EXERCISE-I

Units

- Temperature can be expressed as a derived 1. quantity in terms of any of the following (A) Length and mass (B) Mass and time (C) Length, mass and time (D) None of these 2. Unit of power is (A) Kilowatt (B) *Kilowatt-hour* (C) Dyne (D) Joule 3. Density of wood is 0.5 gm/cc in the CGS system of units. The corresponding value in MKS units is (A) 500 (B) 5 (C) 0.5 (D) 5000 4. Unit of energy is (A) J/sec(B) Watt - day(D) $gm-cm/\sec^2$ (C) Kilowatt 5. Which is the correct unit for measuring nuclear radii (A) Micron (B) *Millimetre* (D) Fermi (C) Angstrom 6. One Mach number is equal to (A) Velocity of light (B) Velocity of sound (332 m/sec)(C) 1 km / sec(D) $1m/\sec$ 7. The unit for nuclear dose given to a patient is (B) Rutherford (A) Fermi (C) Curie (D) Roentgen 8. *Volt/metre* is the unit of (A) Potential (B) Work (C) Force (D) Electric intensity 9. Newton/metre² is the unit of (A) Energy (B) Momentum (C) Force (D) Pressure 10. The unit of surface tension in SI system is (A) $Dyne/cm^2$ **(B)** Newton /m
 - (C) Dyne/cm (D) $Newton/m^2$

11.	The unit of reduction	n factor of tangent		
	$(\Delta) Ampara$	(B) Gauss		
	(\mathbf{C}) Radian	(D) None of these		
12.	The unit of self-inductan	ce of a coil is		
	(A) Farad	(B) Henry		
	(C) Weber	(D) Tesla		
13.	<i>Henry/ohm</i> can be express	ssed in		
	(A) Second	(B) Coulomb		
	(C) Mho	(D) Metre		
14.	The SI unit of momentum is			
	(A) $\frac{kg}{m}$	(B) $\frac{kg.m}{sec}$		
	$ka m^2$			
	(C) $\frac{kg.m}{\text{sec}}$	(D) $kg \times Newton$		
15.	The velocity of a particle depends upon as			
	$v = a + bt + ct^2$; if the velocity is in m / \sec ,			
	the unit of <i>a</i> will be			
	(A) m / \sec	(B) m/\sec^2		
	(C) m^2 / \sec	(B) m/\sec^3		
16.	One million electron <i>volt</i> $(1MeV)$ is equal to			
	(A) $10^5 eV$	(B) $10^6 eV$		
	(C) $10^4 eV$	(D) $10^7 eV$		
17.	$Erg - m^{-1}$ can be the unit	t of measure for		
	(A) Force	(B) Momentum		
	(C) Power	(D) Acceleration		
18.	The unit of potential energy is			
	(A) $g(cm/\sec^2)$	(B) $g(cm/\sec)^2$		
	(C) $g(cm^2/sec)$	(D) $g(cm/sec)$		
19.	Which of the following r	epresents a volt		
	(A) Joule/second	(B) Watt/Ampere		
	(C) Watt/Coulomb	(D) Coulomb/Joule		
20.	Kilowatt – hour is a uni	t of		
	(A) Electrical charge	(B) Energy		
	(C) Power	(D) Force		
21.	Unit of stress is			
	(A) N/m	(B) $N-m$		
	(C) N/m^2	(D) $N - m^2$		

Unita 8. M

				Units & Measurements
22.	Unit of Stefan's constant is		32.	The dimensional formula for impulse is same
	(A) $J s^{-1}$	(B) $J m^{-2} s^{-1} K^{-4}$		as the dimensional formula for
	(C) $J m^{-2}$	(D) Js		(A) Momentum
23.	Unit of magnetic mome	entis		(B) Force
	(Δ) Ampere-metre ²	(B) Ampere-metre		(C) Rate of change of momentum
	(A) $Ampere-metre$	(D) Ampere-metre		(D) Torque
	(C) Weber–metre ²	(C) Weber/metre	33.	Which of the following is dimensionally
24.	Curie is a unit of			correct
	(A) Energy of γ-rays	(B) Half life		(A) Pressure = Energy per unit area
	(C) Radioactivity	(D) Intensity of γ -rays		(B) Pressure = Energy per unit volume
25.	Hertz is the unit for			(C) Pressure = Force per unit volume
	(A) Frequency	(B) Force		(D) Pressure = Momentum per unit volume
	(C) Electric charge	(D) Magnetic flux	24	per unit time
26.	One pico Farad is equa	al to	34.	Planck's constant has the dimensions (unit) of (A) Energy (B) Linear momentum
	(A) $10^{-24} F$	(B) $10^{-18} F$		(A) Energy (B) Linear momentum
	(C) $10^{-12} F$	(D) $10^{-6}F$	35	(C) work (D) Angular momentum The equation of state of some gases can be
27.	In SI, <i>Henry</i> is the unit	nit of	55.	The equation of state of some gases can be $\left(\begin{array}{c} a \\ c \end{array} \right)$
	(A) Self inductance	(B) Mutual inductance		expressed as $\left(P + \frac{a}{V^2}\right)(V-b) = RT$. Here P
	(C) (A) and (B) both	(D) None of the above		is the pressure V is the volume T is the
28.	The unit of <i>e.m.f</i> .is			is the pressure, v is the volume, I is the
	(A) Joule	(B) Joule-Coulomb		absolute temperature and a, b, K are
	(C) Volt–Coulomb	(D) Joule/Coulomb		constants. The dimensions of a are
29.	Which of the following	is not the unit of time		(A) $ML^{*}T^{*}$ (B) $ML^{*}T^{*}$
	(A) Micro second	(B) Leap year	26	(C) $M^{2}ET^{2}$ (D) $M^{2}ET^{2}$
	(C) Lunar months	(D)Parallactic	30.	r_{V} denotes the potential difference across
	second			dimensions of CV^2 are
30.	0. Unit of self inductance is			(A) Not expressible in MT
	(A) $\frac{Newton - second}{Coulomb \times Ampere}$	(B) $\frac{Joule/Couldstructure}{Ampere}$		(A) Not expressible in <i>MLI</i> (B) MLT^{-2}
	(C) $\frac{Volt \times metre}{}$	(D) $\frac{Newton \times metre}{}$		(C) $M^2 LT^{-1}$
	Coulomb	Ampere		(D) ML^2T^{-2}
Measurements			37.	If L denotes the inductance of an inductor
31	Out of the following the only pair that does			through which a current i is flowing, the
51.	not have identical dimensions is			dimensions of Li^2 are
	(A) A merely mean entrony and DI and the			(A) ML^2T^{-2}

(B) Not expressible in *MLT*

(C) *MLT*⁻²

(D) $M^2 L^2 T^{-2}$

- (A) Angular momentum and Planck's constant
- (B) Moment of inertia and moment of a force
- (C) Work and torque
- (D) Impulse and momentum

Units and Measurements

- **38.** Of the following quantities, which one has dimensions different from the remaining three
 - (A) Energy per unit volume
 - (B) Force per unit area

(C) Product of voltage and charge per unit volume

- (D) Angular momentum per unit mass
- **39.** A spherical body of mass *m* and radius *r* is allowed to fall in a medium of viscosity η . The time in which the velocity of the body increases from zero to 0.63 times the terminal velocity (*v*) is called time constant (τ). Dimensionally τ can be represented by

(A)
$$\frac{mr^2}{6\pi\eta}$$
 (B) $\sqrt{\left(\frac{6\pi mr\eta}{g^2}\right)}$

- (C) $\frac{m}{6\pi\eta rv}$ (D) None of the above
- **40.** The frequency of vibration f of a mass m suspended from a spring of spring constant K is given by a relation of this type $f = C m^x K^y$; where C is a dimensionless quantity. The value of x and y are

(A)
$$x = \frac{1}{2}, y = \frac{1}{2}$$
 (B) $x = -\frac{1}{2}, y = -\frac{1}{2}$
(C) $x = \frac{1}{2}, y = -\frac{1}{2}$ (D) $x = -\frac{1}{2}, y = \frac{1}{2}$

41. The quantities *A* and *B* are related by the relation, m = A/B, where *m* is the linear density and *A* is the force. The dimensions of *B* are of

- 42. The velocity of water waves v may depend upon their wavelength λ , the density of water ρ and the acceleration due to gravity g. The method of dimensions gives the relation between these quantities as
 - (A) $v^2 rg$ (B) $v^2 \propto g \lambda \rho$

(C) $v^2 \propto g \lambda$ (D) $v^2 \propto g^{-1} \lambda^{-3}$

- **43.** The dimensions of *Farad* are (A) $M^{-1}L^{-2}T^{2}Q^{2}$ (B) $M^{-1}L^{-2}TQ$
 - (C) $M^{-1}L^{-2}T^{-2}Q$ (D) $M^{-1}L^{-2}TQ^{2}$
- **44.** The dimensions of resistivity in terms of M, L, T and Q where Q stands for the dimensions of charge, is (A) $MI^{3}T^{-1}Q^{-2}$ (B) $MI^{3}T^{-2}Q^{-1}$

(C)
$$ML^{2}T^{-1}Q^{-1}$$
 (D) $MLT^{-1}Q^{-1}$

45. The equation of a wave is given by

$$Y = A\sin\omega\left(\frac{x}{v} - k\right)$$

where ω is the angular velocity and v is the linear velocity. The dimension of k is

- (A) LT (B) T(C) T^{-1} (D) T^2
- **46.** The dimensions of coefficient of thermal conductivity is
 - (A) $ML^2T^{-2}K^{-1}$ (B) $MLT^{-3}K^{-1}$ (C) $MLT^{-2}K^{-1}$ (D) $MLT^{-3}K$
- 47. Dimensional formula of stress is

(A)
$$M^{0}LT^{-2}$$
 (B) $M^{0}L^{-1}T^{-2}$
(C) $ML^{-1}T^{-2}$ (D) $ML^{2}T^{-2}$

- **48.** Dimensional formula of velocity of sound is (A) M^0LT^{-2} (B) LT^0
- (C) $M^0 L T^{-1}$ (D) $M^0 L^{-1} T^{-1}$
- 49. Dimensional formula of capacitance is
 - (A) $c^2 g^0 p^{-2}$ (B) $ML^2 T^4 A^{-2}$ (C) $MLT^{-4} A^2$ (D) $M^{-1} L^{-2} T^{-4} A^{-2}$
- 50. MLT⁻¹ represents the dimensional formula of
 (A) Power
 (B) Momentum
 (C) Force
 (D) Couple
- **51.** $ML^{-1}T^{-2}$ represents
 - (A) Stress
 - (B) Young's Modulus
 - (C) Pressure
 - (D) All the above three quantities
- **52.** Dimensions of magnetic field intensity is
 - (A) $[M^{0}L^{-1}T^{0}A^{1}]$ (B) $[MLT^{-1}A^{-1}]$ (C) $[ML^{0}T^{-2}A^{-1}]$ (D) $[MLT^{-2}A]$

53. The force F on a sphere of radius 'a' moving in a medium with velocity 'v' is given by $F = 6\pi\eta av$. The dimensions of η are

(A) $ML^{-1}T^{-1}$	(B) MT^{-1}
(C) MLT^{-2}	(D) ML^{-3}

- **54.** Which physical quantities have the same dimension
 - (A) Couple of force and work
 - (B) Force and power
 - (C) Latent heat and specific heat
 - (D) Work and power
- **55.** Two quantities A and B have different dimensions. Which mathematical operation given below is physically meaningful
 - (A) A/B (B) A+B
 - (C) A-B (D) None
- 56. Given that v is speed, r is the radius and g is the acceleration due to gravity. Which of the following is dimensionless
 - (A) v^2 / rg (B) $v^2 r / g$ (C) $v^2 g / r$ (D) $v^2 rg$
- **57.** The physical quantity which has the dimensional formula $M^{1}T^{-3}$ is (A) Surface tension (B) Solar constant
 - (C) Density (D) Compressibility
- **58.** A force *F* is given by $F = at + bt^2$, where *t* is time. What are the dimensions of *a* and *b* (A) MLT^{-3} and ML^2T^{-4} (B) MLT^{-3} and MLT^{-4} (C) MLT^{-1} and MLT^0 (D) MLT^{-4} and MLT^1
- **59.** The dimensions of inter atomic force constant are
 - (A) MT^{-2} (B) MLT^{-1}
 - (C) MLT^{-2} (D) $ML^{-1}T^{-1}$

60. If the speed of light (*c*), acceleration due to gravity (*g*) and pressure (*p*) are taken as the fundamental quantities, then the dimension of gravitational constant is

(A)
$$c^2 g^0 p^{-2}$$
 (B) $c^0 g^2 p^{-1}$
(C) $c g^3 p^{-2}$ (D) $c^{-1} g^0 p^{-1}$

61. If the time period (T) of vibration of a liquid drop depends on surface tension (S), radius (r) of the drop and density (ρ) of the liquid, then the expression of T is

(A)
$$T = k\sqrt{\rho r^3 / S}$$
 (B) $T = k\sqrt{\rho^{1/2} r^3 / S}$
(C) $T = k\sqrt{\rho r^3 / S^{1/2}}$ (D) None of these

- **62.** $ML^{3}T^{-1}Q^{-2}$ is dimension of (A) Resistivity (B) Conductivity
 - (C) Resistance (D) None of these
- 63. Dimension of electric current is
 - (A) $[M^{0}L^{0}T^{-1}Q]$ (B) $[ML^{2}T^{-1}Q]$ (C) $[M^{2}LT^{-1}Q]$ (D) $[M^{2}L^{2}T^{-1}Q]$
- **64.** The fundamental physical quantities that have same dimensions in the dimensional formulae of torque and angular momentum are
 - (A) Mass, time (B) Time, length
 - (C) Mass, length (D) Time, mole
- **65.** If pressure P, velocity V and time T are taken as fundamental physical quantities, the dimensional formula of force is
 - (A) PV^2T^2 (B) $P^{-1}V^2T^{-2}$ (C) PVT^2 (D) $P^{-1}VT^2$