

6.
$$m_{PQ} = \frac{a^2 - b^2}{a + b} = a - b$$

equation of PQ

$$y-a^2 = rac{a^2-b^2}{a+b}(x-a)$$

or
$$y-a^2 = (a-b)(x-a)$$

 $y = a^2 + x(a-b) - a^2 + ab$
 $y = (a-b)x + ab$

$$\therefore \quad S_1 = \int_{-b}^{a} (a-b)x + ab - x^2) dx$$

which simplifies to $\frac{(a+b)^3}{6}$ (1)

Also
$$S_2 = \frac{1}{2} \begin{vmatrix} a & a^2 & 1 \\ -b & b^2 & 1 \\ 0 & 0 & 1 \end{vmatrix} = \frac{1}{2} \left[ab^2 + a^2b \right] = \frac{1}{2} ab(a+b)$$

.....(2)

$$\therefore$$
S $(a+b)^3 = 2$ $(a+b)^2 = 1$ [a, b]

$$\frac{S_1}{S_2} = \frac{(a+b)^3}{6} \cdot \frac{2}{ab(a+b)} = \frac{(a+b)^2}{3ab} = \frac{1}{3} \left[\frac{a}{b} + \frac{b}{a} + 2 \right]$$

$$\therefore \quad \frac{S_1}{S_2}\Big|_{\min} = \frac{4}{3}$$

8.
$$A = \left(\frac{16ab}{3}\right) \cdot 2$$
$$a = \frac{1}{4}; b = \frac{1}{4}$$
$$y = \sqrt{-x}$$

10.
$$\int_{1}^{b} f(x) dx = (b-1) \sin (3b+4)$$

Area function =
$$\int_{1}^{x} f(x) dx = (x-1) \sin (3x+4)$$

differentiating
 \therefore $f(x) = \sin (3x+4) + 3(x-1) \cdot \cos (3x+4) \Rightarrow C$
12.
$$\int_{0}^{x} f(x) dx = y^{3}$$

Differentiating
 $f(x) = 3y^{2} \cdot \frac{dy}{dx}$
 $y = 3y^{2} \frac{dy}{dx}$
 $\Rightarrow y = 0$ (rejected)

$$\frac{3y^2}{2} = x + c \implies \text{parabola} \implies C$$

or 3y dy = dx

14. $y = ln^2 x - 1$

$$\begin{array}{c} y \\ \hline 0 \\ -1 \end{array}$$

$$y' = \frac{2 \ln x}{x} = 0 \implies x = 1$$

$$x > 1, y \uparrow \text{ and } 0 < x < 1, y \text{ is } \downarrow$$

$$A = \left| \int_{1/e}^{e} (\ln^2 x - 1) dx \right| = \left| \int_{1/e}^{e} \ln^2 x \, dx - \int_{1/e}^{e} dx \right|$$

$$= \left| x \ln^2 x \right]_{1/e}^{e} - 2 \int_{1/e}^{e} \left(\frac{\ln x}{x} \right) \cdot x \, dx - \left(e - \frac{1}{e} \right) \right|$$

$$= \left| \left(e - \frac{1}{e} \right) - 2 \int_{1/e}^{e} \left(\frac{\ln x}{x} \right) \cdot x \, dx - \left(e - \frac{1}{e} \right) \right|$$

$$= \left| -2\left[x\ln x\right]_{1/e}^{e} - \int_{1/e}^{e} dx \right] \right| = \left| -2\left[\left(e + \frac{1}{e}\right) - \left(e - \frac{1}{e}\right)\right] \right|$$
$$= \left| \frac{4}{e} \right| = \frac{4}{e}$$

 $A = \frac{2}{3}$

_y=**√**x

16.
$$y = \begin{bmatrix} 2 - (2 - x) & \text{if } x \le 2 \\ = x & \text{; also } y = \begin{bmatrix} \frac{3}{x} & \text{if } x > 0 \\ 2 - (x - 2) & \text{if } x \ge 2 \\ = 4 - x & -\frac{3}{x} & \text{if } x < 0 \end{bmatrix}$$

$$A = \int_{3/2}^{2} \left(x - \frac{3}{x} \right) dx + \int_{2}^{3} \left((4 - x) - \frac{3}{x} \right) dx$$

Now compute

$$y = x$$

 $y = x$
 $y = 4 - x$

18.
$$\int_{0}^{x} f(x) = xe^{x} \implies f(x) = \frac{d}{dx}(xe^{x}) = xe^{x} + e^{x}$$
19.
$$f(x) + f(\pi - x) = 2, \quad \forall \ x \in \left(\frac{\pi}{2}, \pi\right]$$

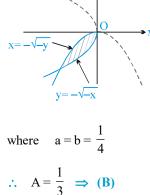
$$f(x) = 2 - \sin(\pi - x)$$

$$f(x) = 2 - \sin x, \ \forall \ x \in \left\lfloor \frac{\pi}{2}, \pi \right\rfloor$$
$$f(x) = 2 - f(2\pi - x), \ \forall \ x \in \left(\pi, \frac{3\pi}{2}\right]$$

$$y = 2 - \sin x \qquad y = 2 + \sin x$$

$$f(x) = 2 + \sin x, x \in \left(\pi, \frac{3\pi}{2}\right)$$
$$f(x) = f(2\pi - x), \forall x \in \left(\frac{3\pi}{2}, 2\pi\right)$$
$$f(x) = -\sin x, \forall x \in \left(\frac{3\pi}{2}, 2\pi\right)$$
$$f(x) = -\sin x, \forall x \in \left(\frac{3\pi}{2}, 2\pi\right)$$
$$f(x) = -\sin x, \forall x \in \left(\frac{3\pi}{2}, 2\pi\right)$$
$$f(x) = -\sin x, \forall x \in \left(\frac{3\pi}{2}, 2\pi\right)$$

20. Given g(x) = 2x + 1; $h(x) = (2x + 1)^2 + 4$ nowh(x) = f[g(x)] $(2x+1)^2+4=f(2x+1)$ $let \quad 2x+1=t$ \Rightarrow f(t) = t² + 4 \therefore f(x) = x² + 4(1) P(2.8)(0.4)v=mx solving y = mx and $y = x^2 + 4$ $x^2 - mx + 4 = 0$ put D=0 $m^2 = 16 \implies m = \pm 4$ tangents are y = 4x and y = -4x $A = 2\int_{0}^{2} [(x^{2}+4)-4x] dx = 2\int_{0}^{2} [(x-2)^{2} dx] dx$ $=\frac{2}{3}(x-2)^3\Big]_0^2=\frac{16}{3}$ sq. units 22. $y = -\sqrt{-x} \implies y^2 = -x$ where x & y both (-) ve $x = -\sqrt{-y} \implies x^2 = -y$ where x & y both (-) ve Hence $A = \frac{16ab}{3}$



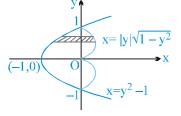
Add. 41-42A, Ashok Park Main, New Rohtak Road, New Delhi-110035 +91-9350679141

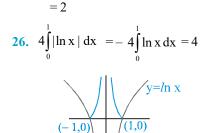
23. Required area $(b-1)\sin(3b+4) = \int_{1}^{b} f(x) dx$

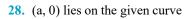
diff. w.r.t. b

 $3(b-1)\cos(3b+4) + \sin(3b+4) = f(b)$ $\Rightarrow f(x) = 3(x-1)\cos(3x+4) + \sin(3x+4)$

24. A=2
$$\int_{0}^{1} \left[y\sqrt{1-y^{2}} - (y^{2}-1) \right] dy$$



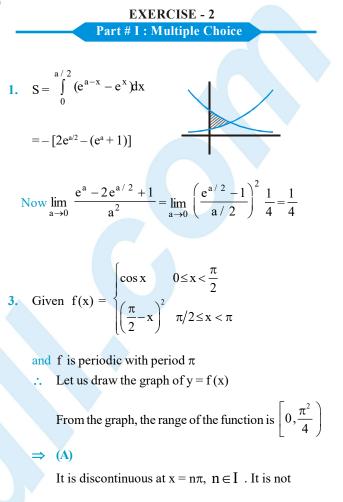




- \therefore 0 = sin2a $\sqrt{3}$ sina
- \Rightarrow sina = 0 or cosa = $\sqrt{3}/2$
- $\Rightarrow a = \frac{\pi}{6}$ (as a > 0 and the first point of intersection with positive X-axis)

and

$$A = \int_{0}^{\pi/6} (\sin 2x - \sqrt{3} \sin x) dx = \left(-\frac{\cos 2x}{2} + \sqrt{3} \cos x \right)_{0}^{\pi/6}$$
$$= \left(-\frac{1}{4} + \frac{3}{2} \right) - \left(-\frac{1}{2} + \sqrt{3} \right) = \frac{7}{4} - \sqrt{3} = \frac{7}{4} - 2 \cos a$$
$$\Rightarrow 4A + 8 \cos a = 7$$



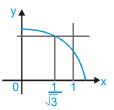
differentiable at
$$x = \frac{n\pi}{2}$$
, $n \in I$.

$$X' = -\pi - \pi/2 - \frac{1}{Y'}$$

Area bounded by y = f(x) and the X-axis from $-n\pi$ to $n\pi$ for $n \in N$

$$=2n\int_{0}^{\pi}f(x)dx=2n\left[\int_{0}^{\pi/2}\cos x \, dx + \int_{\pi/2}^{\pi}\left(\frac{\pi}{2} - x\right)^{2} \, dx\right] = 2n\left(1 + \frac{\pi^{3}}{24}\right)$$

8.
$$A = \frac{1}{\sqrt{3}} + \int_{1/\sqrt{3}}^{1} \sqrt{\frac{4}{3} - x^2} dx$$



$$= \frac{1}{\sqrt{3}} + \left[\frac{x}{2}\sqrt{\frac{4}{3} - x^{2}} + \frac{2}{3}\sin^{-1}\left(\frac{x\sqrt{3}}{2}\right)\right]_{1/\sqrt{3}}^{1}$$
$$= \frac{1}{\sqrt{3}} + \left[\left(\frac{1}{2\sqrt{3}} - \frac{1}{2\sqrt{3}}\right) + \frac{2}{3}\left(\frac{\pi}{3} - \frac{\pi}{6}\right)\right] = \frac{3\sqrt{3} + \pi}{9}$$

9. Solving $f(x) = 2x - x^2$ and $g(x) = x^n$ we have $2x - x^2 = x^n \implies x = 0$ and x = 1

$$A = \int_{0}^{1} (2x - x^{2} - x^{n}) dx = x^{2} - \frac{x^{3}}{3} - \frac{x^{n+1}}{n+1} \bigg]_{0}^{1}$$

$$g(x) = x^{n}$$

$$f(x) = 2x - x^{2}$$

$$= 1 - \frac{1}{3} - \frac{1}{n+1} = \frac{2}{3} - \frac{1}{n+1}$$

hence, $\frac{2}{3} - \frac{1}{n+1} = \frac{1}{2} \implies \frac{2}{3} - \frac{1}{2} = \frac{1}{n+1}$

$$\Rightarrow \frac{4-3}{6} = \frac{1}{n+1} \Rightarrow n+1 = 6$$

$$\Rightarrow$$
 n = 5

ł

Hence n is a divisor of 15, 20, 30

$$\Rightarrow$$
 B, C, D

10.
$$\Delta_2 = \Delta_1 = \int_{1/2}^{1} \left[1 - \frac{1}{2x} \right] dx$$

= $\frac{1}{2} - \frac{1}{2} \bullet n 2$

A = 4 -
$$(\Delta_1 + \Delta_2)$$
 = 4 - $(1 - \Phi_n 2)$ = 3 + $\Phi_n 2$

11. The two curves meet at

$$mx = x - x^2$$
 or $x^2 = x(1 - m)$ \therefore $x = 0, 1 - m$

$$\int_{0}^{1-m} (y_1 - y_2) dx = \int_{0}^{1-m} (x - x^2 - mx) dx$$

$$= \left[(1-m)\frac{x^2}{2} - \frac{x^3}{3} \right]_0^{1-m} = \frac{9}{2} \text{ if } m < 1$$

or
$$(1-m)^3 \left[\frac{1}{2} - \frac{1}{3} \right] = \frac{9}{2}$$
 or $(1-m)^3 = 27$

$$\therefore$$
 m=-2

But if m > 1 then 1 - m is negative, then

$$\begin{bmatrix} (1-m)\frac{x^2}{2} - \frac{x^3}{3} \end{bmatrix}_{1-m}^0 = \frac{9}{2}$$
$$-(1-m)^3 \left(\frac{1}{2} - \frac{1}{3}\right) = \frac{9}{2}$$

$$-(1-m)^3 = -27 \text{ or } 1 - m = -3 \therefore m = 4.$$

Part # II : Assertion & Reason

$$A = \int_{\alpha}^{\beta} (kx + 2 - x^2 + 3) dx$$

3

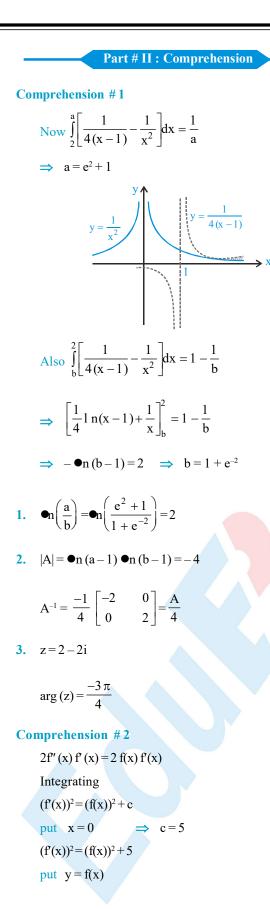
1

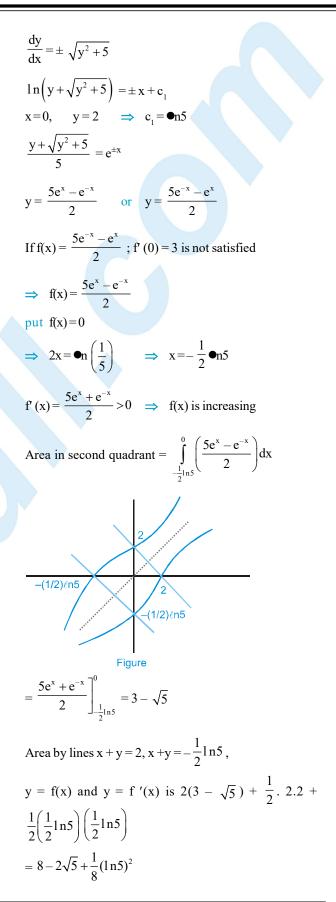
$$= \left(\frac{kx^2}{2} - \frac{x^3}{3} + 5x\right)_{\alpha}^{\beta}$$

$$= \left(\frac{k(\alpha + \beta)}{2} - ((\alpha + \beta)^2 - \alpha\beta)\frac{1}{3} + 5\right)(\beta - \alpha)$$

$$=\sqrt{k^2+20}\left[\frac{k^2}{2}-\left(\frac{k^2+5}{3}\right)+5\right]=\frac{1}{6}(k^2+20)^{3/2}$$

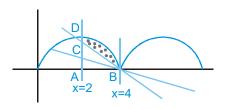
Hence statement I is true & II is false.





EXERCISE - 4 Subjective Type

4. Let equation of line is y = mx - 4m



$$A = \int_{2}^{4} \sqrt{2} \sin \frac{\pi}{4} x dx = \left[-\sqrt{2} \frac{4}{\pi} \cos \frac{\pi x}{4} \right]_{2}^{4} = \frac{4\sqrt{2}}{\pi} \qquad \dots (i)$$

Also area of
$$\triangle ABC = \frac{1}{2} \cdot 2 \cdot (-2m_1) = -2m_1 \quad ... (ii)$$

from (i) and (ii)

$$-2m_{1} = \frac{4\sqrt{2}}{3\pi} \Rightarrow m_{1} = \frac{-2\sqrt{2}}{3\pi}$$

$$\Rightarrow \tan(\pi - \theta_{1}) = \frac{-2\sqrt{2}}{3\pi} \Rightarrow \pi - \theta_{1} = \tan^{-1}\frac{2\sqrt{2}}{3\pi}$$

$$\Rightarrow \theta_{1} = \pi - \tan^{-1}\frac{2\sqrt{2}}{3\pi} \text{ or } \frac{1}{2} \cdot (2)(-2m_{2}) = \frac{8\sqrt{2}}{3\pi}$$

$$\Rightarrow m_{2} = \frac{-4\sqrt{2}}{3\pi} \Rightarrow \tan(\pi - \theta_{2}) = \frac{-4\sqrt{2}}{3\pi}$$

$$\Rightarrow \theta_{2} = \pi - \tan^{-1}\frac{4\sqrt{2}}{3\pi}$$

5. Curve $y = a - bx^2$ passes through the point (2, 1) $\therefore a-4b=1$

3π

$$A = 2 \int_{0}^{\sqrt{a/b}} (a - bx^{2}) dx = 2 \left[ax - \frac{bx^{3}}{3} \right]_{0}^{\sqrt{a/b}}$$
$$= \frac{4}{3} \frac{a^{3/2}}{\sqrt{b}} = \frac{4}{3} \frac{(1 + 4b)^{3/2}}{\sqrt{b}}$$
$$A' = \frac{2}{3} \frac{\sqrt{1 + 4b}(8b - 1)}{b^{3/2}} \implies A' = 0 \implies b = \frac{1}{8}$$
$$\implies A = 4\sqrt{3} \text{ sq. units}$$

8. According to question

$$\int_{0}^{a^{2}} (-f^{-1}(y) + \sqrt{y}) dy = \int_{0}^{a} \left(x^{2} - \frac{x^{2}}{2} \right) dx$$

$$\Rightarrow [f^{-1}(a^{2}) - a] 2a = -\frac{a^{2}}{2}$$

$$\Rightarrow f^{-1}(a^{2}) = \frac{3a}{4}$$

$$\Rightarrow f\left(\frac{3a}{4}\right) = a^{2}$$
or $f(x) = \frac{16}{9}x^{2}$

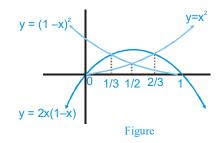
9. $f(x) = Maximum \{x^2, (1-x)^2, 2x(1-x)\}$ We draw the graph of $\mathbf{y} = \mathbf{x}^2$ (1) y = 2x(1-x)(2)

y = 2x(1-x)(3) Solving (1) and (3), we get $x^2 = 2x(1-x)$ 2

$$\Rightarrow 3x^2 = 2x \Rightarrow x = 0 \quad \text{or} \quad x = \frac{2}{3}.$$

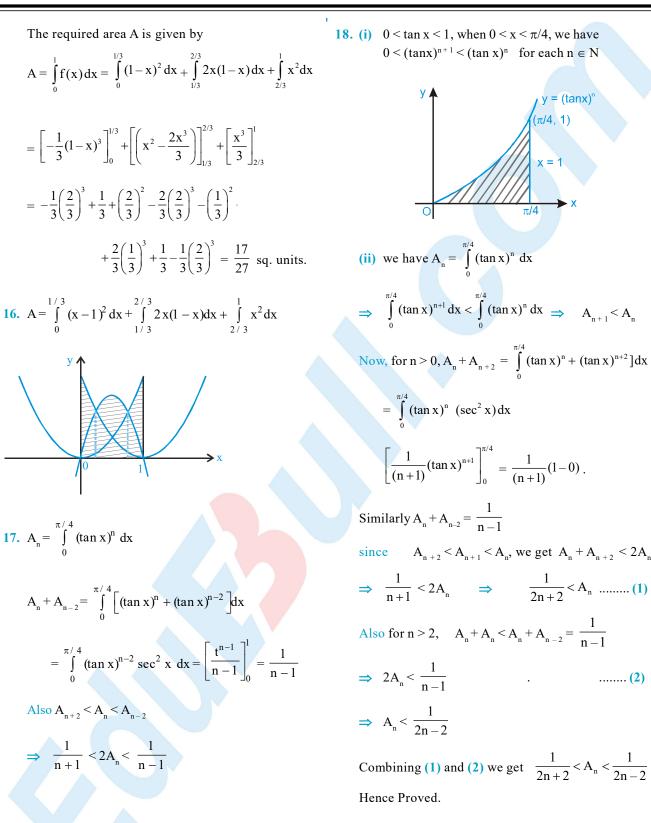
Solving (2) and (3) we get $(1-x)^2 = 2x(1-x)$

$$\Rightarrow$$
 x = $\frac{1}{3}$ and x = 1.



From figure it is clear that

$$f(x) = \begin{cases} (1-x)^2 \text{ for } 0 \le x \le 1/3 \\ 2x(1-x) \text{ for } 1/3 \le x \le 2/3 \\ x^2 \text{ for } 2/3 \le x \le 1 \end{cases}$$



22. $A = \int_{-2a}^{-2a} \frac{a^2 - ax - (x^2 + 2ax + 3a^2)}{1 + a^4} dx$ **20.** f(x+1) = f(x) + 2x + 1 \Rightarrow f''(x+1)=f''(x) \forall x \in R Let f''(x) = a \Rightarrow f'(x) = ax + b $=\frac{3}{2}\frac{a^{3}}{1+a^{4}}$ \Rightarrow f(x) = $\frac{ax^2}{2} + bx + c$ x = -2a x =Now $f(a) = \frac{3}{2} \frac{a^3}{1 + a^4}$ \Rightarrow c = 1 [\Rightarrow f(0) = 1] Now f(x+1) - f(x) = 2x + 1 \Rightarrow f'(a) = 0 $\Rightarrow \left\lceil \frac{a}{2}(x+1)^2 + b(x+1) + c \right\rceil - \left| \frac{ax^2}{2} + bx + c \right| = 2x+1$ \Rightarrow (1 + a⁴) 3a² - a³ 4a³ = 0 $\Rightarrow ax + \frac{a}{2} + b = 2x + 1$ \Rightarrow a_{min} = 0, a_{max} = 3^{1/4} P(1,1) on comparing we get a = 2, 23. Distance of point P from origin is less then distance of P from y = 1or $\frac{a}{2} + b = 1 \implies b = 0$:. $f(x) = x^2 + 1$... (i) Now let equation of tangent be y = mx ... (ii) from (i) and (ii) $x^2 - mx + 1 = 0$ $\sqrt{\mathbf{h}^2 + \mathbf{k}^2} < \mathbf{k} - 1$; $\sqrt{\mathbf{h}^2 + \mathbf{k}^2} < -\mathbf{k} - 1$ \Rightarrow m=±2 \Rightarrow $x^2 + y^2 < (y-1)^2$; $x^2 + y^2 < y^2 + 2y + 1$ \therefore tangent are y = 2x or y = -2x \Rightarrow x² < -2 $\left(y-\frac{1}{2}\right)$; x² < 2 $\left(y+\frac{1}{2}\right)$ $A = 2 \int_{1}^{1} (x^{2} + 1 - 2x) dx = \frac{2}{3}$ similarly $y^2 < -2\left(x - \frac{1}{2}\right)$; $y^2 < 2\left(x + \frac{1}{2}\right)$ **21.** Area = $\int_{0}^{1} e^{y} \sin(\pi y) dy$ \Rightarrow y = $\frac{x^2 - 1}{2}$ or y = x = $\frac{x^2 - 1}{2}$ $=\frac{e^{y}}{1+\pi^{2}}(\sin \pi y - \pi \cos \pi y)\Big]_{1}^{1} = \frac{(e+1)\pi}{1+\pi^{2}}$ \Rightarrow $x^2 + 2x - 1 = 0$ \Rightarrow x = -1 $\pm \sqrt{2}$ $A = 8 \int_{0}^{\sqrt{2}-1} \left[\frac{1-x^2}{2} - \sqrt{2} + 1 \right] dx + 4(\sqrt{2}-1)^2$ 1/2 (e^{1/2},1/2) 0 $=\frac{16\sqrt{2}-20}{2}$

24. (i)
$$f(x) = \min \left\{ x + 1, \sqrt{1 - x} \right\} = \begin{cases} x + 1 & -1 < x < 0 \\ \sqrt{1 - x} & 0 < x < 1 \end{cases}$$

$$\therefore \quad \frac{12}{7} \int_{-1}^{1} f(x) dx$$

$$= \frac{12}{7} \left[\int_{-1}^{0} (x + 1) dx + \int_{0}^{1} \sqrt{1 - x} dx \right]$$

$$= \frac{12}{7} \left[\left(\frac{x^{2}}{2} + x \right) \Big|_{-1}^{0} - \frac{2}{3} (1 - x)^{3/2} \Big|_{0}^{1} \right]$$

$$= \frac{12}{7} \left[0 - \left(\frac{1}{2} - 1 \right) - \frac{2}{3} (0 - 1) \right] = \frac{12}{7} \left(\frac{1}{2} + \frac{2}{3} \right) = 2$$
(ii) $\Rightarrow 0 < x < \frac{1}{2} \therefore \{x\} = x$

$$A = \int_{0}^{1/2} x dx = \left(\frac{x^{2}}{2} \right)_{0}^{1/2} = \frac{1}{8}$$

26.
$$f(\mathbf{x}) = \begin{cases} \mathbf{x}^2 + \mathbf{a}\mathbf{x} + \mathbf{b} & ; & \mathbf{x} < -1 \\ 2\mathbf{x} & ; & -1 \le \mathbf{x} \le 1 \\ \mathbf{x}^2 + \mathbf{a}\mathbf{x} + \mathbf{b} & ; & \mathbf{x} > 1 \end{cases}$$

→
$$f(x)$$
 is continuous at $x = -1$ and $x = 1$
∴ $(-1)^2 + a(-1) + b = -2$

and $2 = (1)^2 + a \cdot 1 + b$

i.e., a - b = 3

and a + b = 1

on solving we get a = 2, b = -1

$$\therefore f(\mathbf{x}) = \begin{cases} \mathbf{x}^2 + 2\mathbf{x} - 1 & ; & \mathbf{x} < -1 \\ 2\mathbf{x} & ; & -1 \le \mathbf{x} \le 1 \\ \mathbf{x}^2 + 2\mathbf{x} - 1 & ; & \mathbf{x} > 1 \end{cases}$$

Given curves are

 $y = f(x), x = -2y^2$ and 8x + 1 = 0

solving $x = -2y^2$, $y = x^2 + 2x - 1$ (x < -1) we get

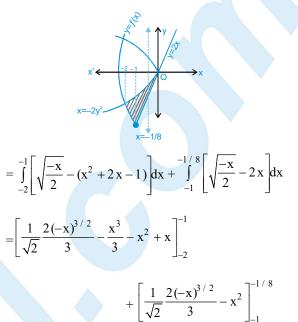
$$x = -2$$

Also y = 2x, $x = -2y^2$ meet at (0, 0)

and
$$\left(-\frac{1}{8},-\frac{1}{4}\right)$$

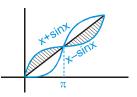
The required area is the shaded region in the figure.

:. Required area

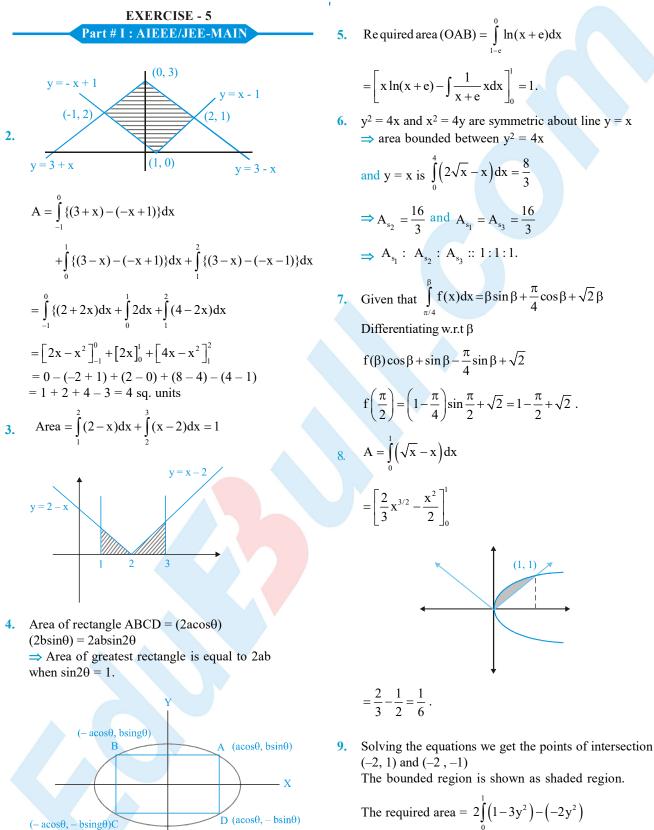


 $=\frac{257}{192}$ square units

$$30. \quad A = 4 \int [x + \sin x - x] dx$$



MATHS FOR JEE MAIN & ADVANCED



5. Required area (OAB) =
$$\int_{1-e}^{0} \ln(x+e)dx$$

= $\left[x \ln(x+e) - \int \frac{1}{x+e} x dx\right]_{0}^{1} = 1.$
5. $y^{2} = 4x$ and $x^{2} = 4y$ are symmetric about line y
 \Rightarrow area bounded between $y^{2} = 4x$
and $y = x$ is $\int_{0}^{4} (2\sqrt{x} - x) dx = \frac{8}{3}$
 $\Rightarrow A_{s_{2}} = \frac{16}{3}$ and $A_{s_{1}} = A_{s_{3}} = \frac{16}{3}$
 $\Rightarrow A_{s_{2}} : A_{s_{2}} : A_{s_{3}} :: 1:1:1.$
7. Given that $\int_{\pi/4}^{\beta} f(x) dx = \beta \sin\beta + \frac{\pi}{4} \cos\beta + \sqrt{2}\beta$
Differentiating w.r.t β
 $f(\beta) \cos\beta + \sin\beta - \frac{\pi}{4} \sin\beta + \sqrt{2}$
 $f(\frac{\pi}{2}) = (1 - \frac{\pi}{4}) \sin\frac{\pi}{2} + \sqrt{2} = 1 - \frac{\pi}{2} + \sqrt{2}.$
8. $A = \int_{0}^{1} (\sqrt{x} - x) dx$
 $= \left[\frac{2}{3}x^{3/2} - \frac{x^{2}}{2}\right]_{0}^{1}$
 $= \frac{2}{3} - \frac{1}{2} = \frac{1}{6}.$

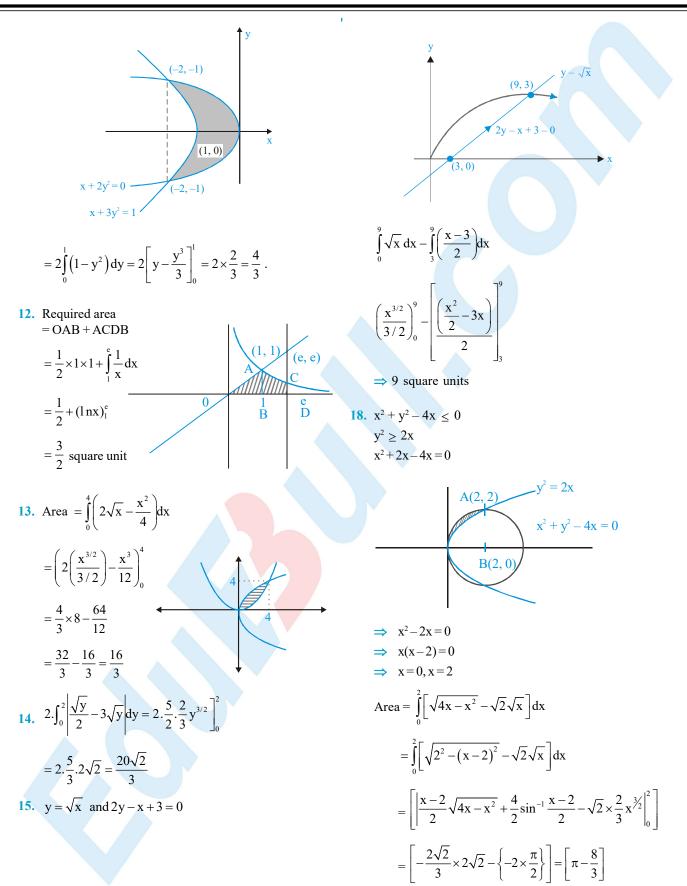
 $= \mathbf{x}$

Add. 41-42A, Ashok Park Main, New Rohtak Road, New Delhi-110035 +91 - 9350679141

(-2, 1) and (-2, -1)

The bounded region is shown as shaded region.

The required area = $2\int (1-3y^2) - (-2y^2)$



Add. 41-42A, Ashok Park Main, New Rohtak Road, New Delhi-110035 +91-9350679141

Part # II : IIT-JEE ADVANCED

3. The given curves are $y = x^2$

which is an upward parabola with vertex at (0, 0)

 $y = |2 - x^2|$

or
$$y = \begin{cases} 2 - x^2 & \text{if } & -\sqrt{2} < x < \sqrt{2} \\ x^2 - 2 & \text{if } & x < -\sqrt{2} \text{ or } x > \sqrt{2} \end{cases}$$

or $x^2 = -(y-2); -\sqrt{2} < x < \sqrt{2}$ (2)

a downward parabola with vertex at (0, 2)

 $x^2 = y + 2;$ $x < -\sqrt{2}, x > \sqrt{2}$ (3)

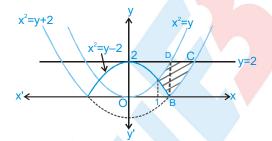
On upward parabola with vertex at (0, -2)

Straight line parallel to x-axis

x=1(5)

Straight line parallel to y-axis

The graph of these curves is as follows.



:. Required area = BCDEB

$$= \int_{1}^{\sqrt{2}} [x^2 - (2 - x^2)dx + \int_{\sqrt{2}}^{2} [2 - (x^2 - 2)]dx$$
$$= \int_{1}^{\sqrt{2}} (2x^2 - 2)dx + \int_{\sqrt{2}}^{2} (4 - x^2)dx = \left(\frac{20}{3} - 4\sqrt{2}\right) \text{sq. units}$$

8.	We have,	$\begin{bmatrix} 4a^2\\ 4b^2 \end{bmatrix}$	4a 4b	$\begin{bmatrix} 1 \\ f(-1) \\ f(1) \end{bmatrix} =$	$3a^{2} + 3a^{2}$
		40^{4}	40 4c	$\begin{bmatrix} f(1) \\ f(2) \end{bmatrix}^{-1}$	$3c^{2} + 3c$ $3c^{2} + 3c$

$$\Rightarrow 4a^{2}f(-1) + 4af(1) + f(2) = 3a^{2} + 3a$$

$$4b^{2}f(-1) + 4bf(1) + f(2) = 3b^{2} + 3b$$

$$4c^{2}f(-1) + 4cf(1) + f(2) = 3c^{2} + 3c$$

Consider the equation

$$4x^{2}f(-1) + 4xf(1) + f(2) = 3x^{2} + 3x$$

or $[4f(-1)-3]x^2 + [4f(1)-3]x + f(2) = 0$

Then clearly this equation is satisfied by x = a, b, c

A quadratic equation satisfied by more than two values of x means it is an identity and hence

 $4f(-1) - 3 = 0 \implies f(-1) = 3/4$ $4f(1) - 3 = 0 \implies f(1) = 3/4$ $f(2) = 0 \implies f(2) = 0$ Let $f(x) = px^2 + qx + r [f(x) \text{ being a quad. equation}]$

 $f(-1) = \frac{3}{4} \implies p - q + r = \frac{3}{4}$ $f(1) = \frac{3}{4} \implies p + q + r = \frac{3}{4}$ $f(2) = 0 \implies 4p + 2q + r = 0$ Solving the above we get $q = 0, p = \frac{-1}{4}, r = 1$

 $\therefore \quad f(\mathbf{x}) = -\frac{1}{4} \mathbf{x}^2 + 1$

It's maximum value occur at $f'(\mathbf{x}) = 0$

i.e.,
$$x = 0$$
 then $f(x) = 1$... $V(0, 1)$

A (-2, 0) is the pt. where curve meet x-axis

Let B be the pt.
$$\left(h, \frac{4-h^2}{4}\right)$$

As
$$\angle AVB = 90^{\circ}$$

 $m_{_{\!A\!V}}\!\times m_{_{\!B\!V}}\!=\!-1$

$$\Rightarrow \qquad \frac{1}{2} \times \left(\frac{-h}{4}\right) = -1$$
$$\Rightarrow \qquad h = 8 \qquad \therefore B(8, -15)$$

Equation of chord AB is

$$y + 15 = \frac{0 - (-15)}{-2 - 8} (x - 8)$$

$$\Rightarrow$$
 3x+2y+6=0

Required area is the area of shadded region given by

=

=

3

$$\int_{-2}^{8} \left[\left(-\frac{x^2}{4} + 1 \right) - \left(\frac{-6 - 3x}{2} \right) \right] dx$$
$$\frac{125}{3}$$
 sq. units.

(-2,0)A

∧v(0,1)

B(8, -15)

9. (C) By inspection, the point of intersection of two curves $y = 3^{x-1} \log x$ and $y = x^x - 1$ is (1, 0)

For first curve
$$\frac{dy}{dx} = \frac{3^{x-1}}{x} + 3^{x-1} \log 3 \log x$$

$$\Rightarrow \left(\frac{dy}{dx}\right)_{(1,0)} = 1 = m_1$$

For second curve
$$\frac{dy}{dx} = x^x (1 + \log x)$$

$$\Rightarrow \left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)_{(1,0)} = 1 = \mathrm{m}_2$$

- \Rightarrow two curves touch each other $m_1 = m_2$ **+**
- angle between them is 0° \Rightarrow
- $\cos \theta = 1$

10.
$$y^3 - 3y + x = 0$$

$$3y^{2}y' - 3y' + 1 = 0 \qquad y' = \frac{-1}{3(y^{2} - 1)}$$
$$f(-10\sqrt{2}) = 2\sqrt{2}$$
$$f'(-10\sqrt{2}) = -\frac{1}{3(7)} = -\frac{1}{21}$$
$$6y(y')^{2} + 3y^{2}y'' - 3y'' = 0$$

$$y'' = -\frac{2y(y')^{2}}{y^{2} - 1}$$
$$f''(-10\sqrt{2}) = \frac{-2(2\sqrt{2})}{441 \times 7} = \frac{-4\sqrt{2}}{7^{3}3^{2}}$$
$$11. \int_{a}^{b} f(x)dx = [xf(x)]_{a}^{b} - \int_{a}^{b} xf'(x)dx$$
$$= bf(b) - af(a) + \int_{a}^{b} \frac{x}{2[(f(x))^{2} - 1]}dx$$

$$= \int_{a}^{b} \frac{x}{3[(f(x))^{2} - 1]} dx + bf(b) - af(a)$$

12.
$$\int_{-1}^{1} g'(x) dx = g(1) - g(-1)$$

Now $g(1) = -(g(-1))$

1

(as g'(x) is an even function)

so
$$\int_{-1}^{\pi/4} g'(x) dx = 2g(1)$$

3. Area
$$= \int_{0}^{\pi/4} \left(\sqrt{\frac{1 + \sin x}{\cos x}} - \sqrt{\frac{1 - \sin x}{\cos x}} \right) dx$$

$$= \int_{0}^{\pi/4} \frac{\left(\cos\frac{x}{2} + \sin\frac{x}{2}\right) - \left(\cos\frac{x}{2} - \sin\frac{x}{2}\right)}{\sqrt{\cos^{2}\frac{x}{2} - \sin^{2}\frac{x}{2}}} dx$$

$$= \int_{0}^{\pi/4} \frac{2\sin\frac{x}{2}}{\sqrt{\cos^{2}\frac{x}{2} - \sin^{2}\frac{x}{2}}} dx = \int_{0}^{\pi/4} \frac{2\tan\frac{x}{2}}{\sqrt{1 - \tan^{2}\frac{x}{2}}} dx$$

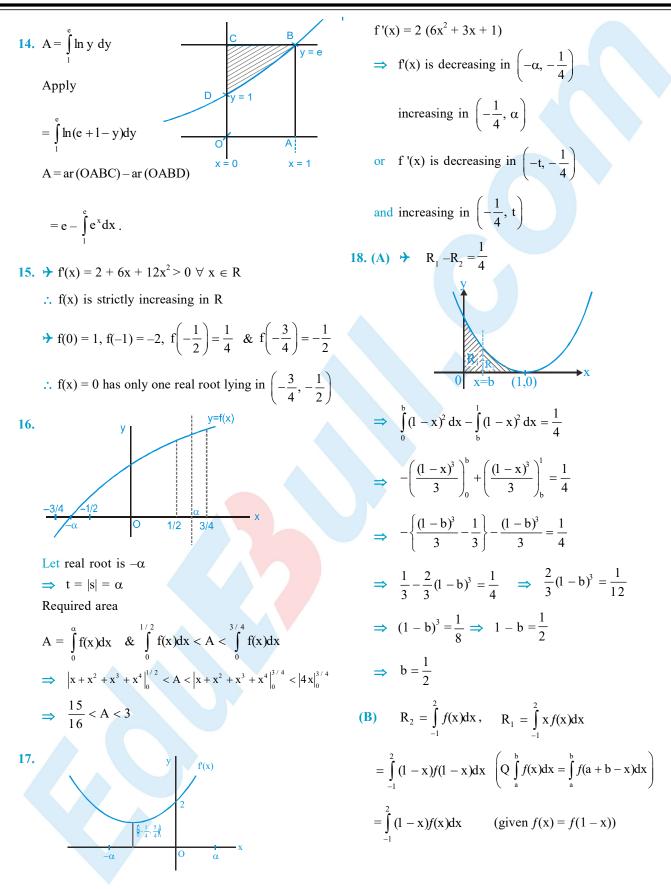
2 dt

Let
$$\tan \frac{x}{2} = t$$

 $\sec^2 \frac{x}{2} dx = 2dt \implies dx = \frac{2 dt}{(1 + t^2)}$

:. Area =
$$\int_{0}^{\sqrt{2}-1} \frac{4t}{(1+t^2)\sqrt{1-t^2}} dt$$

MATHS FOR JEE MAIN & ADVANCED



$$= \int_{-1}^{2} f(x)dx - \int_{-1}^{2} xf(x)dx$$

or $R_{1} = R_{2} - R_{1} \implies 2R_{1} = R_{2}$
19. $y = \sin x + \cos x = \sqrt{2} \sin \left(x + \frac{\pi}{4}\right)$
 $\sqrt{2} \frac{1}{1 + \pi/2}$
 $y = |\cos x - \sin x| = \sqrt{2} \left(\cos \left(x + \frac{\pi}{4}\right)\right)$
Area $= \int_{0}^{\pi/4} \left[(\sin x + \cos x) - (\cos x - \sin x) \right] dx$
 $+ \int_{\pi/4}^{\pi/2} \left[(\sin x + \cos x) - (\sin x - \cos x) \right] dx$
 $= \int_{0}^{\pi/4} 2 \sin xdx + \int_{\pi/4}^{\pi/2} 2 \cos xdx$
 $= [-2 \cos x]_{0}^{\pi/4} + [2 \sin x]_{\pi/4}^{\pi/2}$
 $= 2\sqrt{2} (\sqrt{2} - 1)$
21. $y \ge \sqrt{|x+3|}$
 $y^{2} \ge \begin{cases} x+3 & \text{if } x \ge -3 \\ -x-3 & \text{if } x < -3 \end{cases}$
 $(4, 1) = \left(\frac{(3, \frac{4}{5})}{-x-3} + \frac{(1, 2)}{5} + \frac{(1, 2)}{5} + \frac{(5, 3)}{5} + \frac{(5, 3)}{5} + \frac{(5, 3)}{5} + \frac{(4, 1)}{5} + \frac{(5, 3)}{5} + \frac{(5, 3)}{5} + \frac{(4, 1)}{5} + \frac{(5, 3)}{5} + \frac{(4, 1)}{5} + \frac{(5, 3)}{5} + \frac{(5, 3)}{5} + \frac{(4, 1)}{5} + \frac{(5, 3)}{5} + \frac{(4, 1)}{5} + \frac{(5, 3)}{5} + \frac{(4, 1)}{5} + \frac{(5, 3)}{5} + \frac{(5, 3)}{5} + \frac{(4, 1)}{5} + \frac{(5, 3)}{5} + \frac{(4, 1)}{5} + \frac{(5, 3)}{5} + \frac{(4, 1)}{5} + \frac{(5, 3)}{5} + \frac{(5, 3)}{$

MOCK TEST
1.
$$y = 8x^2 - x^5 = x^2 (8 - x^3)$$

Case I $a < 1$
 $A = \int_{a}^{1} (8x^2 - x^5) dx = \frac{16}{3}$
or $\frac{8}{3} - \frac{1}{6} - \frac{8a^3}{3} + \frac{a^6}{6} = \frac{16}{3}$
 0 1 2

or $(a^3 - 17)(a^3 + 1) = 0$ $\Rightarrow a = -1$, $a = (17)^{1/3}$ is not possible **Case II** $a \in [1, 2]$

$$A = \int_{1}^{a} (8x^{2} - x^{5}) dx = \frac{16}{3}$$

or $16a^3 - a^6 - 15 = 32$ or $a^6 - 16a^3 + 47 = 0$

This equation is not satisfied by a = 1, a = 2

Case III a > 2

There is no option

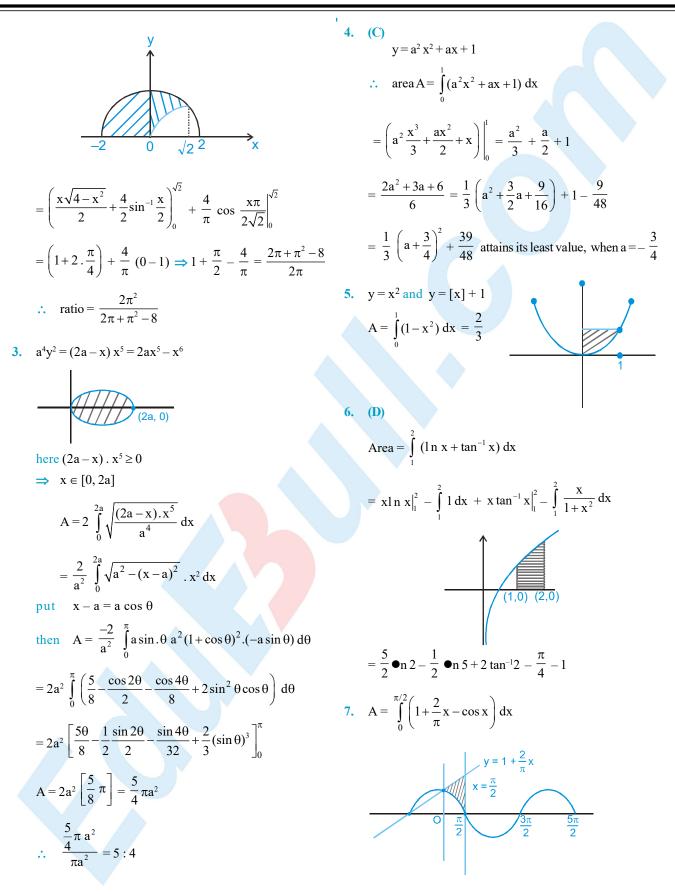
Hence one solution is -1

$$y = \sqrt{4 - x^2}$$
, $y = \sqrt{2} \sin\left(\frac{x\pi}{2\sqrt{2}}\right)$

intersect at $x = \sqrt{2}$ Area of the left of y-axis is π Area to the right of y-axis =

$$\int_{0}^{\sqrt{2}} \left(\sqrt{4-x^2} - \sqrt{2} \sin \frac{x\pi}{2\sqrt{2}} \right) dx$$

MATHS FOR JEE MAIN & ADVANCED



$$= x + \frac{x^{2}}{\pi} - \sin x \Big|_{0}^{\pi/2} = \frac{\pi}{2} + \frac{\pi}{4} - 1$$

or $A = \frac{3\pi}{4} - 1$

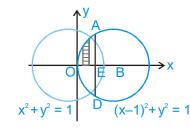
8. (A)

Solving the given equation of circle, we get

$$\mathbf{A} \equiv \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right); \mathbf{D} \equiv \left(\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)$$

Now area = 2[OBAO] = 2[area OEAO + EBAE]

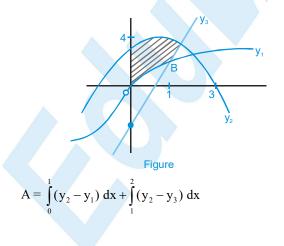
$$= 2 \left[\int_{0}^{x_{\rm E}} \sqrt{\left[1 - (x - 1)^2\right]} \, dx + \int_{x_{\rm E}}^{x_{\rm B}} \sqrt{1 - x^2} \, dx \right]$$



$$= 2 \left[\int_{0}^{1/2} \sqrt{1 - (x - 1)^2} \, dx + \int_{1/2}^{1} \sqrt{1 - x^2} \, dx \right]$$

$$=\frac{2\pi}{3}-\frac{\sqrt{3}}{2}$$
 square units

9. $y_1 = x^{1/3}$ $y_2 = -x^2 + 2x + 3 = -(x - 3)(x + 1)$ and $y_3 = 2x - 1$ and B(1,1) and A(2,3)



$$= \int_{0}^{2} y_{2} dx - \int_{0}^{1} y_{1} dx - \int_{1}^{2} y_{3} dx$$
$$= \left[-\frac{x^{3}}{3} + x^{2} + 3x \right]_{0}^{2} - \left[\frac{3}{4} x^{4/3} \right]_{0}^{1} - \left[x^{2} - x \right]_{1}^{2} = \frac{55}{12}$$

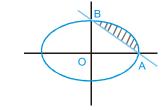
10. (A)

• Ol.

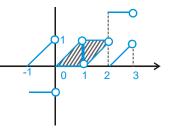
S₁: Obvious
S₂: Area = 4
$$\left(\frac{1}{2}.1.1\right) = 2$$

-x+y=1
-x-y=1
x-y=1

$$S_3$$
: Area = $\frac{1}{4}$ (Ellipse area) – ΔOAB



$$\mathbf{S}_4$$
: Area = 2. $\left(\frac{1}{2}1.1\right) = 1$



12. $f(x)=2^{\{x\}}$ Clearly f(x) is periodic with period 1.

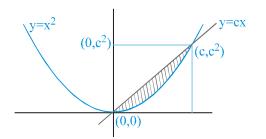
Now
$$\int_{0}^{1} 2^{\{x\}} dx = \int_{0}^{1} 2^{x} dx = \left[\frac{2^{x}}{\ln 2}\right]_{0}^{1} = \frac{1}{\ln 2} = \log_{2} e$$
Also
$$\int_{0}^{100} 2^{\{x\}} dx = 100 \int_{0}^{1} 2^{\{x\}} dx = 100 \log_{2} e$$

$$\left[U \sin g \int_{0}^{na} f(x) dx = n \int_{0}^{a} f(x) dx \text{ if a is the period of } f(x) \right]$$

Add. 41-42A, Ashok Park Main, New Rohtak Road, New Delhi-110035 +91 - 9350679141

13. Area (T) =
$$\frac{c \cdot c^2}{2} = \frac{c^3}{2}$$

Area (R) = $\frac{c^3}{2} - \int_0^c x^2 dx$



$$=\frac{c^3}{2}-\frac{c^3}{3}=\frac{c^3}{6}$$

$$\therefore \quad \lim_{c \to 0^+} \frac{\operatorname{Area}(\mathrm{T})}{\operatorname{Area}(\mathrm{R})} = \lim_{c \to 0^+} \frac{\mathrm{c}^3}{2} \cdot \frac{6}{\mathrm{c}^3} = 3$$

14. If
$$x \le \frac{3}{2}$$

$$f(x) = \int_{0}^{x} (3-2t) dt = 3x - x^{2}$$

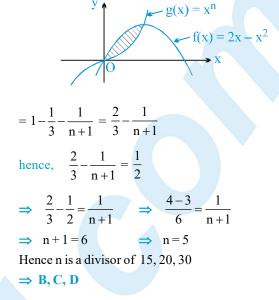
$$x > \frac{3}{2}$$

$$f(x) = \int_{0}^{3/2} (3-2t) dt + \int_{3/2}^{x} (2t-3) dt = \frac{9}{2} + x^{2} - 3$$

$$f(x) = \begin{cases} 3x - x^{2} & , & x \le 3/2 \\ x^{2} - 3x + 9/2 & , & x > 3/2 \end{cases}$$
Now this is continuous at $x = \frac{3}{2}$
and at $x = 3$ also differentiable at $x = 0$
Solving $f(x) = 2x - x^{2}$ and $g(x) = x^{n}$

is. Solving
$$f(x) = 2x - x^2$$
 and $g(x) = x^n$
we have $2x - x^2 = x^n$
 $\Rightarrow x = 0$ and $x = 1$

$$A = \int_{0}^{1} (2x - x^{2} - x^{n}) dx = x^{2} - \frac{x^{3}}{3} - \frac{x^{n+1}}{n+1} \bigg]_{0}^{1}$$



16. (C)

Statement-I Let
$$\frac{p}{\sqrt{p^2+q^2}} x + \frac{q}{\sqrt{p^2+q^2}} y = U$$

and
$$\frac{q}{\sqrt{p^2+q^2}} x - \frac{p}{\sqrt{p^2+q^2}} y = V$$

Then the axis get rotated through an angle θ ,

where
$$\cos\theta = \frac{p}{\sqrt{p^2 + q^2}}$$
 and $\sin\theta = \frac{q}{\sqrt{p^2 + q^2}}$

:. the equation of the given curve becomes |U| + |V| = a

 \therefore the area bounded = $2a^2$.

:. statement-1 is true

Statement-II the equation of the curve is $|\alpha x + \beta y| + |\beta x - \alpha y| = a$ which is equivalent to

$$\left| \frac{\alpha}{\sqrt{\alpha^2 + \beta^2}} x + \frac{\beta}{\sqrt{\alpha^2 + \beta^2}} y \right| + \left| \frac{\beta}{\sqrt{\alpha^2 + \beta^2}} x - \frac{\alpha}{\sqrt{\alpha^2 + \beta^2}} y \right|$$
$$= \frac{a}{\sqrt{\alpha^2 + \beta^2}}$$

$$\therefore$$
 area bounded = $\frac{2a^2}{\alpha^2 + \beta^2}$

:. statement-2 is false.

17. Equation of tangent

$$Y-y=m(X-x)$$
put X=0, $Y=y$

put X=0, Y=y-mxhence initial ordinate is

 $y-mx = x-1 \implies mx-y = 1-x$

 $\frac{dy}{dx} - \frac{1}{x}y = \frac{1-x}{x}$ which is a linear differential equation

0

P(x,y)

Hence statement-1 is correct and its degree is 1

 \Rightarrow statement-2 is also correct. Since every 1st

degree differential equation need not be linear hence statement-2 is not the correct explanation of statement-1.

19. From the diagram,

$$\sqrt{2}(\mathbf{r}_{2} - \mathbf{r}_{1}) = \mathbf{r}_{2} + \mathbf{r}_{1}$$

but
$$r_1 = 2$$

$$\sqrt{2}(\mathbf{r}_2 - 2) = \mathbf{r}_2 + 2$$
$$\left(\sqrt{2} - 1\right)\mathbf{r}_2 = 2 + 2\sqrt{2}$$
$$\Rightarrow \mathbf{r}_2 = \sqrt{2}\left(\sqrt{2} + 1\right)\left(\sqrt{2} + 2\right)$$

Also centres of both the circles may also lie on y = -x.

20. (B)

Area =
$$\int_{1}^{3} -(x^2 - 4x + 3) dx = -\left(\frac{x^3}{3} - \frac{4x^2}{2} + 3x\right)\Big|_{1}^{3} = \frac{4x^2}{3}$$

- ... Statement-I is true Statement-II is true but does not explain statement-I
- 21. (A) \rightarrow (t), (B) \rightarrow (t), (C) \rightarrow (r), (D) \rightarrow (s)

(A) Required area = 4s

$$s = \int_{0}^{\pi} (x + \sin x) dx - \int_{0}^{\pi} x dx$$

$$y = f(x) = x + \sin x$$

$$f^{-1}(x)$$

$$=\frac{\pi^2}{2}-\cos\pi+\cos 0-\frac{\pi^2}{2}=2$$
 sq. units

B) Required area =
$$2 \int xe^{x} dx = 2 [xe^{x} - e^{x}]_{0}^{1} = 2$$

$$x = -1$$
 $x = 1$

(C) $y^2 = x^3$ and |y| = 2x both the curve are symmetric about y - axis

 $4x^2 = x^3 \implies x = 0, 4,$ required area

 $= 2 \int_{0}^{4} (2x - x^{3/2}) \, dx =$

$$\frac{16}{5}$$

(D)
$$\sqrt{x} + \sqrt{|y|} = 1$$

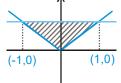
Above curve is symmetric about x-axis
 $\sqrt{|y|} = 1 - \sqrt{x}$ and $\sqrt{x} = 1 - \sqrt{|y|}$
 \Rightarrow for x > 0, y > 0 $\sqrt{y} = 1 - \sqrt{x}$
 $\frac{1}{2\sqrt{y}} \frac{dy}{dx} = -\frac{1}{2\sqrt{x}}$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -\sqrt{\frac{x}{y}}$$

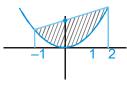
Add. 41-42A, Ashok Park Main, New Rohtak Road, New Delhi-110035 +91-9350679141 $\frac{dy}{dx} < 0$, function is decreasing required area

$$1 - 2 \int_{0}^{1} (1 - \sqrt{x}) dx = \frac{1}{3}$$

22. (A) \rightarrow (t), (B) \rightarrow (p), (C) \rightarrow (s), (D) \rightarrow (r) (A) The area = 1 unit



- **(B)** Area enclosed = $\int_{0}^{\pi} \sin x \, dx = 2$
- (C) The line y = x + 2 intersects $y = x^2$ at



x = -1 and x = 2the given region is shaded region area

$$\frac{15}{2} - \int_{-1}^{2} x^2 \, dx = \frac{9}{2}$$

(D) Here
$$a^2 = 9$$
, $b^2 = 5$, $b^2 = a^2(1 - e^2)$

$$\Rightarrow e^2 = \frac{4}{9} \qquad \Rightarrow e = \frac{4}{3}$$

Equation of tangent at $\left(2,\frac{5}{3}\right)$ is

$$\frac{2x}{9} + \frac{9}{3} = 1$$

x intercept = $\frac{9}{2}$, y intercept = 3

Area =
$$4 \times \frac{9}{2} \times 3 \times \frac{1}{2}$$
 = 27 sq. units

24.

1. (A) (y-4) $x^2 + x + 2 = 0$

the coefficient of the highest power of x

i.e. x^2 is y - 4 = 0

y - 4 = 0 is the asymptote parallel to the x-axis.

The coefficient of the highest power of y is x, so x = 0 is also a asymptotes.

2. (B)

 $\phi_3(m) = 1 + m^3, \phi_2(m) = -3m$ Putting $\phi_3(m) = 0$ or $m^3 + 1 = 0$ or $(m+1)(m^2 - m + 1) = 0$

$$m = -1, m = \frac{1 \pm \sqrt{1 - 1}}{2}$$

Only real value of m is -1

Now we find c from the equation $c = -\frac{\phi_{n-1}(m)}{\phi'_n(m)}$

 $c = \frac{3m}{3m^2} = \frac{1}{m} = -1$

On putting m = -1 and c = -1 in y = mx + c. The equation of asymptote is y = (-1)x + (-1) or x + y + 1 = 0

3. (B)

The coefficient of the highest power of y is (2 - x),

- So x = 2 is asymptotes. $\therefore a = 1, b = 0, c = -2$
- $\therefore |a+b+c|=1$
- 26. Here f(x+y) = f(x) + f(y) 8xy. Replacing x, y by 0 we obtain f(0) = 0

Now,
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{y \to 0} \frac{f(x+y) - f(x)}{y}$$

$$= \lim_{y \to 0} \frac{f(x) + f(y) - 8xy - f(x)}{y}$$

$$= \lim_{y \to 0} \left\{ \frac{f(y)}{y} - \frac{8xy}{y} \right\} = f'(0) - 8x = 8 - 8x \text{ [given } f'(0) = 8\text{]}$$

$$\Rightarrow f'(x) = 8 - 8x$$
Integrating both side,
 $f(x) = 8x - 4x^2 + c$

as
$$f(0) = 0 \implies c = 0$$

$$\Rightarrow$$
 f(x)=8x-4x²

also g(x+y) = g(x) + g(y) + 3xy(x+y)

Replacing x, y by 0, we obtain g(0) = 0

Now g'(x) =
$$\lim_{y \to 0} \frac{g(x+y) - g(x)}{y}$$

= $\lim_{y \to 0} \frac{g(x) + g(y) + 3x^2y + 3xy^2 - g(x)}{y}$
y
 y
 y
 y
 y
 y =f(x)
 y =|g(x)|
 y (2,0)

$$= \lim_{y \to 0} \left[\frac{g(y)}{y} + \frac{y(3x^2 + 3xy)}{y} \right] = g'(0) + 3x^2 = -4 + 3x^2$$

$$\therefore g(x) = x^3 - 4x \quad (\text{as } g(0) = 0) \qquad \dots \dots \dots (\text{ii})$$

$$|g(x)| = \begin{cases} x^3 - 4x, x \in [-2,0] \cup [2,\infty) \\ 4x - x^3, x \in (-\infty, -2) \cup (0,2) \end{cases}$$

Points where f(x) and |g(x)| meets, we have

$$\mathbf{f}(\mathbf{x}) = |\mathbf{g}(\mathbf{x})|$$

$$\Rightarrow$$
 x = 0, 2.

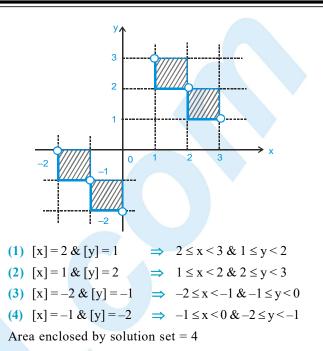
Area bounded by y = f(x) and y = |g(x)|, between x = 0 to x = 2 is

$$\int_0^2 (x^3 - 4x^2 + 4x) \, dx = \frac{4}{3}$$

27. (4)

 $[x] \cdot [y] = 2$

Here four cases arise



28. As the given triangle is equilateral with side lengths 4. BD and CE are angle bisectors of angle B and C resp. Any point inside the ΔAEC is nearer to AC than BC and any point inside the ΔBDA is nearer to AB than BC. So points inside the quadrilateral AEGD will satisfy the given condition

• Required area =
$$2 (\Delta EAG)$$

$$= 2 \times \frac{1}{2} \times AE \times EG$$

A(6, 2 ($\sqrt{3}$ + 1))

B(4, 2)

C(8, 2)

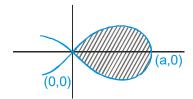
$$=\frac{4\sqrt{3}}{3}$$
 sq. units

$$ay^{2} = x^{2} (a - x) \qquad y = \pm x \quad \sqrt{\frac{a - x}{a}}$$
Area
$$= 2 \int_{0}^{a} x \sqrt{\frac{a - x}{a}} dx$$
put
$$x = a \cos\theta, dx = -a \sin\theta d\theta$$

$$= 2 \int_{0}^{\pi/2} a \cos\theta \sqrt{2} \sin\frac{\theta}{2} a \sin\theta d\theta$$

$$= 2\sqrt{2} a^2 \int_0^{\pi/2} \left(1 - 2\sin^2\frac{\theta}{2}\right) 2\sin^2\frac{\theta}{2} \cos\frac{\theta}{2} d\theta$$

put
$$\sin\frac{\theta}{2} = t$$
, $\cos\frac{\theta}{2} d\theta = 2dt$



$$= \left(-\frac{x^3}{3} + 3x^2 - 5x\right)_1^5 - \left(-\frac{x^3}{3} + 2x^2 - 3x\right)_1^4$$
$$- \left(\frac{3x^2}{2} - 15x\right)_4^5 = \frac{32}{3} - (0) + \frac{3}{2}$$

Area =
$$\frac{73}{6}$$

1

$$= 8\sqrt{2} a^{2} \int_{0}^{1/\sqrt{2}} (1-2t^{2})t^{2} dt = 8\sqrt{2} a^{2} \int_{0}^{1/\sqrt{2}} (t^{2}-2t^{4}) dt$$

$$= 8\sqrt{2} a^{2} \left(\frac{t^{3}}{3} - \frac{2t^{5}}{5}\right)^{1/\sqrt{2}} = 8\sqrt{2} a^{2} \left(\frac{1}{6\sqrt{2}} - \frac{2}{20\sqrt{2}}\right)^{1/\sqrt{2}}$$

$$=8a^2\left(\frac{1}{6}-\frac{1}{10}\right)=\frac{8a^2}{15}$$

30.
$$y = -(x^2 - 6x + 5) = -(x - 5)(x - 1)$$

 $y = -(x^2 - 4x + 3) = -(x - 3)(x - 1)$

$$y = 3x - 15$$

A (5, -0) B(4, -3) C (1, 0).
Area = $\int_{1}^{4} ((-x^{2} + 6x - 5) - (-x^{2} + 4x - 3)) dx$
 $+ \int_{4}^{5} ((-x^{2} + 6x - 5) - (3x - 15)) dx$
= $\int_{1}^{5} (-x^{2} + 6x - 5) dx - \int_{1}^{4} (-x^{2} + 4x - 3) dx - \int_{4}^{5} (3x - 15) dx$

