EXERCISE-I

Electrovalent bonding

- 1. In the formation of *NaCl* from *Na* and γ (A) Sodium and chlorine both give electrons
 - (B) Sodium and chlorine both accept electrons
 - (C) Sodium loses electron and chlorine accepts electron
 - (D) Sodium accepts electron and chlorine loses electron
- 2. Which of the following is an electrovalent linkage
 - (A) CH_4 (B) NCl_5
 - (C) $SiCl_4$ (D) BF_3
- 3. Electrovalent compounds do not have
 - (A) High M.P. and Low B.P.
 - (B) High dielectric constant
 - (C) High M.P. and High B.P.
 - (D) High polarity
- 4. Many ionic crystals dissolve in water because (A) Water is an amphiprotic solvent
 - (B) Water is a high boiling liquid
 - (C) The process is accompanied by a positive heat of solution
 - (D) Water decreases the interionic attraction in the crystal lattice due to solvation
- 5. The electronic structure of four elements A, B, C, D are
 - (A) $1s^2$ (B) $1s^2$, $2s^2 2p^2$ (C) $1s^2$, $2s^2 2p^2$ (D) $1s^2$, $2s^2 2p^2$
 - (C) $1s^2$, $2s^2 2p^5$ (D) $1s^2$, $2s^2 2p^6$

The tendency to form electrovalent bond is largest in

$(\mathbf{A}) A$	(B) <i>B</i>
(C) <i>C</i>	(D) <i>D</i>

- **6.** The force which holds atoms together in an electrovalent bond is
 - (A) Vander Waal's force
 - (B) Dipole attraction force
 - (C) Electrostatic force of attraction
 - (D) All the above

- **7.** The main reaction during electrovalent bond formation is
 - (A) Redox reaction
 - (B) Substitution reaction
 - (C) Addition reaction
 - (D) Elimination reaction
- 8. Electrovalent compounds are
 - (A) Good conductor of electricity
 - (B) Polar in nature
 - (C) Low M.P. and low B.P.
 - (D) Easily available
- 9. Ionic compounds do not have
 - (A) Hard and brittle nature
 - (B) High melting and boiling point
 - (C) Directional properties
 - (D) Soluble in polar solvents
- 10. Highest melting point would be of
 - (A) He (B) CsCl
 - (C) NH_3 (D) $CHCl_3$
- **11.** What is the effect of more electronegative atom on the strength of ionic bond
 - (A) Decreases (B) Increases
 - (C) Decreases slowly (D) Remains the same

12. An element X with the electronic configuration $1s^2$, $2s^2 2p^6$, $3s^2$ would be expected to form the chloride with the formula (A) XCl₃ (B) XCl₂

- (C) XCl (D) X_2Cl
- 13. Two element have electronegativity of 1.2 and 3.0. Bond formed between them would be
 - (A) Ionic (B) Polar covalent
 - (C) Co-ordinate (D) Metallic
- 14. Which of the following is least ionic
 - (A) $C_2 H_5 Cl$ (B) KCl(C) $BaCl_2$ (D) $C_6 H_5 N^+ H_3 Cl^-$

- 15. Which type of bonding exists in Li_2O and CaF_2 respectively
 - (A) Ionic, ionic(B) Ionic, covalent(C) Covalent, ionic(D) Coordinate, ionic

Covalent bonding

- **16.** Which of the following occurs when two hydrogen atoms bond with each others
 - (A) Potential energy is lowered
 - (B) Kinetic energy is lowered
 - (C) Electronic motion ceases
 - (D) Energy is absorbed
- **17.** A bond with maximum covalent character between non-metallic elements is formed
 - (A) Between identical atoms
 - (B) Between chemically similar atoms
 - (C) Between atoms of widely different electronegativities
 - (D) Between atoms of the same size
- **18.** Amongst the following covalent bonding is found in
 - (A) Sodium chloride
 - (B) Magnesium chloride
 - (C) Water
 - (D) Brass
- 19. Indicate the nature of bonding in diamond

(A) Covalent	(B)) Ionic
--------------	-------------	---------

- (C) Coordinate (D) Hydrogen
- **20.** Octet rule is not valid for the molecule

(A) CO_2	(B) H_2O
(C) <i>CO</i>	(D) <i>O</i> ₂

- **21.** Which of the following compounds are covalent
 - (A) H_2 (B) CaO
 - (C) KCl (D) Na_2S

	Chemical Bonding &	Molecular Structure
22.	. Indicate the nature of bonding in CCl_4 and $2s$	
	(A) Covalent in CCl_4	and electrovalent in
	CaH ₂	
	(B) Electrovalent in both	CCl_4 and CaH_2
	(C) Covalent in both CC	Cl_4 and CaH_2
	(D) Electrovalent in C	
	CaH ₂	
23.	3. If the atomic number of element X is 7, 1	
	best electron dot symbol	for the element is
	(A) X .	$(\mathbf{B}) \cdot X \cdot$
	(C) . X :	$(D): \overset{\cdot\cdot}{X}.$
24.	Which is the most covale	nt
	(A) $C - O$	(B) $C - Br$
	(C) $C-S$	(D) $C-F$
25.	The covalent compound	d HCl has the ionic
	character as	
	(A) The electronegative	
	greater than that of c (B) The electronegativity	
	to that of chlorine	, or ny arogen is equar
	(C) The electronegativity	y of chlorine is greater
	than that of hydrogen	
26	(D) Hydrogen and chlori	-
20.	The acid having $O - O$ b (A) $H_2S_2O_3$	(B) $H_2 S_2 O_6$
	(C) $H_2S_2O_3$ (C) $H_2S_2O_8$	(D) $H_2 S_2 O_6$ (D) $H_2 S_4 O_6$
77	220	2 1 0
21.	The following salt show character	vs maximum covalent
	(A) $AlCl_3$	(B) $MgCl_2$
	(C) CsCl	(D) $LaCl_3$
28.	Which type of bond	5
	molecule	- 2
	(A) Ionic bond	(B) Covalent bond
	(C) Co-ordinate	(D) All of three
29.	H_2S is more acidic than	H_2O , due to
	(A) O is more electrone	-
	(B) $O-H$ bond is strong	er than $S-H$ bond

(C) O - H bond is weaker than S - H bond

(D) None of these

90

- **30.** Which of the following has covalent bond (A) Na_2S (B) $AlCl_3$
 - (C) NaH (D) $MgCl_2$

Co-ordinate or Dative bonding

- **31.** In the coordinate valency
 - (A) Electrons are equally shared by the atoms
 - (B) Electrons of one atom are shared with two atoms
 - (C) Hydrogen bond is formed
 - (D) None of the above
- **32.** Which of the following contains a coordinate covalent bond
 - (A) N_2O_5 (B) $BaCl_2$
 - (C) HCl (D) H_2O
- **33.** A coordinate bond is formed when an atom in a molecule has
 - (A) Electric charge on it
 - (B) All its valency electrons shared
 - (C) A single unshared electron
 - (D) One or more unshared electron pair
- **34.** Which has a coordinate bond

(A) SO_3^{2-}	(B) <i>CH</i> ₄
(C) CO	(\mathbf{D}) $\mathbf{M}\mathbf{U}$

- (C) CO₂
 (D) NH₃
 35. The compound containing co-ordinate bond is
 - (A) O_3 (B) SO_3
 - (C) H_2SO_4 (D) All of these

Dipole moment

36. Which of the following is the most polar

(A) CCl_4	(B) $CHCl_3$
(C) CH_3OH	(D) CH_3Cl

- **37.** Which one has minimum (nearly zero) dipole moment
 - (A) Butene-1
 - (B) *cis* butene-2
 - (C) *trans* butene-2
 - (D) 2-methyl-1-propene

- **38.** Which one of the following is having zero dipole moment
 - (A) CCl_4 (B) CH_3Cl (C) CH_3F (D) $CHCl_3$
- **39.** Which of the following molecules does not possess a permanent dipole moment

(A)
$$H_2S$$
 (B) SO_2
(C) CS_2 (D) SO_3

40. Which of the following has zero dipole moment

(A) CH_2Cl_2 (B) CH_4 (C) NH_3 (D) PH_3

- **41.** Fluorine is more electronegative than either boron or phosphorus. What conclusion can be drawn from the fact that BF_3 has no dipole moment but PF_3 does
 - (A) BF_3 is not spherically symmetrical but PF_3 is
 - (B) BF_3 molecule must be linear
 - (C) The atomic radius of P is larger than the atomic radius of B
 - (D) The BF_3 molecule must be planar triangular
- **42.** Which molecule does not show zero dipole moment
 - (A) BF_3 (B) NH_3 (C) CCl_4 (D) CH_4
- **43.** The dipole moment of *HBr* is 1.6×10^{-30} cm and interatomic spacing is 1Å. The % ionic character of *HBr* is

(A) 7	(B) 10
(C) 15	(D) 27

- **44.** Non-polar solvent is
 - (A) Dimethyl sulphoxide
 - (B) Carbon tetrachloride
 - (C) Ammonia
 - (D) Ethyl alcohol
- **45.** Which shows the least dipole moment (A) CCl_4 (B) $CHCl_3$
 - (C) CH_3CH_2OH (D) CH_3COCH_3

Polarisation and Fajan's rule

- **46.** Which of the following possesses highest melting point
 - (A) Chlorobenzene (B) *o*-dichlorobenzene
 - (C) *m*-dichlorobenzene (D) *p*-dichlorobenzene
- **47.** The polar molecule among the following is (A) CCl_4 (B) CO_2
 - (C) CH_2Cl_2 (D) $CH_2 = CH_2$
- **48.** Which of the following have both polar and non-polar bonds

(A) $C_2 H_6$	(B) NH_4Cl
(C) HCl	(D) $AlCl_3$

- **49.** Which of the following has a high polarising power
 - (A) Mg^{2+} (B) Al^{3+}
 - (C) Na^+ (D) Ca^{2+}
- **50.** Maximum covalent character is associated with the compound
 - (A) NaI (B) MgI_2
 - (C) $AlCl_3$ (D) All_3
- **51.** Polarisibility of halide ions increases in the order
 - (A) F^- , I^- , Br^- , Cl^- (B) Cl^- , Br^- , I^- , F^- (C) I^- , Br^- , Cl^- , F^- (D) F^- , Cl^- , Br^- , I^-
- **52.** According to Fajan's rule, covalent bond is favoured by
- (A) Large cation and small anion
 - (B) Large cation and large anion
 - (C) Small cation and large anion
 - (D) Small cation and small anion
- **53.** Which of the following statements is correct (A) SF_4 is polar and non-reactive
 - (B) SF_6 is non-polar and very reactive
 - (C) SF_6 is a strong fluorinating agent
 - (D) SF_4 is prepared by fluorinating SCl_2 with NaF

- **54.** Choose the correct statement
 - (A) Amino polarisation is more pronounced by highly charged cation
 - (B) Small cation has minimum capacity to polarise an anion.
 - (C) Small anion has maximum polarizability
 - (D) None of these
- **55.** The *ICl* molecule is
 - (A) Purely electrovalent
 - (B) Purely covalent
 - (C) Polar with negative end on iodine
 - (D) Polar with negative end on chlorine

Overlaping- σ and π - bonds

- **56.** The number of sigma and pi bonds in 1-butene-3-yne are
 - (A) 5 sigma and 5 pi (B) 7 sigma and 3 pi
 - (C) 8 sigma and 2 pi (D) 6 sigma and 4 pi
- **57.** The most acidic compound among the following is
 - (A) CH_3CH_2OH (B) C_6H_5OH
 - (C) CH_3COOH (D)
 - $CH_{3}CH_{2}CH_{2}OH$
- **58.** Which of the following is not correct
 - (A) A sigma bond is weaker than π bond
 - (B) A sigma bond is stronger than π bond
 - (C) A double bond is stronger than a single bond
 - (D) A double bond is shorter than a single bond
- 59. Strongest bond formed, when atomic orbitals
 - (A) Maximum overlap
 - (B) Minimum overlap
 - (C) Overlapping not done
 - (D) None of them
- **60.** The p p orbital overlapping is present in the following molecule
 - (A) Hydrogen
 - (B) Hydrogen bromide
 - (C) Hydrogen chloride
 - (D) Chlorine

Hybridisation			the following is the correct mula of chlorine molecule	
61.	Octahedral molecula hybridisation	r shape exists in	(A) : Cl : Cl : 	$(\mathbf{B}):\stackrel{\cdots}{Cl^{-}}::Cl^{+}:\stackrel{\cdots}{Ll^{+}}:$
	(A) sp^3d	(B) sp^3d^2	$(\mathbf{C}): \stackrel{\cdots}{Cl}: \stackrel{\cdots}{Cl}:$	(D) : $C1$: $C1$:
	(C) sp^3d^3	(D) None of these	71 . Which of the	following molecules can central
62.	The electronic struct	ure of molecule OF_2 is a		adopt sp^2 hybridization
	hybrid of		(A) BeF_2	(B) BCl_3
	(A) <i>sp</i>	(B) sp^2	(C) $C_2 H_2$	(D) NH_3
	(C) sp^3	(D) sd^3	_	H_3_{4} SO_4 , ; Cu has following
63.	Percentage of s-charac	eter in sp^3 hybrid orbital is	hybridization	
	(A) 25	(B) 50	(A) dsp^2	(B) sp^3
	(C) 66	(D) 75	(C) sp^2	(D) sp^3d^2
64.	Shape of XeF_4 molec	ule is		ation of carbon atoms in $C-C$
	(A) Linear	(B) Pyramidal	2	of $HC \equiv C - CH = CH_2$ is
		(D) Square planar		(B) $sp^2 - sp^3$
65.	bond angle is maximi	lowing hybridisation the		(D) $sp^{3} - sp$
	(A) sp^2	(B) sp		nd in which C^* uses sp^3 hybrids
		(D) dsp^2	for bond form	
66	The $C - H$ bond dista	· · · -	+	(B) $(NH_2), CO$
00.	(A) C_2H_2			
	(C) $C_2 H_2$ (C) $C_2 H_4 B r_2$		(C) $(NH_3)_3 C$	$OH HgCl_2$ (D) $CH_3 \overset{+}{C}HO$
67			75. In diborane, t	he $H - B - H$ bond angle is 120° .
07.	for carbon is	eation in $CH_2Cl - CH_2Cl$	-	ation of boron is likely to be
	(A) <i>sp</i>	(B) sp^2	(A) <i>sp</i>	(B) sp^2
	· / -		(C) sp^3	(D) dsp^2
(0	(C) sp^3	(D) sp^2d	76. CCl_4 has the	hybridisation
08.	Shape of methane mc (A) Tetrahedral	(B) Pyramidal	(A) sp^3d	(B) dsp^2
	(C) Octahedral	(D) Square planer	(C) <i>sp</i>	(D) sp^3
69.		the following possesses	77. Compound ha	aving planar symmetry is
	an sp hybridized car	bon in its structure	(A) H_2SO_4	(B) H_2O
	(A) $CH_2 = C.Cl - CH$	$H = CH_2$	(C) HNO_3	(D) CCl_4
	(B) $C.Cl_2 = C.Cl_2$			ne following compounds is not
	(C) $CH_2 = C = CH_2$		linear (A) <i>SnCl</i> ₂	(B) HCl
	(D) $CH_2 = CH - CH$	$=CH_2$	(C) CO_2	(D) $HgCl_2$

- **79.** Which one of the following statements is true for ammonium ion
 - (A) All bonds are ionic
 - (B) All bonds are coordinate covalent
 - (C) *H* atoms are situated at the corners of a square
 - (D) *H* atoms are situated at the corners of a tetrahedron
- **80.** The bond angle in sp^2 hybridisation is

(A) 180°	(B) 120°
(C) 90°	(D) 109°2

- 81. The correct order towards bond angle is
 - (A) $sp < sp^2 < sp^3$
 - (B) $sp^2 < sp < sp^3$
 - (C) $sp^3 < sp^2 < sp$
 - (D) Bond angle does not depend on hybridisation
- **82.** The geometry and the type of hybrid orbital present about the central atom in BF_3 is
 - (A) Linear, sp
 - (B) Trigonal planar, sp^2
 - (C) Tetrahedral, sp^3
 - (D) Pyramidal, sp^3
- 83. In graphite, electrons are
 - (A) Localised on every third C atom
 - (B) Present in antibonding orbital
 - (C) Localised on each C atom
 - (D) Spread out between the structure
- **84.** The ammonium ion is
 - (A) Tetrahedral
 - (B) Trigonal pyramidal
 - (C) Square planar
 - (D) Square pyramidal
- **85.** In *sp* hybridisation, shape is
 - (A) Angular (B) Tetrahedral
 - (C) Bipyramidal (D) Linear
- **86.** In which of the following species is the interatomic bond angle is $109^{\circ}28'$

(A) NH_3 , $(BF_4)^{-1}$ (B) $(NH_4)^+$, BF_3

(C) NH_3 , BF_4 (D) $(NH_2)^{-1}$, BF_3

87.	A square planar hybridisation of whi	complex is formed by
	(A) s, p_x, p_y, d_{yz}	(B) $s, p_x, p_y, d_{x^2-y^2}$
	(C) s, p_x , $p_{y_1} d_{z^2}$	(D) s, p_y, p_z, d_{xy}
88.	In benzene, all the same length because	six $C-C$ bonds have the of
	(A) Tautomerism	(B) sp^2 hybridisation
	(C) Isomerism	(D) Inductive effect
89.	The bond energies of	of $H - H$ and $Cl - Cl$ are
	430 $kJ \mod^{-1}$ and 2	42 $kJ \mod^{-1}$ respectively,
	ΔH_t for <i>HCl</i> is 91 <i>l</i>	$kJ mol^{-1}$. The bond energy
	of HCl will be	
	(A) 427 <i>kJ</i>	(B) 766 <i>kJ</i>
	(C) 285 <i>kJ</i>	(D) 245 <i>kJ</i>
90.	Which of the follow	ing has dsp^2 hybridization
	(A) $NiCl_4^{2-}$	(B) SCl_4

- (C) NH_4^+ (D) $PtCl_4^{2-}$
- **91.** Which one of the following is a planar molecule

(A) NH_3	(B) H_3O^+
(C) BCl_3	(D) PCl_3

- **92.** Which one of the following is a correct set with respect to molecule, hybridisation and shape
 - (A) $BeCl_2$, sp^2 , linear
 - (B) $BeCl_2$, sp^2 , triangular planar
 - (C) BCl_3 , sp^2 , triangular planar
 - (D) BCl_3 , sp^3 , tetrahedral
- **93.** Which of the following compounds doesn't have linear structure

(A)
$$CO_2$$
 (B) SO_2

(C) $BeCl_2$ (D) C_2H_2

- **94.** Which of the following bonds require the largest amount of bond energy to dissociate the atom concerned
 - (A) H H bond in H_2
 - (B) C-C bond in CH_4
 - (C) $N \equiv N$ bond in N_2
 - (D) O = O bond in O_2

- **95.** The percentage *s*-character of the hybrid orbitals in methane, ethene and ethyne are respectively
 - (A) 25, 33, 50 (B) 25, 50, 75 (C) 50, 75, 100 (D) 10, 20, 40
- **96.** Which set hydridisation is correct for the following compounds

$$NO_2$$
, SF_4 PF_6^- (A) sp , sp^2 , sp^3 (B) sp , sp^3d , sp^3d^2 (C) sp^2 , sp^3 , d^2sp^3 (D) sp^3 , sp^3d^2 , sp^3d^2

97. The state of hybridisation of B in BCl_3 is

(A) <i>sp</i>	(B) sp^2
(C) sp^3	(D) sp^2d^2

98. The hybrid state of sulphur in SO_3 molecule is

(A) sp^3d	(B) sp^3
(C) sp^3d^2	(D) sp^2

99. Which of the following molecules has pyramidal shape

(A) PCl_3	(B) <i>SO</i> ₃
(C) CO_3^{2-}	(D) NO_{3}^{-}

100. The hybrdization of IF_7 is

(A) $sp^{3}d^{3}$ (B) $sp^{2}d$ (C) $d^{2}sp^{3}$ (D) sp^{3}

Resonance

- 101. Which does not show resonance
 - (A) Benzene (B) Aniline
 - (C) Ethyl amine (D) Toluene
- **102.** The enolic form of acetone contains
 - (A) 9 sigma bonds, 1 pi bond and 2 lone pairs
 - (B) 8 sigma bonds, 2 pi bonds and 2 lone pairs
 - (C) 10 sigma bonds, 1 pi bond and 1 lone pair
 - (D) 9 sigma bonds, 2 pi bonds and 1 lone pair

- **103.**Point out incorrect statement about resonance
 - (A) Resonance structures should have equal energy
 - (B) In resonance structures, the constituent atoms should be in the same position
 - (C) In resonance structures, there should not be the same number of electron pairs
 - (D) Resonance structures should differ only in the location of electrons around the constituent atoms
- **104.** The number of possible resonance structures for CO_3^{2-} is

105.Resonance hybrid of nitrate ion is

(A)
$${}^{-1/2}O \cdots N {}^{-1/2}O^{-1/2}$$

(B) ${}^{-2/3}O \cdots N {}^{-2/3}O^{-2/3}$
(C) ${}^{-1/3}O \cdots N {}^{-1/3}O^{-1/3}$
(D) ${}^{-2/3}O \cdots N {}^{+}O^{-2/3}$
 ${}^{+}O^{-2/3}O^{-2/3}$

VSEPR Theory

106. A molecule which contains unpaired electrons is

- (A) Carbon monoxide
- (B) Molecular nitrogen
- (C) Molecular oxygen
- (D) Hydrogen peroxide

107. H_2O is

- (A) A linear triatomic molecule
- (B) A bent (angular) triatomic molecule
- (C) Both of these
- (D) None of these

- **108.**Bond angle between two hybrid orbitals is 105° .% s-orbital character of hybrid orbital is
 - (A) Between 20-21%
 - (B) Between 19-20%
 - (C) Between 21-22%
 - (D) Between 22-23%
- **109.** The bond angle between H O H in ice is closest to

(A) 120°28'	(B) 60°
(C) 90°	(D) 105°

110.Which of the following molecules does not have a linear arrangement of atoms

(A) H_2S	(B) $C_2 H_2$
(C) BeH_2	(D) <i>CO</i> ₂

- **111.** BCl_3 is a planar molecule while NCl_3 is pyramidal, because
 - (A) BCl_3 has no lone pair of electrons but NCl_3 has a lone pair of electrons
 - (B) B-Cl bond is more polar than N-Cl bond
 - (C) Nitrogen atom is smaller than boron atom
 - (D) N-Cl bond is more covalent than B-Cl bond

112. The isoelectronic pair is

(A) Cl_2O , ICl_2^-	(B) ICl_2^-,ClO_2
(C) IF_2^+, I_3^-	(D) ClO_2^-, ClF_2^+

113.According to VSEPR theory, the most probable shape of the molecule having 4 electron pairs in the outer shell of the central atom is

(A) Linear	(B) Tetrahedral
------------	-----------------

- (C) Hexahedral (D) Octahedral
- **114.** The molecular shapes of SF_4 , CF_4 and XeF_4 are
 - (A) The same with 2, 0 and 1 lone pairs of electrons on the central atom, respectively
 - (B) The same with 1, 1 and 1 lone pair of electrons on the central atoms, respectively
 - (C) Different with 0, 1 and 2 lone pairs of electrons on the central atom, respectively
 - (D) Different with 1, 0 and 2 lone pairs of electrons on the central atom, respectively

	8	
115. Which of the following species is planar		
(A) CO_3^{2-}	(B) <i>NH</i> ₂	
(C) <i>PCl</i> ₃	(D) None of these	

Molecular orbital theory

- **116.** In P_4O_{10} , the number of oxygen atoms attached to each phosphorus atom is
 - (A) 2 (B) 3 (C) 4 (D) 2.5
- 117.Of the following statements which one is correct
 - (A) Oxygen and nitric oxide molecules are both paramagnetic because both contain unpaired electrons
 - (B) Oxygen and nitric oxide molecules are both diamagnetic because both contain no unpaired electrons
 - (C) Oxygen is paramagnetic because it contains unpaired electrons, while nitric oxide is diamagnetic because it contains no unpaired electrons
 - (D) Oxygen is diamagnetic because it contains no unpaired electrons, while nitric oxide is paramagnetic because it contains an unpaired electron
- **118.** According to the molecular orbital theory, the bond order in C_2 molecule is

	(A) 0			(B) 1
	(C) 2			(D) 3
-		-	-	 ~

119.The molecular orbital configuration of a diatomic molecule is

$$\sigma \ 1s^2 \ \sigma^* \ 1s^2 \ \sigma \ 2s^2 \ \sigma^* \ 2s^2 \ \sigma \ 2p_x^2 \begin{cases} \pi \ 2p_y^2 \\ \pi \ 2p_z^2 \end{cases}$$

Its bond order is

(A) 3 (B) 2.5

(C) 2 (D) 1

- **120.**The difference in energy between the molecular orbital formed and the combining atomic orbitals is called
 - (A) Bond energy
 - (B) Activation energy
 - (C) Stabilization energy
 - (D) Destabilization energy

- **121.** According to molecular orbital theory, the paramagnetism of O_2 molecule is due to presence of
 - (A) Unpaired electrons in the bonding σ molecular orbital
 - (B) Unpaired electrons in the antibonding σ molecular orbital
 - (C) Unpaired electron in the bonding π molecular orbital
 - (D) Unpaired electrons in the antibonding π molecular orbital
- **122.** The bond order in O_2^+ is

(A) 2	(B) 2.5
(C) 1.5	(D) 3

123. Which of the following is paramagnetic

(A) O_2	(B) <i>CN</i> ⁻	
(C) <i>CO</i>	(D) <i>NO</i> ⁺	

- 124. If N_x is the number of bonding orbitals of an atom and N_y is the number of antibonding orbitals, then the molecule/atom will be stable if (A) $N_x > N_y$ (B) $N_x = N_y$
 - (C) $N_x < N_y$ (D) $N_x \le N_y$
- **125.** Which of the following molecular orbitals has two nodal planes

(A) $\sigma 2s$	(B) $\pi 2p_y$
(C) $\pi^* 2p_y$	(D) $\sigma^* 2p_x$

126. The bond order in CO_3^{2-} ion between C - O is

(A) Zero	(B) 0.88
(C) 1.33	(D) 2

127. The bond order of O_2^+ is the same as in

(A) N_2^+	(B) <i>CN</i> ⁻
(C) <i>CO</i>	(D) <i>NO</i> ⁺
128. Bond order of O_2 is	

(A) 2		(B) 1.5
(C) 3		(D) 3.5

129. The total number of electron that takes part in forming bonds in N_2 is

(A) 2	(B) 4
(C) 6	(D) 10

130. The bond length the species O_2, O_2^+ and O_2^- are
in the order of
(A) $O_2^+ > O_2 > O_2^-$ (B) $O_2^+ > O_2^- > O_2$
(C) $O_2 > O_2^+ > O_2^-$ (D) $O_2^- > O_2 > O_2^+$
131. According to molecular orbital theory which of the following statement about the magnetic character and bond order is correct regarding O_2^+
(A) Paramagnetic and bond order $< O_2$
(B) Paramagnetic and bond order> O_2
(C) Dimagnetic and bond order $< O_2$
(D) Dimagnetic and bond order> O_2
132. The bond order in <i>NO</i> is 2.5 while that in NO^+ is 3. Which of the following statements is true for these two species
(A) Bond length in NO^+ is equal to that in NO
(B) Bond length in <i>NO</i> is greater than in NO^+
(C) Bond length in NO^+ is greater than in NO
(D) Bond length is unpredictable133.Which of the following is diamagnetic
(A) Oxygen molecule (B) Boron molecule
(c) N_2^+ (D) None
134. Bond energies in NO, NO^+ and NO^- are such as
(A) $NO^- > NO > NO^+$ (B) $NO > NO^- > NO^+$
(C) $NO^+ > NO > NO^-$ (D) $NO^+ > NO^- > NO$
135. Which of the following is paramagnetic
(A) B_2 (B) C_2
(C) N_2 (D) F_2
Hydrogen bonding

Hydrogen bonding

- 138. The maximum possible number of hydrogen bonds in which an H_2O molecule can participate is (A) 1 (B) 2 (C) 3 (D) 4 139. Hydrogen bonding is maximum in (A) Ethanol (B) Diethyl ether (C) Ethyl chloride (D) Triethyl amine 140. The hydrogen bond is strongest in (A) Water (B) Ammonia (C) Hydrogen fluoride (D) Acetic acid 141. The high boiling point of ethanol $(78.2^{\circ}C)$ compared to dimethyl ether $(-23.6^{\circ}C)$, though both having the same molecular formulae $C_6 H_6 O$, is due to (A) Hydrogen bonding (B) Ionic bonding (C) Coordinate covalent bonding (D) Resonance 142. Methanol and ethanol are miscible in water due to (A) Covalent character (B) Hydrogen bonding character (C) Oxygen bonding character (D) None of these **143.**B.P. of $H_2O(100^{\circ}C)$ and $H_2S(-42^{\circ}C)$ explained by (A) Vander Waal's forces (B) Covalent bond (C) Hydrogen bond (D) Ionic bond 144. Strength of hydrogen bond is intermediate between (A) Vander Waal and covalent
 - (B) Ionic and covalent
 - (C) Ionic and metallic
 - (D) Metallic and covalent

- 145.In which of the following compounds intramolecular hydrogen bond is present(A) Ethyl alcohol(B) Water(C) Salicylaldehyde(D) Hydrogen sulphide
 - Types of bonding and Forces in solid

146. Which has weakest bond

(A) Diamond	(B) Neon (Solid)
(C) KCl	(D) Ice

147.Which of the following exhibits the weakest intermolecular forces

(A) He	(B) HCl
(C) NH_3	(D) H_2O

148.Glycerol has strong intermolecular bonding therefore it is

(A) Sweet	(B) Reactive
(C) Explosive	(D) Viscous

149. Among the following the weakest one is (A) Metallic bond (B) Ionic bond

- $(C) V_{ab} = V_{ab} = V_{ab} = (D) C_{ab} = t + t + ab$
- (C) Van der Waal's force (D) Covalent bond
- **150.** Lattice energy of alkali metal chlorides follows the order
 - (A) LiCl > NaCl > KCl > RbCl > CsCl
 - (B) CsCl > NaCl > KCl > RbCl > LiCl
 - (C) LiCl > CsCl > NaCl > KCl > RbCl
 - (D) NaCl > LiCl > KCl > RbCl > CsCl