(x^{4}+\frac{1}{x^{4}}\right)^{2}+$                                             | + $\left(x^{27} + \frac{1}{x^{27}}\right)^2$ is equation              | al to                                      |
|     | <b>(A)</b> 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>(B)</b> 36                                                                                                                | <b>(C)</b> 27                                                         | <b>(D)</b> 18                              |
| 17. | Let $i = \sqrt{-1}$ . Define a se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | quence of complex number                                                                                                     | r by $z_1 = 0$ , $z_{n+1} = z_n^2 + i$ for                            | $n \ge 1$ . In the complex plane, how      |
|     | far from the origin is $z_{111}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ?                                                                                                                            |                                                                       |                                            |
|     | (A) 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (B) $\sqrt{2}$                                                                                                               | (C) $\sqrt{3}$                                                        | <b>(D)</b> $\sqrt{100}$                    |
| 18. | Number of values of x (re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | eal or complex) simultaneou                                                                                                  | sly satisfying the system of                                          | equations                                  |
|     | $1 + z + z^2 + z^3 + \dots + z^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $z^{17} = 0$ and $1 + z + z^2 + z^3 + z^3$                                                                                   | + $z^{13} = 0$ is -                                                   |                                            |
|     | (A) 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>(B)</b> 2                                                                                                                 | (C) 3                                                                 | <b>(D)</b> 4                               |
| 19. | Let $z_1$ and $z_2$ be two non r<br>$z_1$ , $z_2$ as ends of a diame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | eal complex cube roots of t<br>ter then the value of $\lambda$ is                                                            | inity and $ z - z_1 ^2 +  z - z_2 ^2 =$                               | $\lambda$ be the equation of a circle with |
|     | (A) 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>(B)</b> 3                                                                                                                 | (C) 2                                                                 | <b>(D)</b> √2                              |
| 20. | In G.P. the first term & c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | common ratio are both $\frac{1}{2}$ (v                                                                                       | $\sqrt{3}+i$ , then the absolute v                                    | value of its n <sup>th</sup> term is :     |
|     | (A) 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>(B)</b> 2 <sup>n</sup>                                                                                                    | <b>(C)</b> 4 <sup>n</sup>                                             | (D) none                                   |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                              |                                                                       |                                            |
|     | Add. 41-42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A, Ashok Park Main, N                                                                                                        | New Rohtak Road, Ne                                                   | w Delhi-110035                             |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +91-93                                                                                                                       | 206/9141                                                              |                                            |

21. If P and Q are represented by the complex numbers  $z_1$  and  $z_2$  such that  $\left|\frac{1}{z_1} + \frac{1}{z_2}\right| = \left|\frac{1}{z_1} - \frac{1}{z_2}\right|$ , then the circumcentre of  $\triangle OPQ$  (where O is the origin) is



- 23. The points  $z_1$ ,  $z_2$ ,  $z_3$ ,  $z_4$  in the complex plane are the vertices of a parallelogram taken in order if and only if : (A)  $z_1 + z_4 = z_2 + z_3$  (B)  $z_1 + z_3 = z_2 + z_4$  (C)  $z_1 + z_2 = z_3 + z_4$  (D) none
- 24. The set of points on the complex plane such that  $z^2 + z + 1$  is real and positive (where z = x + iy,  $x, y \in \mathbb{R}$ ) is-
  - (A) Complete real axis only
  - (B) Complete real axis or all points on the line 2x + 1 = 0
  - (C) Complete real axis or a line segment joining points  $\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right) \& \left(-\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)$  excluding both.
  - (D) Complete real axis or set of points lying inside the rectangle formed by the lines.

$$2x + 1 = 0$$
;  $2x - 1 = 0$ ;  $2y - \sqrt{3} = 0$  &  $2y + \sqrt{3} = 0$ 

25. If  $z_1, z_2, z_3$  are vertices of an equilateral triangle inscribed in the circle |z| = 2 and if  $z_1 = 1 + i\sqrt{3}$ , then

(A) 
$$z_2 = -2$$
,  $z_3 = 1 + i\sqrt{3}$   
(B)  $z_2 = 2$ ,  $z_3 = 1 - i\sqrt{3}$   
(C)  $z_2 = -2$ ,  $z_3 = 1 - i\sqrt{3}$   
(D)  $z_2 = 1 - i\sqrt{3}$ ,  $z_3 = -1 - i\sqrt{3}$ 

26.

22.

The vector z = -4 + 5i is turned counter clockwise through an angle of 180° & stretched 1.5 times. The complex number corresponding to the newly obtained vector is :

(A)  $6 - \frac{15}{2}i$  (B)  $- 6 + \frac{15}{2}i$  (C)  $6 + \frac{15}{2}i$  (D) none of these



- 27. If |z| = 1 and  $|\omega 1| = 1$  where  $z, \omega \in C$ , then the largest set of values of  $|2z 1|^2 + |2\omega 1|^2$  equals (A) [1,9] (B) [2,6] (C) [2,12] (D) [2,18]
- **28.** If  $(\cos\theta + i\sin\theta)$   $(\cos 2\theta + i\sin 2\theta)$  ...  $(\cos n\theta + i\sin n\theta) = 1$ , then the value of  $\theta$  is

(A) 
$$\frac{3m\pi}{n(n+1)}$$
,  $m \in Z$  (B)  $\frac{2m\pi}{n(n+1)}$ ,  $m \in Z$  (C)  $\frac{4m\pi}{n(n+1)}$ ,  $m \in Z$  (D)  $\frac{m\pi}{n(n+1)}$ ,  $m \in Z$ 

29. Points  $z_1 \& z_2$  are adjacent vertices of a regular octagon. The vertex  $z_3$  adjacent to  $z_2(z_3 \neq z_1)$  can be represented by -

(A) 
$$z_2 + \frac{1}{\sqrt{2}}(1\pm i)(z_1 + z_2)$$
  
(B)  $z_2 + \frac{1}{\sqrt{2}}(-1\pm i)(z_1 - z_2)$   
(C)  $z_2 + \frac{1}{\sqrt{2}}(-1\pm i)(z_2 - z_1)$   
(D) none of these

30. If 
$$\log_{1/2}\left(\frac{|z-1|+4}{3|z-1|-2}\right) > 1$$
, then find locus of z

- (A) Exterior to circle with center 1 + i0 and radius 10
- (B) Interior to circle with center 1 + i0 and radius 10

**(B)**7

- (C) Circle with center 1 + i0 and radius 10
- (D) None of these

31. If  $A_1, A_2, \dots, A_n$  be the vertices of an n-sided regular polygon such that  $\frac{1}{A_1A_2} = \frac{1}{A_1A_3} + \frac{1}{A_1A_4}$ , then find the value of n

(A) 5

32. If x = a + b + c,  $y = a\alpha + b\beta + c$  and  $z = a\beta + b\alpha + c$ , where  $\alpha$  and  $\beta$  are imaginary cube roots of unity, then xyz= (A)  $2(a^3 + b^3 + c^3)$  (B)  $2(a^3 - b^3 - c^3)$  (C)  $a^3 + b^3 + c^3 - 3abc$  (D)  $a^3 - b^3 - c^3$ 

(C) 8

**(D)**9

- 33. If z and  $\omega$  are two non-zero complex numbers such that  $|z\omega| = 1$ , and  $\operatorname{Arg}(z) \operatorname{Arg}(\omega) = \pi/2$ , then  $\overline{z}$   $\omega$  is equal to -(A) 1 (B) -1 (C) i (D) -i
- 34. The expression  $\left(\frac{1+i\tan\alpha}{1-i\tan\alpha}\right)^n \frac{1+i\tan\alpha}{1-i\tan\alpha}$  when simplified reduces to : (A) zero
  (B)  $2\sin\alpha$ (C)  $2\cos\alpha$ (D) none 35. If  $1, \alpha_1, \alpha_2, \alpha_3, \alpha_4$  be the roots of  $x^5 - 1 = 0$ , then find the value of  $\frac{\omega - \alpha_1}{\omega^2 - \alpha_1} \cdot \frac{\omega - \alpha_2}{\omega^2 - \alpha_2} \cdot \frac{\omega - \alpha_3}{\omega^2 - \alpha_3} \cdot \frac{\omega - \alpha_4}{\omega^2 - \alpha_4}$

(where  $\omega$  is imaginary cube root of unity.) (A)  $\omega$  (B)  $\omega^2$  (C) 1 (D) - 1



Exercise # 2 Part # I > [Multiple Correct Choice Type Questions] Which of the following complex numbers lies along the angle bisectors of the line -1.  $L_1: z = (1+3\lambda) + i (1+4\lambda)$  $L_2: z = (1+3\mu) + i(1-4\mu)$ (A)  $\frac{11}{5} + i$ (C)  $1 - \frac{3i}{5}$ **(B)** 11 + 5i**(D)** 5-3iOn the argand plane, let  $\alpha = -2 + 3z$ ,  $\beta = -2 - 3z$  & |z| = 1. Then the correct statement is -2. (A)  $\alpha$  moves on the circle, centre at (-2, 0) and radius 3 **(B)**  $\alpha \& \beta$  describe the same locus (C)  $\alpha \& \beta$  move on different circles (D)  $\alpha - \beta$  moves on a circle concentric with |z| = 1POQ is a straight line through the origin O. P and Q represent the complex number a + i b and c + i d3. respectively and OP = OQ. Then (A) |a + i b| = |c + i d|**(B)** a + c = b + d(D) none of these (C)  $\arg(a+ib) = \arg(c+id)$ The common roots of the equations  $z^3 + (1 + i)z^2 + (1 + i)z + i = 0$ , (where  $i = \sqrt{-1}$ ) and  $z^{1993} + z^{1994} + 1 = 0$  are -4. (where  $\omega$  denotes the complex cube root of unity) (D)  $\omega^{981}$ (C)  $\omega^2$ **(A)** 1 **(B)** ω If g(x) and h(x) are two polynomials such that the polynomial  $P(x) = g(x^3) + xh(x^3)$  is divisible by  $x^2 + x + 1$ , then -5. (A) g(1) = h(1) = 0(C) g(1) = -h(1)**(B)**  $g(1) = h(1) \neq 0$ (**D**) g(1) + h(1) = 0The value of  $i^n + i^{-n}$ , for  $i = \sqrt{-1}$  and  $n \in I$  is -6. (A)  $\frac{2^n}{(1-i)^{2n}} + \frac{(1+i)^{2n}}{2^n}$  (B)  $\frac{(1+i)^{2n}}{2^n} + \frac{(1-i)^{2n}}{2^n}$  (C)  $\frac{(1+i)^{2n}}{2^n} - \frac{2^n}{(1-i)^{2n}}$  (D)  $\frac{2^n}{(1+i)^{2n}} + \frac{2^n}{(1-i)^{2n}}$ The equation |z - i| + |z + i| = k, k > 0, can represent 7. (A) an ellipse if k > 2**(B)** line segment if k = 2(C) an ellipse if k = 5(D) line segment if k = 1If the equation  $|z|(z+1)^8 = z^8 |z+1|$  where  $z \in C$  and  $z(z+1) \neq 0$  has distinct roots  $z_1, z_2, z_3, \dots, z_n$  (where  $n \in N$ ) 8. then which of the following is/are true? (A)  $z_1, z_2, z_3, \dots, z_n$  are concyclic points. **(B)**  $z_1, z_2, z_3, \dots, z_n$  are collinear points (C)  $\sum_{r=1}^{n} \operatorname{Re}(z_r) = \frac{-7}{2}$ (D) = 0If  $\mathbf{x}_r = \operatorname{CiS}\left(\frac{\pi}{2^r}\right)$  for  $1 \le r \le n$ ;  $r, n \in \mathbb{N}$  then -9. (A)  $\lim_{n \to \infty} \operatorname{Re}\left(\prod_{r=1}^{n} x_{r}\right) = -1$  (B)  $\lim_{n \to \infty} \operatorname{Re}\left(\prod_{r=1}^{n} x_{r}\right) = 0$  (C)  $\lim_{n \to \infty} \operatorname{Im}\left(\prod_{r=1}^{n} x_{r}\right) = 1$  (D)  $\lim_{n \to \infty} \operatorname{Im}\left(\prod_{r=1}^{n} x_{r}\right) = 0$ 

3 A

10. If 
$$|z_1| = |z_1| = |z_1| = 1$$
 and  $z_1, z_2, z_1$  are represented by the vertices of an equilateral triangle then  
(A)  $z_1, z_2, + z_3 = 0$ 
(B)  $z_1, z_2 = 1$ 
(C)  $z_1, z_2, + z_3, z_4, - z_3, - z_1$ 
(D) none of these  
11. If S be the set of real values of x satisfying the inequality  $1 - \log_2 |\frac{x + 1 + 21}{\sqrt{2} - 1} | - 2 \ge 0$ , then S contains -  
(A)  $[-3, -1)$ 
(B)  $(-1, 1]$ 
(C)  $[-2, 2]$ 
(D)  $[-3, 1]$   
12. Let  $z_1, z_2$  be two complex numbers represented by points on the circle  $|z_1| = 1$  and  $|z_2| = 2$  respectively, then -  
(A)  $\max |z_1| + z_2| = 4$ 
(B)  $\min |z_1 - z_2| = 1$ 
(C)  $|z_2 + \frac{1}{z_1}| \le 3$ 
(D) none of these  
13. If z is a complex number then the equation  $z^2 + z ||z| + ||z^2|| = 0$  is satisfied by ( $\phi$  and  $\phi^2$  are imaginary cube  
roots of unity)  
(A)  $z = k$  ow where k  $\in \mathbb{R}$ 
(B)  $z = k o^3$  where k is non negative real  
(C)  $z = k$  ow where k  $\in \mathbb{R}$ 
(B)  $z = k o^3$  where k is non negative real  
(C)  $z = k$  ow where k  $z_1, z_2, z_1$  represents vertices of an equilateral triangle such that  $|z_1| = z_2| = |z_2|$ , then which of  
fullowing is correct?  
(A)  $z_1 + z_2 + z_3 = 0$ 
(B)  $\mathbb{R}(z_1 + z_2 + z_3) = 0$ 
(C)  $[\mathrm{III}(z_1 + z_2 + z_3) = 0$ 
(D)  $|z_1 + z_2 + z_3 = 0$   
15. If 2 cos  $0 = x + \frac{1}{x}$  and 2 cos  $\varphi = y + \frac{1}{y}$ , then  
(A)  $x^4 + \frac{1}{x^6} = 2 \cos(\theta + \phi)$ 
(D) none of these  
16. Value(s) of  $(-1)^{-3}$  is are-  
(A)  $\frac{\sqrt{3} - i}{2}$ 
(B)  $\frac{\sqrt{3} + i}{2}$ 
(C)  $\frac{-\sqrt{3} - i}{2}$ 
(D)  $\frac{-\sqrt{3} + i}{2}$   
(A)  $wrg(\frac{\langle z - 2 \rangle}{z_2 + 2}) = \frac{\pi}{2}$ 
(B)  $\frac{\sqrt{3} + i}{1 - 2}$ 
(B)  $wrg(\frac{\langle z + 1 + i\sqrt{3} \rangle}{z_1 - 1 + i\sqrt{3}}) = \frac{\pi}{6}$   
(C)  $|z^2 - 1| \ge 3$ 
(D)  $|z^2 - 1| \le 5$   
18. If  $\alpha, \beta$  he any two complex numbers such that  $\left| \frac{\alpha - \beta}{1 - \alpha} \right| = 1$ , then which of the following may be true -  
(A)  $||\alpha| = 1$ 
(B)  $|\beta| = 1$ 
(C)  $\alpha = e^n$ ,  $0 \in \mathbb{R}$ 
(D)  $\beta = e^n$ ,  $\theta \in \mathbb{R}$ 

### MATHS FOR JEE MAIN & ADVANCED

- 19.The equation ||z + i| |z i|| = k represents(A) a hyperbola if 0 < k < 2(B) a pair of ray if k > 2(C) a straight line if k = 0(D) a pair of ray if k = 2
- 20. If amp  $(z_1z_2) = 0$  and  $|z_1| = |z_2| = 1$ , then :-(A)  $z_1 + z_2 = 0$  (B)  $z_1z_2 = 1$

(C)  $z_1 = \overline{z}_2$ 

(D) none of these

21. If centre of square ABCD is at z=0. If affix of vertex A is  $z_1$ , centroid of triangle ABC is/are -

(A) 
$$\frac{z_1}{3}(\cos \pi + i \sin \pi)$$
  
(B)  $4\left[\left(\cos \frac{\pi}{2}\right) - i\left(\sin \frac{\pi}{2}\right)\right]$   
(C)  $\frac{z_1}{3}\left[\left(\cos \frac{\pi}{2}\right) + i\left(\sin \frac{\pi}{2}\right)\right]$   
(D)  $\frac{z_1}{3}\left[\left(\cos \frac{\pi}{2}\right) - i\left(\sin \frac{\pi}{2}\right)\right]$ 

- 22. Let  $z_1, z_2, z_3$  be non-zero complex numbers satisfying the equation  $z^4 = iz$ . Which of the following statement(s) is/ are correct?
  - (A) The complex number having least positive argument is  $\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$ .
  - **(B)**  $\sum_{k=1}^{3} \operatorname{Amp}(z_k) = \frac{\pi}{2}$

(C) Centroid of the triangle formed by  $z_1, z_2$  and  $z_3$  is  $\left(\frac{1}{\sqrt{3}}, \frac{-1}{3}\right)$ 

(**D**) Area of triangle formed by  $z_1, z_2$  and  $z_3$  is  $\frac{3\sqrt{3}}{2}$ 

- 23. If the vertices of an equilateral triangle are situated at z = 0,  $z=z_1$ ,  $z=z_2$ , then which of the following is/are true -
  - (A)  $|z_1| = |z_2|$ (B)  $|z_1 - z_2| = |z_1|$ (C)  $|z_1 + z_2| = |z_1| + |z_2|$ (D)  $|\arg z_1 - \arg z_2| = \pi/3$
- 24. If z satisfies the inequality  $|z 1 2i| \le 1$ , then

(A) min  $(\arg(z)) = \tan^{-1}\left(\frac{3}{4}\right)$ (B) max  $(\arg(z)) = \frac{\pi}{2}$ (C) min  $(|z|) = \sqrt{5} - 1$ (D) max  $(|z|) = \sqrt{5} + 1$ 

25.

Let z,  $\omega z$  and z +  $\omega z$  represent three vertices of  $\triangle ABC$ , where  $\omega$  is cube root unity, then -

(A) centroid of  $\triangle ABC$  is  $\frac{2}{3}(z + \omega z)$ (B) orthocenter of  $\triangle ABC$  is  $\frac{2}{3}(z + \omega z)$ (C) ABC is an obtuse angled triangle (D) ABC is an acute angled triangle

### Part # II >> [Assertion & Reason Type Questions]

These questions contains, Statement I (assertion) and Statement II (reason).

- (A) Statement-I is true, Statement-II is true ; Statement-II is correct explanation for Statement-I.
- (B) Statement-I is true, Statement-II is true ; Statement-II is NOT a correct explanation for statement-I.
- (C) Statement-I is true, Statement-II is false.
- (D) Statement-I is false, Statement-II is true.
- 1. Statement-I: There are exactly two complex numbers which satisfy the complex equations |z 4 5i| = 4 and

Arg 
$$(z - 3 - 4i) = \frac{\pi}{4}$$
 simultaneously.

Statement-II : A line cuts the circle in atmost two points.

2. Let  $z_1, z_2, z_3$  represent vertices of a triangle.

**Statement - I :** 
$$\frac{1}{z_1 - z_2} + \frac{1}{z_2 - z_3} + \frac{1}{z_3 - z_1} = 0$$
, when triangle is equilateral.

Statement - II :  $|z_1|^2 - z_1 \overline{z}_0 - \overline{z}_1 z_0 = |z_2|^2 - z_2 \overline{z}_0 - \overline{z}_2 z_0 = |z_3|^2 - z_3 \overline{z}_0 - \overline{z}_3 z_0$ , where  $z_0$  is circumcentre of triangle.

- 3. Statement-I: If  $z = i + 2i^2 + 3i^3 + \dots + 32i^{32}$ , then  $z, \overline{z}, -z \& -\overline{z}$  forms the vertices of square on argand plane. Statement-II:  $z, \overline{z}, -z, -\overline{z}$  are situated at the same distance from the origin on argand plane.
- 4. Statement 1 : Roots of the equation  $(1 + z)^6 + z^6 = 0$  are collinear. Statement - II : If  $z_1, z_2, z_3$  are in A.P. then points represented by  $z_1, z_2, z_3$  are collinear
- 5. Let  $z_1, z_2, z_3$  satisfy  $\left|\frac{z+2}{z-1}\right| = 2$  and  $z_0 = 2$ . Consider least positive arguments wherever required.

**Statement – I :**  $2 \arg \left( \frac{z_1 - z_3}{z_2 - z_3} \right) = \arg \left( \frac{z_1 - z_0}{z_2 - z_0} \right).$ **Statement – II :**  $z_1, z_2, z_3$  satisfy  $|z - z_0| = 2.$ 

- 6. Let 1,  $\alpha_1$ ,  $\alpha_2$ ,  $\alpha_3$ ,...,  $\alpha_{n-1}$  be the n, n<sup>th</sup> roots of unity, Statement - I:  $\sin \frac{\pi}{n} \cdot \sin \frac{2\pi}{n} \cdot \sin \frac{3\pi}{n} \dots \sin \frac{(n-1)\pi}{n} = \frac{n}{2^{n-1}}$ . Statement - II:  $(1 - \alpha_1)(1 - \alpha_2)(1 - \alpha_3) \dots (1 - \alpha_{n-1}) = n$ .
- 7. Statement-I: If  $z_1 = 9 + 5i$  and  $z_2 = 3 + 5i$  and if  $\arg\left(\frac{z z_1}{z z_2}\right) = \frac{\pi}{4}$  then  $|z 6 8i| = 3\sqrt{2}$

**Statement-II**: If z lies on circle having  $z_1 \& z_2$  as diameter then  $\arg\left(\frac{z-z_1}{z-z_2}\right) = \frac{\pi}{4}$ .

8. Statement-I: Let  $z_1$ ,  $z_2$ ,  $z_3$  be three complex numbers such that  $|3z_1 + 1| = |3z_2 + 1| = |3z_3 + 1|$  and  $1 + z_1 + z_2 + z_3 = 0$ , then  $z_1$ ,  $z_2$ ,  $z_3$  will represent vertices of an equilateral triangle on the complex plane.

**Statement-II**:  $z_1, z_2, z_3$  represent vertices of an equilateral triangle if  $z_1^2 + z_2^2 + z_3^2 = z_1 z_2 + z_2 z_3 + z_3 z_1$ .



## Exercise # 3 Part # I [Matrix Match Type Questions]

Following question contains statements given in two columns, which have to be matched. The statements in Column-I are labelled as A, B, C and D while the statements in Column-II are labelled as p, q, r and s. Any given statement in Column-I can have correct matching with ONE OR MORE statement(s) in Column-II.

| 1. | Column                 | -I                                                                                                                      | Column                | ı-I                 |            |      |
|----|------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------------|------------|------|
|    | (A)                    | If z be the complex number such that $\left z + \frac{1}{z}\right  = 2$                                                 | <b>(p)</b>            | 0                   |            |      |
|    |                        | then minimum value of $\frac{ z }{\tan\frac{\pi}{8}}$ is                                                                |                       |                     |            |      |
|    | <b>(B)</b>             | $ z  = 1 \& z^{2n} + 1 \neq 0$ then $\frac{z^n}{z^{2n} + 1} - \frac{\overline{z}^n}{\overline{z}^{2n} + 1}$ is equal to | (q)                   | 3                   |            |      |
|    | (C)                    | If $8iz^3 + 12z^2 - 18z + 27i = 0$ then $2 z  =$                                                                        | ( <b>r</b> )          | 11                  |            |      |
|    | <b>(D)</b>             | If $z_1, z_2, z_3, z_4$ are the roots of equation                                                                       | <b>(s)</b>            | 1                   |            |      |
|    |                        | $z^4 + z^3 + z^2 + z + 1 = 0$ , then $\prod_{i=1}^{4} (z_i + 2)$ is                                                     |                       |                     |            |      |
| 2. | Let z <sub>1</sub> lie | es on $ z  = 1$ and $z_2$ lies on $ z  = 2$ .                                                                           |                       |                     |            |      |
|    | Column                 | I-I                                                                                                                     | Colum                 | <b>1</b> − <b>I</b> |            |      |
|    | (A)                    | Maximum value of $ z_1 + z_2 $                                                                                          | <b>(p)</b>            | 3                   |            |      |
|    | <b>(B)</b>             | Minimum value of $ z_1 - z_2 $                                                                                          | <b>(q)</b>            | 1                   |            |      |
|    | <b>(C)</b>             | Minimum value of $ 2z_1 + 3z_2 $                                                                                        | <b>(r)</b>            | 4                   |            |      |
|    | <b>(D</b> )            | Maximum value of $ z_1 - 2z_2 $                                                                                         | (\$)                  | 5                   |            |      |
| 3. | Column                 | -I                                                                                                                      |                       |                     | Column     | 1-II |
|    | (A)                    | Let $f(x) = x^4 + ax^3 + bx^2 + cx + d$ has 4 real roots $(a, b, c, d \in R)$ .                                         |                       |                     |            |      |
|    |                        | If $ f(-i)  = 1$ (where $i = \sqrt{-1}$ ), then the value of $a^2 + b^2 + c^2$                                          | + d <sup>2</sup> equa | als                 | <b>(q)</b> | 1    |
|    | <b>(B)</b>             | If $\arg(z+3) = \frac{\pi}{6}$ and $\arg(z-3) = \frac{2\pi}{3}$ , then                                                  |                       |                     | (r)        | 2    |
|    |                        | $\tan^{2}(\arg z) - 2\cos(\arg z)$ , is $\sum_{r=1}^{n} \operatorname{Im}(z_{r})$                                       |                       |                     | (s)        | 3    |

(C) If the points A(z), B(-z) and C(z+1) are vertices of an equilateral triangle, then 5+4 Re (z) equals

(D) If 
$$z_1 = 1 + i\sqrt{3}$$
,  $z_2 = 1 - i\sqrt{3}$  and  $z_3 = 2$ , (t) 4

then value of x satisfying  $z_1^x + z_2^x = 2^x$  can be



#### Part # II

4.

#### [Comprehension Type Questions]

### **Comprehension # 1**

Let z be any complex number. To factorise the expression of the form  $z^n - 1$ , we consider the equation  $z^n = 1$ . This equation is solved using De moiver's theorem. Let 1,  $\alpha_1$ ,  $\alpha_2$ ,.....  $\alpha_{n-1}$  be the roots of this equation, then  $z^n - 1 = (z - 1)(z - \alpha_1)(z - \alpha_2)$ ..... $(z - \alpha_{n-1})$  This method can be generalised to factorize any expression of the form  $z^n - k^n$ .

for example,  $z^7 + 1 = \prod_{m=0}^{6} \left( z - C iS \left( \frac{2m\pi}{7} + \frac{\pi}{7} \right) \right)$ This can be further simplified as

These factorisations are useful in proving different trigonometric identities e.g. in equation (i) if we put z = i, then equation (i) becomes

$$(1-i) = (i+1)\left(-2i\cos\frac{\pi}{7}\right)\left(-2i\cos\frac{3\pi}{7}\right)\left(-2i\cos\frac{5\pi}{7}\right)$$
  
i.e.  $\cos\frac{\pi}{7}\cos\frac{3\pi}{7}\cos\frac{5\pi}{7} = -\frac{1}{8}$ 



### MATHS FOR JEE MAIN & ADVANCED

| 1. | If the expression $z^5 - 3$                                                                         | 32 can be factorised into 1                                          | inear and quadratic factors                                                  | over real coefficients as                        |
|----|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------|
|    | $(z^5 - 32) = (z - 2)(z^2 - 1)$                                                                     | $pz+4)(z^2-qz+4)$ , where                                            | p > q, then the value of p                                                   | $p^2 - 2q$ -                                     |
|    | (A) 8                                                                                               | <b>(B)</b> 4                                                         | <b>(C)</b> –4                                                                | <b>(D)</b> -8                                    |
| 2. | By using the factorisat                                                                             | ion for $z^5 + 1$ , the value of                                     | of $4\sin\frac{\pi}{10}\cos\frac{\pi}{5}$ comes or                           | ut to be -                                       |
|    | (A) 4                                                                                               | <b>(B)</b> 1/4                                                       | <b>(C)</b> 1                                                                 | <b>(D)</b> –1                                    |
| 3. | If $(z^{2n+1} - 1) = (z - 1)(z^{2n+1} - 1) = (z - 1)(z^{2n+1} - 1)$                                 | $(z^2 - p_1 z + 1)$ $(z^2 - p_n z)$                                  | + 1) where $n \in N \& p_1, p_2$                                             | $p_n$ are real numbers then                      |
|    | (A) - 1                                                                                             | <b>(B)</b> 0                                                         | (C) $\tan(\pi/2n)$                                                           | (D) none of these                                |
|    |                                                                                                     | Compreh                                                              | ension # 2                                                                   |                                                  |
|    | Let $z_1, z_2, z_3, z_4$ are three<br>$ (1-d) z_1 + z_2 + z_3 + z_4  =$                             | e distinct complex numbers s<br>= $ z_1 + (1 - d)z_2 + z_3 + z_4  =$ | such that $ z_1  =  z_2  =  z_3  =$<br>$ z_1 + z_2 + (1 - d) z_3 + z_4 $ whe | $ z_4 $ , satisfying.<br>ere $d \in R - \{0\}$ . |
| 1. | Arg $(z_1 + z_2 + z_3 + z_4)$ is                                                                    |                                                                      |                                                                              |                                                  |
|    | (A) $\frac{\pi}{6}$                                                                                 | <b>(B)</b> $\frac{\pi}{2}$                                           | (C) π                                                                        | (D) Not defined.                                 |
| 2. | $ z_1 + z_2 + z_3 + z_4 $ is                                                                        |                                                                      |                                                                              |                                                  |
|    | (A) 1                                                                                               | <b>(B)</b> 2                                                         | ( <b>C</b> ) 0                                                               | <b>(D)</b> ≥4                                    |
| 3. | The point d $z_1$ , d $z_2$ , d $z_3$ l<br>(A) centre (1, 0), radius  <br>(C) centre (0, 1), radius | ie on a circle with $d \mid dz_2 \mid$                               | (B) centre (0, 0), radius (<br>(D) None of these                             | 1 z <sub>1</sub>                                 |
|    |                                                                                                     | Compreh                                                              | ension # 3                                                                   |                                                  |

ABCD is a rhombus. Its diagonals AC and BD intersect at the point M and satisfy BD = 2AC. Let the points D and

M represent complex numbers 1 + i and 2 - i respectively. If  $\theta$  is arbitrary real, then  $z = re^{i\theta}$ ,  $R_1 \le r \le R_2$  lies in annular region formed by concentric circles  $|z| = R_1, |z| = R_2$ .

1. A possible representation of point A is

(A)  $3 - \frac{1}{2}$ 

2.

3.

 $e^{iz} =$ (A)  $e^{-r\cos\theta} (\cos(r\cos\theta) + i\sin(r\sin\theta))$ (C)  $e^{-r\sin\theta} (\cos(r\cos\theta) + i\sin(r\cos\theta))$ 

(C)  $1 + \frac{3}{2}i$  (D)  $3 - \frac{3}{2}i$ 

(B)  $e^{-r\cos\theta} (\sin (r\cos\theta) + i\cos (r\cos\theta))$ (D)  $e^{-r\sin\theta} (\sin (r\cos\theta) + i\cos (r\sin\theta))$ 

- If z is any point on segment DM then  $w = e^{iz}$  lies in annular region formed by concentric circles.
  - (A)  $|\mathbf{w}|_{\min} = 1, |\mathbf{w}|_{\max} = 2$ (B)  $|\mathbf{w}|_{\min} = \frac{1}{e}, |\mathbf{w}|_{\max} = e$ (C)  $|\mathbf{w}|_{\min} = \frac{1}{e^2}, |\mathbf{w}|_{\max} = e^2$ (D)  $|\mathbf{w}|_{\min} = \frac{1}{2}, |\mathbf{w}|_{\max} = 1$

**(B)**  $3 + \frac{1}{2}$ 



**(D)**2

-2

### **Comprehension # 4**

Let A, B, C be three sets of complex numbers as defined below.

A = {z : |z+1| ≤ 2 + Re(z)}, B = {z : |z-1| ≥ 1} and C = {z :  $\left|\frac{z-1}{z+1}\right| ≥ 1}$ 

1. The number of point(s) having integral coordinates in the region  $A \cap B \cap C$  is (A)4 (B)5 (C)6 (D)10

2. The area of region bounded by  $A \cap B \cap C$  is (A)  $2\sqrt{3}$  (B)  $\sqrt{3}$  (C)  $4\sqrt{3}$ 

3. The real part of the complex number in the region  $A \cap B \cap C$  and having maximum amplitude is

(A) -1 (B) 
$$\frac{-3}{2}$$
 (C)  $\frac{-1}{2}$  (D)

### **Comprehension # 5**

In the figure |z| = r is circumcircle of  $\triangle ABC.D, E \& F$  are the middle points of the sides BC, CA & AB respectively, AD produced to meet the circle at L. If  $\angle CAD = \theta$ , AD = x, BD = y and altitude of  $\triangle ABC$  from A meet the circle |z|=r at M,  $z_a$ ,  $z_b \& z_c$  are affixes of vertices A, B & C respectively.

Area of the  $\triangle ABC$  is equal to -1. **(B)**  $(x + y) \sin \theta$ (A) xy cos  $(\theta + C)$ (D)  $\frac{1}{2}$  xy sin ( $\theta$  + C) (C) xy sin  $(\theta + C)$ Affix of M is -2. (B)  $z_b e^{i(\pi-2B)}$ (C) z<sub>b</sub>e<sup>iB</sup> (A)  $2z_{\rm b}e^{i2B}$ (D)  $2z_b e^{iB}$ Affix of L is -3. (B)  $2z_b e^{i(2A-2\theta)}$ (A)  $z_b e^{i(2A - 2\theta)}$ (C)  $z_{h}e^{i(A-\theta)}$ (D)  $2z_{b}e^{i(A-\theta)}$ 





- (B) For all real numbers x, let the mapping  $f(x) = \frac{1}{x-i}$ , where  $i = \sqrt{-1}$ . If there exist real numbers a, b, c and d for which f(a), f(b), f(c) and f(d) form a square on the complex plane. Find the area of the square.
- 8. Let circles  $C_1$  and  $C_2$  on Argand plane be given by |z + 1| = 3 and |z 2| = 7 respectively. If a variable circle  $|z - z_0| = r$  be inside circle  $C_2$  such that it touches  $C_1$  externally and  $C_2$  internally then locus of ' $z_0$ ' describes a conic E. If eccentricity of E can be written in simplest form as  $\frac{p}{q}$  where  $p, q \in N$ , then find the value of (p+q).



- 9. If  $z_1, z_2$  are the roots of the equation  $az^2 + bz + c = 0$ , with a, b, c > 0;  $2b^2 > 4ac > b^2$ ;  $z_1 \in$  third quadrant;  $z_2 \in$  second quadrant in the argand's plane then, show that  $arg\left(\frac{z_1}{z_2}\right) = 2\cos^{-1}\left(\frac{b^2}{4ac}\right)^{1/2}$
- 10. For any two complex numbers  $z_1$ ,  $z_2$  and any two real numbers a, b show that  $|az_1 - bz_2|^2 + |bz_1 + az_2|^2 = (a^2 + b^2) (|z_1|^2 + |z_2|^2)$
- 11. If the biquadratic  $x^4 + ax^3 + bx^2 + cx + d = 0$  (a, b, c,  $d \in R$ ) has 4 non real roots, two with sum 3 + 4i and the other two with product 13 + i. Find the value of 'b'.
- 12. If A, B and C are the angle of a triangle D =  $\begin{vmatrix} e^{-2iA} & e^{iC} & e^{iB} \\ e^{iC} & e^{-2iB} & e^{iA} \\ e^{iB} & e^{iA} & e^{-2iC} \end{vmatrix}$  where  $i = \sqrt{-1}$ , then find the value of D.

13. If  $\alpha$  is imaginary n<sup>th</sup> (n  $\ge$  3) root of unity then show that  $\sum_{r=1}^{n-1} (n-r) \alpha^r = \frac{n\alpha}{1-\alpha}$ 

Hence deduce that  $\sum_{r=1}^{n-1} (n-r) \sin \frac{2r\pi}{n} = \frac{n}{2} \cot \frac{\pi}{n}$ .

- 14. Let  $A = \{a \in R | \text{ the equation } (1+2i)x^3 2(3+i)x^2 + (5-4i)x + 2a^2 = 0\}$  has at least one real root. Find the value of  $\sum_{a \in A} a^2$ .
- 15. Consider two concentric circles  $S_1 : |z| = 1$  and  $S_2 : |z| = 2$  on the Argand plane. A parabola is drawn through the points where 'S<sub>1</sub>' meets the real axis and having arbitrary tangent of 'S<sub>2</sub>' as its directrix. If the locus of the focus of drawn parabola is a conic C then find the area of the quadrilateral formed by the tangents at the ends of the latus-rectum of conic C.

16. Let 
$$z_1$$
 and  $z_2$  be two complex numbers such that  $\left|\frac{z_1 - 2z_2}{2 - z_1 \overline{z_2}}\right| = 1$  and  $|z_2| \neq 1$ , find  $|z_1|$ .

17. If O is origin and affixes of P, Q, R are respectively z, iz, z + iz. Locate the points on complex plane. If  $\Delta PQR = 200$  then find (i) |z| (ii) sides of quadrilateral OPRQ

18. If  $Z_r$ ,  $r = 1, 2, 3, ..., 2m, m \in N$  are the roots of the equation  $Z^{2m} + Z^{2m-1} + Z^{2m-2} + ..., + Z + 1 = 0$ then prove that  $\sum_{r=1}^{2m} \frac{1}{Z_r - 1} = -m$ 

19. ABCD is a rhombus in the Argand plane. If the affixes of the vertices be  $z_1, z_2, z_3, z_4$  and taken in anti-clockwise sense and  $\angle CBA = \pi/3$ , show that

A) 
$$2z_2 = z_1(1 + i\sqrt{3}) + z_3(1 - i\sqrt{3})$$
 & (B)  $2z_4 = z_1(1 - i\sqrt{3}) + z_3(1 + i\sqrt{3})$ 

20. Find the locus of mid-point of line segment intercepted between real and imaginary axes, by the line  $a\overline{z} + \overline{a}z + b = 0$ , where 'b' is real parameter and 'a' is a fixed complex number such that  $\text{Re}(a) \neq 0$ ,  $\text{Im}(a) \neq 0$ .



- 21. P is a point on the Argand plane. On the circle with OP as diameter two points Q & R are taken such that  $\angle POQ =$  $\angle QOR = \theta$ . If 'O' is the origin & P, Q & R are represented by the complex numbers  $Z_1, Z_2 \& Z_3$  respectively, show that  $: Z_2^2 \cos 2\theta = Z_1 Z_3 \cos^2 \theta$ .
- A polynomial f (z) when divided by (z w) leaves remainder  $2 + i\sqrt{3}$  and when divided by  $(z w^2)$  leaves 22. remainder  $2-i\sqrt{3}$ . If the remainder obtained when f(z) is divided by  $z^2 + z + 1$  is az + b (where w is a non-real cube root of unity and  $a, b \in R^+$ ), then find the value of (a + b).
- The points A, B, C depict the complex numbers  $z_1, z_2, z_3$  respectively on a complex plane & the angle B & C of the 23. triangle ABC are each equal to  $\frac{1}{2}(\pi - \alpha)$ . Show that :  $(z_2 - z_3)^2 = 4(z_3 - z_1)(z_1 - z_2)\sin^2\frac{\alpha}{2}$
- 24. Let  $z_1$ ,  $z_2$ ,  $z_3$  are three pair wise distinct complex numbers and  $t_1$ ,  $t_2$ ,  $t_3$  are non-negative real numbers such that  $t_1 + t_2 + t_3 = 1$ . Prove that the complex number  $z = t_1 z_1 + t_2 z_2 + t_3 z_3$  lies inside a triangle with vertices  $z_1, z_2, z_3$  or on its boundary.
- 25. Let  $A \equiv z_1$ ;  $B \equiv z_2$ ;  $C \equiv z_3$  are three complex numbers denoting the vertices of an acute angled triangle. If the origin 'O' is the orthocentre of the triangle, then prove that  $z_1 \overline{z}_2 + \overline{z}_1 z_2 = z_2 \overline{z}_3 + \overline{z}_2 z_3 = z_3 \overline{z}_1 + \overline{z}_3 z_1$ .
- If  $a = e^{i\alpha}$ ,  $b = e^{i\beta}$ ,  $c = e^{i\gamma}$  and  $\cos \alpha + \cos \beta + \cos \gamma = 0 = \sin \alpha + \sin \beta + \sin \gamma$ , then prove the following 26.
  - a + b + c = 0ab + bc + ca = 0**(i)** (ii)  $a^2 + b^2 + c^2 = 0$  $\Sigma \cos 2\alpha = 0 = \Sigma \sin 2\alpha$
  - (iii) (iv)
  - $\Sigma \sin^2 \alpha = \Sigma \cos^2 \alpha = 3/2$ **(v)**

If  $\omega$  is an imaginary cube root of unity then prove that : 27. **(A)**  $(1 - \omega + \omega^2)(1 - \omega^2 + \omega^4)(1 - \omega^4 + \omega^8)....$  to 2n factors = 2<sup>2n</sup>.

- If  $\omega$  is a complex cube root of unity, find the value of ; **(B)**  $(1+\omega)(1+\omega^2)(1+\omega^4)(1+\omega^8)$ .... to n factors.
- Let  $z_i$  (i = 1, 2, 3, 4) represent the vertices of a square all of which lie on the sides of the triangle with vertices (0,0), 28. (2,1) and (3,0). If  $z_1$  and  $z_2$  are purely real, then area of triangle formed by  $z_3$ ,  $z_4$  and origin is  $\frac{m}{n}$  (where m and n are in their lowest form). Find the value of (m + n).
- The points A, B, C represent the complex numbers z1, z2, z3 respectively on a complex plane & the angle B & 29.

C of the triangle ABC are each equal to 
$$\frac{1}{2}(\pi - \alpha)$$
. Show that  $(z_2 - z_3)^2 = 4(z_3 - z_1)(z_1 - z_2)\sin^2\frac{\alpha}{2}$ .

**30.** Evaluate: 
$$\sum_{p=1}^{32} (3p+2) \left( \sum_{q=1}^{10} \left( \sin \frac{2q\pi}{11} - i \cos \frac{2q\pi}{11} \right) \right)^p.$$



| E   | xercise # 5                                                     | Part # I  Previ                                                                            | ous Year Questions] [A                    | NEEE/JEE-MAIN]                                                                           |
|-----|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------|
| 1.  | The inequality $ z - 4  <  z $                                  | -2 represents the following                                                                | gregion                                   | [AIEEE-2002]                                                                             |
|     | (1) $\operatorname{Re}(z) > 0$                                  | (2) $\operatorname{Re}(z) < 0$                                                             | (3) $\operatorname{Re}(z) > 2$            | (4) none of these                                                                        |
| 2.  | Let z and $\omega$ are two non-                                 | -zero complex numbers suc                                                                  | h that $ z  =  \omega $ and arg $z + a$   | arg $\omega = \pi$ , then z equal to [AIEEE-2002]                                        |
|     | (1) ω                                                           | <b>(2)</b> – ω                                                                             | ( <b>3</b> ) <del>0</del>                 | $(4) - \overline{\omega}$                                                                |
| 3.  | Let $z_1$ and $z_2$ be two root<br>and $z_2$ form an equilatera | s of the equation $z^2 + az + b$<br>al triangle. then-                                     | b = 0, z being complex, Fu                | rther, assume that the origin $z_3$ , $z_1$<br>[AIEEE-2003]                              |
|     | (1) $a^2 = b$                                                   | (2) $a^2 = 2b$                                                                             | (3) $a^2 = 3b$                            | (4) $a^2 = 4b$                                                                           |
| 4.  | If z and $\omega$ are two non-z to                              | ero complex numbers such                                                                   | that $ z\omega  = 1$ , and $Arg(z) + 1$   | $-\operatorname{Arg}(\omega) = \pi/2$ , then $\overline{z} \omega$ is equal [AIEEE-2003] |
|     | (1) 1                                                           | (2) -1                                                                                     | (3) i                                     | (4) –i                                                                                   |
| 5.  | If $\left(\frac{1+i}{1-i}\right)^x = 1$ , then                  |                                                                                            |                                           | [AIEEE-2003]                                                                             |
|     | (1) $x = 4n$ , where n is an                                    | y positive integer                                                                         | (2) $x = 2n$ , where n is an              | y positive integer                                                                       |
|     | (3) $x = 4n + 1$ , where n i                                    | is any positive integer                                                                    | (4) $x = 2n + 1$ , where n i              | s any positive integer                                                                   |
| 6.  | Let z, w be complex num                                         | nbers such that $\overline{z} + i \ \overline{w} = 0$                                      | and arg $zw = \pi$ . Then arg             | g z equals [AIEEE-2004]                                                                  |
|     | <b>(1)</b> π/4                                                  | <b>(2)</b> π/2                                                                             | <b>(3)</b> 3π/4                           | <b>(4)</b> 5π/4                                                                          |
| 7.  | If $ z^2 - 1  =  z ^2 + 1$ , then z                             | z lies on                                                                                  |                                           | [AIEEE-2004]                                                                             |
|     | (1) the real axis                                               | (2) the imaginary axis                                                                     | (3) a circle                              | (4) an ellipse                                                                           |
| 8.  | If $z = x - iy$ and $z^{1/3} = p$                               | + iq, then $\frac{\left(\frac{x}{p} + \frac{y}{q}\right)}{\left(p^2 + q^2\right)}$ is equa | l to-                                     | [AIEEE-2004]                                                                             |
|     | (1) 1                                                           | (2) -1                                                                                     | (3) 2                                     | <b>(4)</b> –2                                                                            |
| 9.  | If $z_1$ and $z_2$ are two non z                                | zero complex numbers such                                                                  | that $ z_1 + z_2  =  z_1  +  z_2 $ then a | arg z <sub>1</sub> – arg z <sub>2</sub> is equal to-<br>[AIEEE-2005]                     |
|     | (1) -π                                                          | (2) $\frac{\pi}{2}$                                                                        | (3) $-\frac{\pi}{2}$                      | (4) 0                                                                                    |
| 10. | If $w = \frac{z}{z - \frac{1}{2}i}$ and $ w  = 1$               | then z lies on                                                                             |                                           | [AIEEE-2005]                                                                             |
|     | (1) a circle                                                    | (2) an ellipse                                                                             | (3) a parabola                            | (4) a straight line                                                                      |
| 11. | If $ z+4  \le 3$ , then the maxe<br>(1) 4                       | imum value of  z + 1  is-<br>( <b>2)</b> 10                                                | (3) 6                                     | [AIEEE-2007]<br>(4) 0                                                                    |
|     |                                                                 |                                                                                            |                                           |                                                                                          |

B

| 12. | The conjugate of a compl                                     | ex number is $\frac{1}{i-1}$ , then the                  | at complex number is-                                                         |                             | [AIEEE-2008]                                |
|-----|--------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------|---------------------------------------------|
|     | (1) $\frac{-1}{i-1}$                                         | (2) $\frac{1}{i+1}$                                      | (3) $\frac{-1}{i+1}$                                                          | (4) $\frac{1}{i-1}$         |                                             |
| 13. | If $\left  Z - \frac{4}{Z} \right  = 2$ , then the r         | maximum value of  Z  is eq                               | ual to :-                                                                     |                             | [AIEEE-2009]                                |
|     | (1) 2                                                        | (2) $2 + \sqrt{2}$                                       | <b>(3)</b> √3 +1                                                              | (4) $\sqrt{5}$ +1           |                                             |
| 14. | The number of complex i                                      | numbers z such that $ z - 1  =$                          | z + 1  =  z - i  equals :-                                                    |                             | [AIEEE-2010]                                |
|     | (1) 0                                                        | (2) 1                                                    | (3) 2                                                                         | (4)∞                        |                                             |
| 15. | Let $\alpha$ , $\beta$ be real and z be is necessary that :- | a complex number. If $z^2$ +                             | $\alpha z + \beta = 0$ has two distinct                                       | roots on the lin            | e Re z = 1, then it<br>[AIEEE-2011]         |
|     | (1) $ \beta  = 1$                                            | (2) $\beta \in (1,\infty)$                               | (3) $\beta \in (0,1)$                                                         | (4) $\beta \in (-1, 0)$     | )                                           |
| 16. | If $\omega(\neq 1)$ is a cube root of                        | f unity, and $(1 + \omega)^7 = A + 1$                    | Bo. Then (A, B) equals :-                                                     |                             | [AIEEE-2011]                                |
|     | (1) (1, 0)                                                   | (2) (-1, 1)                                              | (3) (0, 1)                                                                    | <b>(4)</b> (1, 1)           |                                             |
| 17. | If $z \neq 1$ and $\frac{z^2}{z}$ is real                    | al, then the point represente                            | ed by the complex number                                                      | z lies :                    | [AIEEE-2012]                                |
|     | 2 - 1 (1) on the imaginary axis                              |                                                          |                                                                               |                             |                                             |
|     | (2) either on the real axis                                  | s or on a circle passing thro                            | ough the origin.                                                              |                             |                                             |
|     | (3) on a circle with centr                                   | e at the origin.                                         |                                                                               |                             |                                             |
|     | (4) either on the real axis                                  | s or on a circle not passing                             | through the origin. $(1 + z)$                                                 |                             |                                             |
| 18. | If z is a complex number                                     | of unit modulus and argur                                | nent $\theta$ , then $\arg\left(\frac{1+\overline{z}}{1+\overline{z}}\right)$ | equals [J                   | IEE (Main)-2013]                            |
|     | (1) -θ                                                       | (2) $\frac{\pi}{2} - \theta$                             | (3) θ                                                                         | (4) $\pi - \theta$          |                                             |
| 19. | If z is a complex number s                                   | such that $ z  \ge 2$ , then the mi                      | nimum value of $\left z + \frac{1}{2}\right $ :                               | [                           | JEE (Main)-2014]                            |
|     | (1) is equal to $\frac{5}{2}$                                |                                                          | (2) lies in the interval (1, 2                                                | 2)                          |                                             |
|     | (3) is strictly greater than                                 | $\frac{5}{2}$                                            | (4) is strictly greater than                                                  | $\frac{3}{2}$ but less that | n $\frac{5}{2}$                             |
| 20. | A complex number z is sa                                     | id to be unimodular if $ z  = 1$                         | . Suppose $z_1$ and $z_2$ are com                                             | plex number su              | ch that $\frac{z_1 - 2z_2}{2 - z_1 z_2}$ is |
|     | unimodular and $z_2$ is not u                                | unimodular. Then the point a                             | $z_1$ lies on a :                                                             | [                           | JEE (Main)-2015]                            |
|     | (1) circle of radius 2.                                      |                                                          | (2) circle of radius $\sqrt{2}$                                               |                             |                                             |
|     | (3) straight line parallel to                                | x-axis                                                   | (4) straight line parallel t                                                  | o y-axis                    |                                             |
| 21. | A value of $\theta$ for which $\frac{2}{1}$ .                | $\frac{+3i\sin\theta}{-2i\sin\theta}$ is purely imaginar | y is :                                                                        | [                           | JEE (Main)-2016]                            |
|     | (1) $\frac{\pi}{6}$                                          | (2) $\sin^{-1}\left(\frac{\sqrt{3}}{4}\right)$           | (3) $\sin^{-1}\left(\frac{1}{\sqrt{3}}\right)$                                | (4) $\frac{\pi}{3}$         |                                             |
|     | Add. 41-42                                                   | A, Ashok Park Main, N                                    | New Rohtak Road, Ne                                                           | w Delhi-110                 | 035                                         |
|     | 5                                                            | +91-93                                                   | 50679141                                                                      |                             |                                             |





If a, b, c are integers not all equal and  $\omega$  is cube root of unity ( $\omega \neq 1$ ) then the minimum value of  $|a + b\omega + c\omega^2|$  is -9.

(A) 0 (B) 1 (C) 
$$\frac{\sqrt{3}}{2}$$
 (D)  $\frac{1}{2}$ 

[**JEE 2005**]

[**JEE 2006**]

[**JEE 2007**]

[**JEE 2007**]

[**JEE 2008**]

10. Area of shaded region belongs to - [JEE 2005] (A) z: |z+1| > 2,  $|\arg(z+1)| < \pi/4$ **(B)**  $z: |z-1| > 2, |\arg(z-1)| < \pi/4$ (C)  $z: |z+1| < 2, |\arg(z+1)| < \pi/2$ (D)  $z: |z-1| < 2, |\arg(z-1)| < \pi/2$ If one of the vertices of the square circumscribing the circle  $|z - 1| = \sqrt{2}$  is  $2 + \sqrt{3}i$ . Find the other vertices of 11. square. If  $w = \alpha + i\beta$  where  $\beta \neq 0$  and  $z \neq 1$ , satisfies the condition that  $\frac{w - \overline{w}z}{1 - z}$  is purely real, then the set of values 12. of z is -**(B)**  $\{z : z = \overline{z}\}$ (C)  $\{z : z \neq 1\}$ **(D)**  $\{z : |z| = 1, z \neq 1\}$ (A)  $\{z : |z|=1\}$ 13. A man walks a distance of 3 units from the origin towards the north-east (N 45° E) direction. From there, he walks a distance of 4 units towards the north-west (N 45° W) direction to reach a point P. Then the position of P in the Argand plane is : (C)  $(4+3i)e^{i\pi/4}$ **(B)**  $(3-4i)e^{i\pi/4}$ (D)  $(3+4i)e^{i\pi/4}$ (A)  $3e^{i\pi/4} + 4i$ If |z| = 1 and  $z \neq \pm 1$ , then all the values of  $\frac{z}{1-z^2}$  lie on : 14. (A) a line not passing through the origin **(B)**  $|z| = \sqrt{2}$ (C) the x-axis (D) the y-axis

### Comprehension (for 15 to 17)

Let A, B, C be three sets of complex numbers as defined below

 $\mathbf{A} = \{ \mathbf{z} : \operatorname{Im} \mathbf{z} \ge 1 \}$  $\mathbf{B} = \{ \mathbf{z} : | \mathbf{z} - 2 - \mathbf{i} | = 3 \}$  $C = \left\{ z : \operatorname{Re}((1-i)z) = \sqrt{2} \right\}$ 

- 15. The number of elements in the set  $A \cap B \cap C$  is -**(B)** 1 **(D)** ∞ **(A)** 0 **(C)** 2 Let z be any point in  $A \cap B \cap C$ . Then  $|z + 1 - i|^2 + |z - 5 - i|^2$  lies between -16.
  - (A) 25 and 29 **(B)** 30 and 34 (C) 35 and 39 **(D)** 40 and 44
- Let z be any point in  $A \cap B \cap C$  and let  $\omega$  be any point satisfying  $|\omega 2 i| < 3$ . Then, 17.  $|z| - |\omega| + 3$  lies between -(A) -6 and 3 (C) -6 and 6 **(D)** -3 and 9 **(B)** -3 and 6

| 18. | A particle P starts from the post<br>5 units and then vertically av                                                            | bint $z_0 = 1 + 2i$ , wl<br>way from origin by | here $i = \sqrt{-1}$ . It moves<br>3 units to reach a poir       | first horizontally away<br>at $z_1$ . From $z_1$ the parti | from origin by cle moves $\sqrt{2}$ |
|-----|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------|
|     | units in the direction of the                                                                                                  | vector $\hat{i} + \hat{j}$ and the             | en it moves through an                                           | angle $\frac{\pi}{2}$ in anticloc                          | kwise direction                     |
|     | on a circle with centre at ori                                                                                                 | gin, to reach a poi                            | int $z_2$ . The point $z_2$ is g                                 | viven by -                                                 | [ <b>JEE 2008</b> ]                 |
|     | <b>(A)</b> 6 + 7i <b>(B)</b>                                                                                                   | -7 + 6i                                        | <b>(C)</b> 7 + 6i                                                | <b>(D)</b> -6 + 7i                                         |                                     |
| 19. | Let $z = \cos \theta + i \sin \theta$ . Then the                                                                               | e value of $\sum_{m=1}^{15} \text{Im}(z^2)$    | $^{m-1}$ ) at $\theta = 2^{\circ}$ is -                          |                                                            | [ <b>JEE 2009</b> ]                 |
|     | (A) $\frac{1}{\sin 2^{\circ}}$ (B)                                                                                             | $\frac{1}{3\sin 2^{\circ}}$                    | (C) $\frac{1}{2\sin 2^\circ}$                                    | (D) $\frac{1}{4\sin 2^\circ}$                              |                                     |
| 20. | Let $z = x + iy$ be a complex num                                                                                              | nber where x and y a                           | are integers. Then the are                                       | a of the rectangle whose                                   | e vertices are the                  |
|     | roots of the equation $z\overline{z}^3 + \overline{z}z$                                                                        | $^{3} = 350$ is -                              |                                                                  |                                                            | [ <b>JEE 2009</b> ]                 |
|     | (A)48 (B)                                                                                                                      | 32                                             | <b>(C)</b> 40                                                    | <b>(D)</b> 80                                              |                                     |
| 21. | Match the conics in Column I                                                                                                   | with the statements                            | expressions in Column                                            | П.                                                         | [ <b>JEE 2009</b> ]                 |
|     | (A) Circle                                                                                                                     | (p) The                                        | locus of the point (h, k)                                        | for which the line                                         |                                     |
|     | (B) Parabola                                                                                                                   | hx +                                           | ky = 1 touches the circle                                        | $x^2 + y^2 = 4$                                            |                                     |
|     | (C) Ellipse                                                                                                                    | (q) Poin                                       | ts z in the complex planes                                       | satisfying $ z+2  -  z $                                   | $-2 = \pm 3$                        |
|     | (D) Hyperbola                                                                                                                  | (r) Poin                                       | its of the conic have para                                       | metric representation                                      |                                     |
|     |                                                                                                                                | x =                                            | $\sqrt{3}\left(\frac{1-t^2}{1+t^2}\right), y = \frac{2t}{1+t^2}$ |                                                            |                                     |
|     |                                                                                                                                | (s) The                                        | eccentricity of the conic                                        | lies in the interval $1 \le x$                             | < ∞                                 |
|     |                                                                                                                                | (t) Poin                                       | ts z in the complex plane                                        | satisfying $\operatorname{Re}(z+1)^2 =$                    | $ z ^{2}+1$                         |
| 22. | Let $z_1$ and $z_2$ be two distinct                                                                                            | t complex numbe                                | rs and let $z = (1 - t)z$                                        | $z_1 + tz_2$ for some real                                 | number t with                       |
|     | 0 < t < 1. If Arg(w) denotes                                                                                                   | the principal argui                            | nent of a nonzero comp                                           | plex number w, then                                        |                                     |
|     | (A) $ z - z_1  +  z - z_2  =  z_1 - z_2 $                                                                                      |                                                | $(B) Arg(z - z_1) = A$                                           | $rg(z - z_2)$                                              | [ <b>JEE 2010</b> ]                 |
|     | (C) $\begin{vmatrix} z - z_1 & \overline{z} - \overline{z}_1 \\ z_2 - z_1 & \overline{z}_2 - \overline{z}_1 \end{vmatrix} = 0$ |                                                | <b>(D)</b> Arg $(z - z_1) = A$                                   | $rg(z_2 - z_1)$                                            |                                     |
|     |                                                                                                                                | 2π2π                                           |                                                                  | 1                                                          |                                     |

23. Let  $\omega$  be the complex number  $\cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3}$ . Then the number of distinct complex numbers z satisfying



24. Match the statements in Column-I with those in Column-II. [JEE 2010]
 [Note : Here z takes values in the complex plane and Im z and Re z denote, respectively, the imaginary part and the real part of z.]
 Column I

| (A)          | The set of points z satisfying $ z - i z   =  z + i z  $                                                                                           | <b>(p)</b>        | an ellipse with eccentricity $\frac{4}{5}$                                                         |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------------------------------------------------------------------------------|
|              | is contained in or equal to                                                                                                                        |                   |                                                                                                    |
| <b>(B)</b>   | The set of points z satisfying                                                                                                                     | (q)               | the set of points z satisfying $\text{Im } z = 0$                                                  |
|              | z+4  +  z-4  = 10                                                                                                                                  |                   |                                                                                                    |
|              | is contained in or equal to                                                                                                                        |                   |                                                                                                    |
| <b>(C)</b>   | If $ w = 2$ , then the set of points                                                                                                               | <b>(t)</b>        | the set of points z satisfying $ \text{Im } z  \le 1$                                              |
|              | $z = w = \frac{1}{1}$ is contained in an equal to                                                                                                  |                   |                                                                                                    |
|              | $z = w = \frac{1}{w}$ is contained in or equal to                                                                                                  |                   |                                                                                                    |
| <b>(D)</b>   | If $ w  = 1$ , then the set of points                                                                                                              | <b>(s)</b>        | the set of points z satisfying $ \text{Re } z  \le 2$                                              |
|              | $z = w + \frac{1}{w}$ is contained in or equal to                                                                                                  | <b>(t)</b>        | the set of points z satisfying $ z  \le 3$                                                         |
| Comp         | rehension (3 questions together)                                                                                                                   |                   |                                                                                                    |
| Let a,b      | and c be three real numbers satisfying                                                                                                             |                   |                                                                                                    |
| ,            | [1 0 7]                                                                                                                                            |                   |                                                                                                    |
|              | $\begin{bmatrix} 1 & 9 & 7 \\ 0 & 1 & 2 & 7 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$                                               |                   |                                                                                                    |
|              | $\begin{bmatrix} a & 0 & c \end{bmatrix} \begin{bmatrix} 8 & 2 & 7 \\ 7 & 3 & 7 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix} \dots (E)$ |                   |                                                                                                    |
|              | $\begin{bmatrix} r & 3 & r \end{bmatrix}$                                                                                                          | 1:                | 4h $a$ $b$ $a$ $b$ $a$ $b$ $a$ $b$ $a$ $b$ $a$ $b$ $b$ $a$ $b$ |
| (1)          | If the point $P(a,b,c)$ , with reference to (E),<br>value of $7a+b+c$ is                                                                           | nes on            | the plane $2x + y + z - 1$ , then the                                                              |
|              | (A) 0 	(B) 12                                                                                                                                      | $(\mathbf{C})$ 7  | <b>(D)</b> 6                                                                                       |
| <b>(ii)</b>  | Let $\omega$ be a solution of $x^3 - 1 = 0$ with Im( $\omega$                                                                                      | ) > 0. I          | If $a = 2$ with b and c satisfying (E),                                                            |
| , í          | 3 1 3                                                                                                                                              | ,<br>,            |                                                                                                    |
|              | then the value of $\frac{1}{\omega^a} + \frac{1}{\omega^b} + \frac{1}{\omega^c}$ is equal to -                                                     |                   |                                                                                                    |
|              | (A) -2 (B) 2                                                                                                                                       | <b>(C)</b> 3      | <b>(D)</b> –3                                                                                      |
| <b>(iii)</b> | Let $b = 6$ , with a and c satisfying (E). If $\alpha$ a                                                                                           | ndβar             | e the roots of the quadratic equation                                                              |
|              | $ax^{2} + bx + c = 0$ , then $\sum_{n=0}^{\infty} \left(\frac{1}{\alpha} + \frac{1}{\beta}\right)^{n}$ is -                                        |                   |                                                                                                    |
|              |                                                                                                                                                    | 6                 |                                                                                                    |
|              | (A) 6 (B) 7                                                                                                                                        | (C) $\frac{1}{7}$ | (D)∞ [JEE 2011]                                                                                    |
| If z is a    | any complex number satisfying $ z - 3 - 2i  \le 2$ , then                                                                                          | the mini          | imum value of $ 2z - 6 + 5i $ is                                                                   |
|              |                                                                                                                                                    |                   | [ <b>JEE 2011</b> ]                                                                                |
| Let ω =      | $e^{i\pi/3}$ , and a, b, c, x, y, z be non-zero complex numbers                                                                                    | s such tha        | t                                                                                                  |
|              | a+b+c=x                                                                                                                                            |                   |                                                                                                    |

a+b+c = x  $a+b\omega + c\omega^{2} = y$   $a+b\omega^{2} + c\omega = z.$ Then the value of  $\frac{|x|^{2} + |y|^{2} + |z|^{2}}{|a|^{2} + |b|^{2} + |c|^{2}}$  is

#### [**JEE 2011**]



25.

**26.** 

27.

### **COMPLEX NUMBER**

| 28. | Match th                 | e statements given in Column I with the valu                                                                                             | ies given in Column II                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |
|-----|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
|     |                          | Column I                                                                                                                                 |                                                                    | Column                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | П                                             |
|     | (A)                      | If $\hat{a} = \hat{j} + \sqrt{3}\hat{k}$ , $\hat{b} = -\hat{j} + \sqrt{3}\hat{k}$ and $\hat{c} = 2\sqrt{3}\hat{k}$                       | k form a triangle,                                                 | <b>(p)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\frac{\pi}{6}$                               |
|     |                          | then the internal angle of the triangle betwee                                                                                           | en a and b is                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |
|     | <b>(B)</b>               | If $\int_{a}^{b} (f(x) - 3x) dx = a^2 - b^2$ , then the value                                                                            | of $f\left(\frac{\pi}{6}\right)$ is                                | ( <b>q</b> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\frac{2\pi}{3}$                              |
|     | (C)                      | The value of $\frac{\pi^2}{\ln 3} \int_{7/6}^{5/6} \sec(\pi x) dx$ is                                                                    |                                                                    | (r)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\frac{\pi}{3}$                               |
|     | <b>(D)</b>               | The maximum value of $\left  \operatorname{Arg}\left(\frac{1}{1-z}\right) \right $ for                                                   |                                                                    | (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | π                                             |
|     |                          | $ z  = 1, z \neq 1$ is given by                                                                                                          |                                                                    | (t)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\frac{\pi}{2}$                               |
| 29. | Match th                 | e statements given in Column I with the inte                                                                                             | rvals/union of intervals give                                      | n in Colu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mn II                                         |
|     |                          | Column I                                                                                                                                 |                                                                    | Column                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | п                                             |
|     | (A)                      | The set $\left\{ \operatorname{Re}\left(\frac{2iz}{1-z^2}\right) : z \text{ is a complex num} \right\}$                                  | nber, $ z  = 1, z \neq \pm 1$                                      | <b>(p)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $(-\infty, -1) \cup (1, \infty)$              |
|     | <b>(P)</b>               | is<br>The domain of the function $f(x) = \sin^{-1} \left( \frac{x}{2} \right)$                                                           | $(3)^{x-2}$ ;                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $(\infty, 0) \cup (0, \infty)$                |
|     | <b>(D)</b>               | The domain of the function $f(\mathbf{x}) = \sin \left(\frac{1}{1}\right)$                                                               | $(-3^{2(x-1)})$ is                                                 | <b>(U)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $(-\infty, 0) \cup (0, \infty)$               |
|     | (C)                      | If $f(\theta) = \begin{vmatrix} 1 & \tan \theta & 1 \\ -\tan \theta & 1 & \tan \theta \\ -1 & -\tan \theta & 1 \end{vmatrix}$ , then the | set $\left\{ f(\theta) : 0 \le \theta < \frac{\pi}{2} \right\}$ is | (r)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [2,∞)                                         |
|     | <b>(D)</b>               | If $f(x) = x^{3/2}(3x - 10), x \ge 0$ , then $f(x)$ is increased.                                                                        | sing in                                                            | <b>(s)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $(-\infty, -1] \cup [1, \infty)$              |
|     |                          |                                                                                                                                          |                                                                    | (t)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $(-\infty, 0] \cup [2, \infty)$<br>[JEE 2011] |
| 30. | Let z be<br>take the     | a complex number such that the imaginary p<br>value -                                                                                    | part of z is nonzero and a =                                       | $z^{2} + z + z$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | l is real. Then a cannot<br>[JEE 2012]        |
|     | <b>(A)</b> –1            | <b>(B)</b> $\frac{1}{3}$                                                                                                                 | (C) $\frac{1}{2}$                                                  | <b>(D)</b> $\frac{3}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                               |
| 31. | Let com                  | lex numbers $\alpha$ and $\frac{1}{\alpha}$ lie on circles (x - x <sub>0</sub> )                                                         | $(y^{2} + (y - y_{0})^{2})^{2} = r^{2}$ and $(x - x_{0})^{2}$      | $(y - y_0)^2 + (y - y_0)^2 + $ | $y_0)^2 = 4r^2$ respectively.                 |
|     | If $z_0 = x$             | $y_0 + iy_0$ satisfies the equation $2 z_0 ^2 = r^2 + 2$                                                                                 | , then $ \alpha  =$                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [JEE Ad. 2013]                                |
|     | (A) $\frac{1}{\sqrt{2}}$ | <b>(B)</b> $\frac{1}{2}$                                                                                                                 | (C) $\frac{1}{\sqrt{7}}$                                           | <b>(D)</b> $\frac{1}{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                               |
| 32. | Let $\omega$ be          | a complex cube root of unity with $\omega \neq 1$                                                                                        | and $P = [p_{ij}]$ be a $n \times n$                               | matrix w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ith $p_{ij} = \omega^{i+j}$ . Then $P^2$      |
|     | $\neq$ 0, whe            | n n =                                                                                                                                    |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [JEE Ad.]                                     |
|     | <b>(A)</b> 57            | <b>(B)</b> 55                                                                                                                            | (C) 58                                                             | <b>(D)</b> 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                               |



| 33.    | Let $w = \frac{\sqrt{3} + i}{2}$ and $P =$                       | $\{\mathbf{w}^{n}: n = 1, 2, 3, \dots\}$ . Fur                         | ther $H_1 = \begin{cases} z \in C : J \end{cases}$ | $\operatorname{Re} z > \frac{1}{2} \bigg\}$ | and $H_2 = \begin{cases} z \end{cases}$ | $\in \mathbf{C}: \operatorname{Re} \mathbf{z} < \frac{-1}{2} \bigg\},$ |
|--------|------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------|-----------------------------------------|------------------------------------------------------------------------|
|        | where C is the set of al $\angle z_1 O z_2 =$                    | l complex numbers. If $z_1$                                            | $\in P \cap H_1, z_2 \in I$                        | $P \cap H_2$ and                            | nd O represent                          | s the origin, then<br>[JEE-Ad. 2013]                                   |
|        | (A) $\frac{\pi}{2}$                                              | (B) $\frac{\pi}{6}$                                                    | (C) $\frac{2\pi}{3}$                               |                                             | <b>(D)</b> $\frac{5\pi}{6}$             |                                                                        |
| Paragi | raph for Question 34                                             | and 35                                                                 |                                                    |                                             |                                         |                                                                        |
|        | Let $S = S_1 \cap S_2 \cap$                                      | $S_3$ , where $S_1 = \{z \in$                                          | $C :  z  < 4\},$                                   | $S_2 = \begin{cases} z \in \\ \end{cases}$  | $C: Im\left[\frac{z-1+1}{1-x}\right]$   | $\left[\frac{\sqrt{3}i}{\sqrt{3}i}\right] > 0$ and                     |
|        | $S_3 = \{z \in C : \text{Re } z > 0\}.$                          |                                                                        |                                                    |                                             |                                         |                                                                        |
| 34.    | $\min_{z \in S}  1 - 3i - z  =$                                  |                                                                        |                                                    |                                             |                                         | [JEE Ad. 2013]                                                         |
|        | (A) $\frac{2-\sqrt{3}}{2}$                                       | <b>(B)</b> $\frac{2+\sqrt{3}}{2}$                                      | (C) $\frac{3-\sqrt{3}}{2}$                         |                                             | <b>(D)</b> $\frac{3+\sqrt{3}}{2}$       |                                                                        |
| 35.    | Area of S =                                                      |                                                                        |                                                    |                                             |                                         | [JEE Ad. 2013]                                                         |
|        | $(\mathbf{A})  \frac{10  \pi}{3}$                                | $(\mathbf{B})\frac{20\pi}{3}$                                          | (C) $\frac{16\pi}{3}$                              |                                             | $\textbf{(D)} \frac{32\pi}{3}$          |                                                                        |
| 36.    | Let $z_k = \cos\left(\frac{2k\pi}{10}\right) + i\sin(2\pi)$      | $\left(\frac{2k\pi}{10}\right); k=1,2,\ldots,9.$                       |                                                    |                                             |                                         | [JEE Ad. 2014]                                                         |
|        | List - I                                                         |                                                                        |                                                    |                                             | List - II                               |                                                                        |
|        | (p) For each $z_k$ there<br>(a) There exists a k                 | e exists a $z_j$ such $z_k$ . $z_j = 1$                                | <u> </u>                                           | (1)                                         | True                                    |                                                                        |
|        | has no solution :                                                | $[] \{1, 2, \dots, j\}$ such that $Z_1$<br>z in the set of complex num | $\frac{1}{2} \sum_{k}$                             | (2)                                         | 1 dise                                  |                                                                        |
|        | (r) $\frac{ 1-z_1  1-z_2 }{10}$                                  | $\frac{  1-z_9 }{  1-z_9  }$ equals                                    |                                                    | (3)                                         | 1                                       |                                                                        |
|        | (s) $1-\sum_{k=1}^{9}\cos\left(\frac{2l}{l}\right)$              | $\left(\frac{\alpha\pi}{0}\right)$ equals                              |                                                    | (4)                                         | 2                                       |                                                                        |
|        | Codes:<br><b>p q</b><br>(A) 1 2<br>(B) 2 1<br>(C) 1 2<br>(D) 2 1 | r s<br>4 3<br>3 4<br>3 4<br>4 3                                        |                                                    |                                             |                                         |                                                                        |



37. For any integer k, let  $\alpha_k = \left(\frac{k\pi}{7}\right) + i\sin\left(\frac{k\pi}{7}\right)$ , where  $i = \sqrt{-1}$ . The value of the expression

$$\frac{\sum\limits_{k=1}^{12} \bigl| \alpha_{_{k+1}} - \alpha_{_k} \bigr|}{\sum\limits_{k=1}^{3} \bigl| \alpha_{_{4k-1}} - \alpha_{_{4k-2}} \bigr|} \ \text{is}$$

[JEE Ad. 2015]

38. Let 
$$z = \frac{-1+\sqrt{3i}}{2}$$
, where  $i = \sqrt{-1}$ , and  $r, s \in \{1, 2, 3\}$ . Let  $P = \begin{bmatrix} (-z)^r & z^{2s} \\ z^{2s} & z^r \end{bmatrix}$  and I be the identity matrix of order 2.

Then the total number of ordered pairs (r, s) for which  $P^2 = -1$  is

39. Let 
$$a, b \in R$$
 and  $a^2 + b^2 \neq 0$ . Suppose  $S = \left\{ z \in C : z = \frac{1}{a + ibt'} t \in R, t \neq 0 \right\}$ , where

 $i = \sqrt{-1}$ . if z = x + iy and  $z \in S$ , then (x,y) lies on

(A) the circle with radius 
$$\frac{1}{2a}$$
 and centre  $\left(\frac{1}{2a}, 0\right)$  for  $a < 0, b \neq 0$ 

**(B)** the circle with radius 
$$-\frac{1}{2a}$$
 and centre  $\left(-\frac{1}{2a}, 0\right)$  for  $a < 0, b \neq 0$ 

(C) the x-axis for  $a \neq 0, b = 0$ 

**(D)** the y-axis for  $a = 0, b \neq 0$ 

[JEE Ad. 2016]





B

| 10. | <b>S</b> <sub>1</sub> : | Let $z_k$ (k = 0, 1, 2, 3, 4, 5, 6) be the roots of the equation $(z + 1)^7 + (z)^7 = 0$ then $\sum_{k=0}^{5} \text{Re}(z_k)$                                                                                             |
|-----|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |                         | is equal to $-\frac{7}{2}$                                                                                                                                                                                                |
|     | S <sub>2</sub> :        | If $\alpha$ , $\beta$ , $\gamma$ and $a$ , $b$ , $c$ are complex numbers such that $\frac{\alpha}{a} + \frac{\beta}{b} + \frac{\gamma}{c} = 1 + i$ and $\frac{a}{\alpha} + \frac{b}{\beta} + \frac{c}{\gamma} = 0$ , then |
|     |                         | the value of $\frac{\alpha^2}{a^2} + \frac{\beta^2}{b^2} + \frac{\gamma^2}{c^2}$ is equal to $-1$                                                                                                                         |
|     | <b>S</b> <sub>3</sub> : | If $z_1, z_2, \dots, z_6$ are six roots of the equation $z^6 - z^5 + z^4 - z^3 + z^2 - z + 1 = 0$ then the value of                                                                                                       |
|     |                         | $\prod_{i=1}^{6} (z_i + 1) \text{ is equal to } 4$                                                                                                                                                                        |
|     | <b>S</b> <sub>4</sub> : | Number of solutions of the equation $z^3 = \overline{z} i  z $ are 5                                                                                                                                                      |
|     | (A) TTF                 | T (B) TFFT (C) FFTF (D) TTFF                                                                                                                                                                                              |

### **SECTION - II : MULTIPLE CORRECT ANSWER TYPE**

11. If n is the smallest positve integer for which  $(a + ib)^n = (a - ib)^n$  where a > 0 & b > 0 then the numerical value of b/a is :

(A) 
$$\tan \frac{\pi}{3}$$
 (B)  $\sqrt{3}$  (C) 3 (D)  $\frac{1}{\sqrt{3}}$ 

12. If z is a complex number satisfying  $|z - i \operatorname{Re}(z)| = |z - \operatorname{Im}(z)|$  then z lies on (A) y = x (B) y = -x (C) y = x + 1 (D) y = -x + 1

13. If  $z_1 = 5 + 12i$  and  $|z_2| = 4$  then (A) maximum  $(|z_1 + iz_2|) = 17$ 

(C) minimum 
$$\left| \frac{z_1}{z_2 + \frac{4}{z_2}} \right| = \frac{13}{4}$$

**(D)** maximum 
$$\left| \frac{z_1}{z_2 + \frac{4}{z_2}} \right| = \frac{13}{3}$$

**(B)** minimum  $(|z_1 + (1 + i)z_2|) = 13 - 9\sqrt{2}$ 

14. If  $\alpha$ ,  $\beta$  be the roots of the equation  $\mu^2 - 2\mu + 2 = 0$  and if  $\cot \theta = x + 1$ , then  $\frac{(x + \alpha)^n - (x + \beta)^n}{\alpha - \beta}$  is equal to

(A)  $\frac{\sin n\theta}{\sin^n \theta}$  (B)  $\frac{\cos n\theta}{\cos^n \theta}$  (C)  $\frac{\sin n\theta}{\cos^n \theta}$  (D)  $\frac{\cos ec^n \theta}{\cos ecn \theta}$ 15. If  $z_1$  lies on |z| = 1 and  $z_2$  lies on |z| = 2, then (A)  $3 \le |z_1 - 2z_2| \le 5$  (B)  $1 \le |z_1 + z_2| \le 3$  (C)  $|z_1 - 3z_2| \ge 5$  (D)  $|z_1 - z_2| \ge 1$ 

### SECTION - III : ASSERTION AND REASON TYPE

16. Statement - I : If A(z<sub>1</sub>), B(z<sub>2</sub>), C(z<sub>3</sub>) are the vertices of an equilateral triangle ABC, then arg  $\left(\frac{z_2 + z_3 - 2z_1}{z_3 - z_2}\right)$ 

Statement - II : If 
$$\angle B = \alpha$$
, then  $\frac{z_1 - z_2}{z_3 - z_2} = \frac{AB}{BC} e^{i\alpha}$  or  $\arg\left(\frac{z_1 - z_2}{z_3 - z_2}\right) = \alpha$ 

- (A) Statement-I is True, Statement-II is True; Statement-II is a correct explanation for Statement-I.
- (B) Statement-I is True, Statement-II is True; Statement-II is NOT a correct explanation for Statement-I
- (C) Statement-I is True, Statement-II is False
- (D) Statement-I is False, Statement-II is True
- 17. Statement I: If  $x + \frac{1}{x} = 1$  and  $p = x^{4000} + \frac{1}{x^{4000}}$  and q be the digit at unit place in the

number  $2^{2^n} + 1$ ,  $n \in N$  and n > 1, then the value of p + q = 8.

**Statement - II**:  $\omega$ ,  $\omega^2$  are the roots of  $x + \frac{1}{x} = -1$ , then  $x^2 + \frac{1}{x^2} = -1$ ,  $x^3 + \frac{1}{x^3} = 2$ 

- (A) Statement-I is True, Statement-II is True; Statement-II is a correct explanation for Statement-I.
- (B) Statement-I is True, Statement-II is True; Statement-II is NOT a correct explanation for Statement-I
- (C) Statement-I is True, Statement-II is False
- (D) Statement-I is False, Statement-II is True
- 18. Statement I : If  $z_1, z_2, z_3$  are complex number representing the points A, B, C such that  $\frac{2}{z_1} = \frac{1}{z_2} + \frac{1}{z_3}$ . Then circle through A, B, C passes through origin.
  - **Statement II :** If  $2z_2 = z_1 + z_3$  then  $z_1, z_2, z_3$  are collinear.
  - (A) Statement-I is True, Statement-II is True; Statement-II is a correct explanation for Statement-I.
  - (B) Statement-I is True, Statement-II is True; Statement-II is NOT a correct explanation for Statement-I
  - (C) Statement-I is True, Statement-II is False
  - (D) Statement-I is False, Statement-II is True
- 19. Statement I:  $3 + ix^2y$  and  $x^2 + y + 4i$  are complex conjugate numbers, then  $x^2 + y^2 = 4$ .
  - Statement II : If sum and product of two complex numbers is real then they are conjugate complex number.
  - (A) Statement-I is True, Statement-II is True; Statement-II is a correct explanation for Statement-I.
  - (B) Statement-I is True, Statement-II is True; Statement-II is NOT a correct explanation for Statement-I
  - (C) Statement-I is True, Statement-II is False
  - (D) Statement-I is False, Statement-II is True
- **20.** Statement I : If  $|z| < \sqrt{2} 1$ , then  $|z^2 + 2z \cos \alpha| < 1$

**Statement - II :**  $|z_1 + z_2| \le |z_1| + |z_2|$  also  $|\cos \alpha| \le 1$ .

- (A) Statement-I is True, Statement-II is True; Statement-II is a correct explanation for Statement-I.
- (B) Statement-I is True, Statement-II is True; Statement-II is NOT a correct explanation for Statement-I
- (C) Statement-I is True, Statement-II is False
- (D) Statement-I is False, Statement-II is True



### COMPLEX NUMBER

| <b>SECTION - IV</b> | : | MATRIX - | - MATCH | TYPE |
|---------------------|---|----------|---------|------|
|---------------------|---|----------|---------|------|

| 21. | Colum           | 1-I                                                                                           | Column - II |                                                      |  |
|-----|-----------------|-----------------------------------------------------------------------------------------------|-------------|------------------------------------------------------|--|
|     | <b>(A)</b>      | Locus of the point z satisfying the equation                                                  | <b>(p)</b>  | A parabola                                           |  |
|     |                 | $\operatorname{Re}(z^2) = \operatorname{Re}(z + \overline{z})$                                |             |                                                      |  |
|     | <b>(B)</b>      | Locus of the point z satisfying the equation                                                  | <b>(q)</b>  | A straight line                                      |  |
|     |                 | $ z-z_1 + z-z_2 =\lambda, \lambda \in \mathbb{R}^+ \text{ and } \lambda \checkmark  z_1-z_2 $ |             |                                                      |  |
|     | <b>(C)</b>      | Locus of the point z satisfying the equation                                                  |             |                                                      |  |
|     |                 | $\left \frac{2z-i}{z+1}\right  = m$ where $i = \sqrt{-1}$ and $m \in \mathbb{R}^+$            | (r)         | An ellipse                                           |  |
|     | <b>(D</b> )     | If $ \overline{z}  = 25$ then the points representing the                                     | (s)         | A rectangular hyperbola                              |  |
|     |                 | complex number $-1 + 75 \overline{z}$ will be on a                                            | (t)         | A circle                                             |  |
| 22. | If $z_1, z_2$ , | $z_3$ , $z_4$ are the roots of the equation $z^4 + z^3 + z^2 + z + 1 = 0$ then                |             |                                                      |  |
|     | Colum           | n-I                                                                                           | Colum       | ı–II                                                 |  |
|     | (A)             | $\left \sum_{i=1}^{4} z_i^{4}\right $ is equal to                                             | (p)         | 0                                                    |  |
|     | <b>(B</b> )     | $\sum_{i=1}^{4} Z_i^{5}$ is equal to                                                          | (q)         | 4                                                    |  |
|     | ( <b>C</b> )    | $\prod_{i=1}^{4} (z_i + 2)$ is equal to                                                       | <b>(r)</b>  | 1                                                    |  |
|     | <b>(D</b> )     | least value of $[ z_1 + z_2 ]$ is                                                             | <b>(s)</b>  | 11                                                   |  |
|     |                 | (Where [] represents greatest integer function)                                               |             |                                                      |  |
|     |                 |                                                                                               | (t)         | $4\left(\cos\frac{\pi}{3}+i\sin\frac{\pi}{3}\right)$ |  |

### **SECTION - V : COMPREHENSION TYPE**

#### 23. Read the following comprehension carefully and answer the questions.

The complex slope of a line passing through two points represented by complex numbers  $z_1$  and  $z_2$  is defined by

 $\frac{z_2 - z_1}{\overline{z}_2 - \overline{z}_1}$  and we shall denote by  $\omega$ . If  $z_0$  is complex number and c is a real number, then  $\overline{z}_0 z + z_0 \overline{z} + c = 0$  represents

a straight line. Its complex slope is  $-\frac{z_0}{\overline{z}_0}$ . Now consider two lines

 $\alpha \overline{z} + \overline{\alpha} z + i\beta = 0...(i)$  and  $a \overline{z} + \overline{a} z + b = 0$  ...(ii) where  $\alpha$ ,  $\beta$  and a, b are complex constants and let their complex slopes be denoted by  $\omega_1$  and  $\omega_2$  respectively

1. If the lines are inclined at an angle of 120° to each other, then

 $(\mathbf{A}) \, \omega_2 \, \overline{\omega}_1 = \omega_1 \, \overline{\omega}_1 \qquad \qquad (\mathbf{B}) \, \omega_2 \, \overline{\omega}_1^2 = \omega_1 \, \overline{\omega}_2^2 \qquad \qquad (\mathbf{C}) \, \omega_1^2 = \omega_2^2 \qquad \qquad (\mathbf{D}) \, \omega_1 + 2\omega_2 = 0$ 



### MATHS FOR JEE MAIN & ADVANCED

- 2. Which of the following must be true (A) a must be pure imaginary **(B)**  $\beta$  must be pure imaginary (C) a must be real (D) b must be imaginary
- If line (i) makes an angle of 45° with real axis, then  $(1 + i)\left(-\frac{2\alpha}{\overline{\alpha}}\right)$  is 3. (A)  $2\sqrt{2}$ **(B)**  $2\sqrt{2}$  i
- 24. Read the following comprehension carefully and answer the questions. Let  $(1 + x)^n = C_0 + C_1 x + C_2 x^2 + \dots + C_n x^n$ . For sum of series  $C_0 + C_1 + C_2 + \dots + C_n y$  but x = 1. For sum of series  $C_0 + C_2 + \dots + C_n y$  $C_4 + C_6 + \dots$ , or  $C_1 + C_3 + C_5 + \dots$  add or substract equations obtained by putting x = 1 and x = -1. For sum of series  $C_0 + C_3 + C_6 + \dots$  or  $C_1 + C_4 + C_7 + \dots$  or  $C_2 + C_5 + C_8 + \dots$  we subsitute x = 1,  $x = \omega$ ,  $x = \omega^2$  and add or manupulate results. Similarly, if suffixes differe by 'p' then we substitute p<sup>th</sup> roots of unity and add.

(C) 2(1-i)

**(D)**-2(1+i)

 $C_0 + C_3 + C_6 + C_9 + \dots =$ 1.

(A) 
$$\frac{1}{3} \left[ 2^{n} - 2\cos\frac{n\pi}{3} \right]$$
 (B)  $\frac{1}{3} \left[ 2^{n} + 2\cos\frac{n\pi}{3} \right]$  (C)  $\frac{1}{3} \left[ 2^{n} - 2\sin\frac{n\pi}{3} \right]$  (D)  $\frac{1}{3} \left[ 2^{n} + 2\sin\frac{n\pi}{3} \right]$   
2.  $C_{1} + C_{5} + C_{9} + \dots =$   
(A)  $\frac{1}{4} \left[ 2^{n} - 2^{n/2} 2\cos\frac{n\pi}{4} \right]$  (B)  $\frac{1}{4} \left[ 2^{n} + 2^{n/2} 2\cos\frac{n\pi}{4} \right]$   
(C)  $\frac{1}{4} \left[ 2^{n} - 2^{n/2} 2\sin\frac{n\pi}{4} \right]$  (D)  $\frac{1}{4} \left[ 2^{n} + 2^{n/2} 2\sin\frac{n\pi}{4} \right]$ 

3. 
$$C_2 + C_6 + C_{10} + \dots =$$
  
(A)  $\frac{1}{4} \left[ 2^n - 2^{n/2} 2 \cdot \cos \frac{n\pi}{4} \right]$   
(B)  $\frac{1}{4} \left[ 2^n + 2^{n/2} 2 \cdot \cos \frac{n\pi}{4} \right]$   
(C)  $\frac{1}{4} \left[ 2^n - 2^{n/2} 2 \cdot \sin \frac{n\pi}{4} \right]$   
(D)  $\frac{1}{4} \left[ 2^n + 2^{n/2} 2 \cdot \sin \frac{n\pi}{4} \right]$ 

#### 25. Read the following comprehension carefully and answer the questions.

Consider  $\triangle ABC$  in Argand plane. Let A(0), B(1) and C(1 + i) be its vertices and M be the mid point of CA. Let z be a variable complex number in the plane. Let u be another variable complex number defined as  $u = z^2 + 1$ 

Locus of u, when z is on BM, is 1. (A) Circle (B) Parabola (C) Ellipse (D) Hyperbola Axis of locus of u, when z is on BM, is 2. (C)  $z + \overline{z} = 2$ (D)  $z - \overline{z} = 2i$ (A) real – axis (B) Imaginary – axis 3. Directrix of locus of u, when z is on BM, is (C)  $z + \overline{z} = 2$ (D)  $z - \overline{z} = 2i$ (A) real-axis **(B)** imaginary – axis

### **SECTION - VI : INTEGER TYPE**

26. If 
$$\left(\frac{1+i}{1-i}\right)^n = \frac{2}{\pi} \left(\sec^{-1}\frac{1}{x} + \sin^{-1}x\right) x \neq 0, -1 \le x \le 1$$
, then find the number of positive integers less than 20 satisfying

above equation.

27. Let 
$$f_p(\alpha) = e^{\frac{i\alpha}{p^2}}, e^{\frac{2i\alpha}{p^2}}, \dots, e^{\frac{i\alpha}{p}} p \in N$$
 (where  $i = \sqrt{-1}$ , then find the value of  $\left| \lim_{n \to \infty} f_n(\pi) \right|$ 

- 28. If  $|z| = \min(|z-1|, |z+1|)$ , then find the value of  $|z + \overline{z}|$ .
- 29. If z is a complex number and the minimum value of |z| + |z 1| + |2z 3| is  $\lambda$  and if  $y = 2[x] + 3 = 3[x \lambda]$ , then find the value of [x + y] (where [.] denotes the greatest integer function}

30. If 
$$\alpha = e^{\frac{2\pi i}{7}}$$
 and  $f(x) = A_0 + \sum_{k=1}^{20} A_k x^k$ , then the value of  $\sum_{r=0}^{6} f(\alpha^r x) = n(A_0 + A_n x^n + A_{2n} x^{2n})$  then find the value of n.



## ANSWER KEY

### EXERCISE - 1

 1. C
 2. B
 3. D
 4. A
 5. C
 6. B
 7. A
 8. D
 9. A
 10. A
 11. D
 12. C
 13. B

 14. D
 15. D
 16. A
 17. B
 18. A
 19. B
 20. A
 21. B
 22. A
 23. B
 24. B
 25. C
 26. A

 27. D
 28. C
 29. B
 30. A
 31. B
 32. C
 33. D
 34. A
 35. A

### EXERCISE - 2 : PART # I

**5.** ACD **7.** ABC 1. AC **2.** ABD **3.** AB **4.** BC 6. BD 8. BCD 9. AD 13. BC 17. ACD 18. ABCD 10. AC 11. AB **12.** ABC 14. BCD **15.** ABC 16. AC **19.** ACD **20.** BC 21. CD 23. ABD **22.** AB 24. ABCD 25. AC

### PART - II

1. D 2. B 3. B 4. B 5. A 6. A 7. C 8. B

### EXERCISE - 3 : PART # I

**1.**  $A \rightarrow s \ B \rightarrow p \ C \rightarrow q \ D \rightarrow r$  **2.**  $A \rightarrow p \ B \rightarrow q \ C \rightarrow$ ,  $D \rightarrow s$  **3.**  $A \rightarrow p \ B \rightarrow r \ C \rightarrow t \ D \rightarrow q, s$ **4.**  $A \rightarrow q \ B \rightarrow p \ C \rightarrow q, s \ D \rightarrow r$ 

#### PART - II

| Comprehension #1: 1. | А | 2. | С | 3. | A | <b>Comprehension #2:1.</b> D <b>2.</b> C | 3. | В |
|----------------------|---|----|---|----|---|------------------------------------------|----|---|
| Comprehension #3: 1. | А | 2. | С | 3. | В | Comprehension #4:1. C 2. A               | 3. | В |
| Comprehension #5: 1. | С | 2. | В | 3. | А |                                          |    |   |

#### EXERCISE - 5 : PART # I

 1. 4
 2. 4
 3. 3
 4. 4
 5. 1
 6. 3
 7. 2
 8. 4
 9. 4
 10. 4
 11. 3
 12. 3
 13. 4

 14. 2
 15. B
 16. 4
 17. 2
 18. 3
 19. 2
 20. 1
 21. 3

### PART - II

1. (A) A (B) A 2. (A) C, (B) D 3. (A) B (B) B 4. A 7. B

8. 
$$\frac{\alpha - k^2 \beta}{1 - k^2} \& \left| \frac{1}{k^2 - 1} \right| \sqrt{\alpha - k^2 \beta |^2 - (k^2 |\beta|^2 - |\alpha|^2)(k^2 - 1)}$$
 9. B 10. A  
11.  $(-\sqrt{3} i), (1 - \sqrt{3}) + i$  and  $(1 + \sqrt{3}) - i$  12. D 13. D 14. D 15. B 16. C 17. D 18. D 19. D  
20. A 21. A  $\rightarrow$  p B  $\rightarrow$  s,t C  $\rightarrow$  r D  $\rightarrow$  q,s 22. A, C, D 23. 1  
24. (A)  $\rightarrow$  q,r (B)  $\rightarrow$  p (C)  $\rightarrow$  p,s,t (D)  $\rightarrow$  q,r,s,t 25. (i) D, (ii) A, (iii) B 26. 5 27. 3  
28. (A)  $\rightarrow$  q (B)  $\rightarrow$  p (C)  $\rightarrow$  s (D)  $\rightarrow$  t 29. (A)  $\rightarrow$  s (B)  $\rightarrow$  t (C)  $\rightarrow$  r (D)  $\rightarrow$  r 30. D  
31. C 32. BCD 33. CD 34. C 35. B 36. C 37. 4 38. 1 39. ACD

| MOCK TEST         |               |                       |                                    |                       |                       |                          |                                   |       |
|-------------------|---------------|-----------------------|------------------------------------|-----------------------|-----------------------|--------------------------|-----------------------------------|-------|
| 1 D               | <b>A</b> D    | <b>3</b> D            | 4 D                                |                       |                       | -                        | <b>0</b> C                        |       |
| I. D              | 2. D          | 3. B                  | 4. D                               | 5. D                  | 6. C                  | 7. C                     | 8. C                              | 9. C  |
| 10. B             | 11. AB        | 12. AB                | <b>13.</b> AD                      | 14. AD                | 15. ABCD              | 16. D                    | 17. D                             | 18. B |
| 19. D             | 20. A         | $21. A \rightarrow s$ | $B \rightarrow q, r C \rightarrow$ | $a,t D \rightarrow t$ | 22. $A \rightarrow r$ | $B \rightarrow q, t C -$ | $\rightarrow$ s $D \rightarrow p$ | 1.5   |
| 23. I. B          | 2. B          | <b>3.</b> C           | 24. I. B                           | 2. D                  | <b>3.</b> A           | <b>25.</b> I. B          | 2. C                              | 3. D  |
| 23. 1. B<br>26. 4 | 2. B<br>27. 1 | 3. C<br>28. 1         | 24. 1. B<br>29. 30                 | 2. D<br>30. 7         | 3. A                  | 25. 1. B                 | 2. C                              | 3. D  |
|                   |               |                       |                                    |                       |                       |                          |                                   |       |
|                   |               |                       |                                    |                       |                       |                          |                                   |       |
|                   |               |                       |                                    |                       |                       |                          |                                   |       |
|                   |               |                       |                                    |                       |                       |                          |                                   |       |
|                   |               |                       |                                    |                       |                       |                          |                                   |       |

