$\sqrt{2}$

SOLVED EXAMPLES

SOLVED EXAMPLE

Ex.1 The area enclosed by the curves $y = \sqrt{4 - x^2}$, $y \ge \sqrt{2} \sin\left(\frac{x\pi}{2\sqrt{2}}\right)$ and x-axis is divided by y-axis in the ratio

Sol.

 $y = \sqrt{4 - x^2}$, $y = \sqrt{2} \sin\left(\frac{x\pi}{2\sqrt{2}}\right)$ intersect at $x = \sqrt{2}$

Area of the left of y-axis is π

Area to the right of y-axis =
$$\int_{0}^{\sqrt{2}} \left(\sqrt{4 - x^2} - \sqrt{2} \sin \frac{x\pi}{2\sqrt{2}} \right) dx$$

$$= \left(\frac{x\sqrt{4-x^{2}}}{2} + \frac{4}{2}\sin^{-1}\frac{x}{2}\right)_{0}^{\sqrt{2}} + \frac{4}{\pi}\cos\frac{x\pi}{2\sqrt{2}}\Big|_{0}^{\sqrt{2}} = \left(1+2\cdot\frac{\pi}{4}\right) + \frac{4}{\pi}(0-1)$$
$$= 1 + \frac{\pi}{2} - \frac{4}{\pi} = \frac{2\pi + \pi^{2} - 8}{2\pi}$$
$$\therefore \quad \text{ratio} = \frac{2\pi^{2}}{2\pi + \pi^{2} - 8}$$

Ex.2 Compute the area of the figure bounded by the parabolas $x = -2y^2$, $x = 1 - 3y^2$.

Sol. Solving the equations $x = -2y^2$, $x = 1 - 3y^2$, we find that ordinates of the points of intersection of the two curves as $y_1 = -1$, $y_2 = 1$.

The points are (-2, -1) and (-2, 1).

The required area

$$2\int_{0}^{1} (x_{1} - x_{2}) dy = 2\int_{0}^{1} [(1 - 3y^{2}) - (-2y^{2})] dy$$
$$= 2\int_{0}^{1} (1 - y^{2}) dy = 2\left[y - \frac{y^{3}}{3}\right]_{0}^{1} = \frac{4}{3} \text{ sq.units.}$$

Ex.3 The area cut off from a parabola by any double ordinate is k times the corresponding rectangle contained by the double ordinate and its distance from the vertex. Find the value of k ?

Sol. Consider $y^2 = 4ax$, a > 0 and x = c

 $k = \frac{2}{3}$

Area by double ordinate =
$$2\int_{0}^{c} 2\sqrt{a}\sqrt{x} \, dx = \frac{8}{3}\sqrt{a} c^{3/2}$$

Area by double ordinate = k (Area of rectangle)
 $\frac{8}{3}\sqrt{a} c^{3/2} = k 4\sqrt{a} c^{3/2}$

(c,
$$2\sqrt{ac}$$
)
(c, $-2\sqrt{ac}$)
Figure

- Ex.4 Find the area of the region common to the circle $x^2 + y^2 + 4x + 6y 3 = 0$ and the parabola $x^2+4x=6y+14$.
- Circle is $x^2 + y^2 + 4x + 6y 3 = 0$ Sol. $(x+2)^2 + (y+3)^2 = 16$ ⇒ (2,3√2) (-2,3√2) Shifting origin to (-2, -3). $X^2 + Y^2 = 16$ equation of parabola \rightarrow (x + 2)² = 6(y + 3) $X^2 = 6Y$ ⇒ Solving circle & parabola, we get $X = \pm 2\sqrt{3}$ Hence they intersect at $(-2\sqrt{3},2)$ & $(2\sqrt{3},2)$ $A = 2 \left| \int_{0}^{2} \sqrt{6Y} \, dY + \int_{0}^{4} \sqrt{16 - Y^2} \, dY \right|$ $= 2\left[\frac{2}{3}\sqrt{6}\left[Y^{3/2}\right]_{0}^{2} + \left[\frac{1}{2}Y\sqrt{16 - Y^{2}} + \frac{16}{2}\sin^{-1}\frac{Y}{4}\right]_{2}^{4}\right] = \left(\frac{4\sqrt{3}}{3} + \frac{16\pi}{3}\right) \text{sq. units}$ If $f(x) = \sin x \forall x \in \left[0, \frac{\pi}{2}\right]$, $f(x) + f(\pi - x) = 2 \forall x \in \left(\frac{\pi}{2}, \pi\right]$ and $f(x) = f(2\pi - x) \forall x \in (\pi, 2\pi]$, then the area enclosed Ex. 5 by y = f(x) and x - axis is f(x) = sinxSol. $f(x) + f(\pi - x) = 2$ $f(x) = 2 - f(\pi - x) = 2 - \sin(\pi - x) = 2 - \sin x$ $x \in \left(\frac{\pi}{2}, \pi\right)$ $f(x) = f(2\pi - x)$ 2 $f(x+\pi) = f(\pi-x)$ so curve is symmetric w.r.t. line $x = \pi$ for $(\pi, 2\pi]$ $f(x) = f(2\pi - x) = -\sin x$ $\pi/2$ $3\pi/2$ /2π Area = 2 $\left(\int_{0}^{\pi/2} \sin x \, dx \int_{0}^{\pi} (2 - \sin x) \, dx \right) = 2 \left(1 + 2 \times \frac{\pi}{2} - 1 \right) = 2\pi$
- **Ex.6** Find the value of 'a' for which area bounded by x = 1, x=2, $y=6x^2$ and y=f(a) is minimum.
- **Sol.** Let b = f(A).

$$A = \int_{1}^{a} (b - 6x^{2}) dx + \int_{a}^{2} (6x^{2} - b) dx = |bx - 2x^{3}|_{1}^{a} + |2x^{3} - bx|_{a}^{2}$$

$$= 8a^{3} - 18a^{2} + 18$$
For minimum area $\frac{dA}{da} = 0$

$$\Rightarrow \quad 24a^{2} - 36a = 0 \quad \Rightarrow \quad a = 1.5$$

 $1V=6x^2$

Ex. 7 The area enclosed by $y = x^3$, its normal at (1, 1) and x axis is equal to

Sol.
$$y = x^3$$
, $\frac{dy}{dx} = 3x^2$
 $\left(\frac{dy}{dx}\right)_{x=0} = 3$

Normal at P (1, 1) is
$$y - 1 = -\frac{1}{3}(x - 1)$$

3y + x = 4 (1)

So intersecting point of normal at x-axis is (4, 0)

Area =
$$\int_0^1 x^3 dx + \frac{1}{2}(3 \times 1) = \left[\frac{x^4}{4}\right]_0^1 + \frac{3}{2} = \frac{7}{4}$$

Ex.8 If y = g(x) is the inverse of a bijective mapping $f: R \to R$, $f(x) = 6x^5 + 4x^3 + 2x$, find the area bounded by g(x), the x-axis and the ordinate at x = 12.

Sol.
$$f(x)=12$$

 $\Rightarrow 6x^5+4x^3+2x=12 \Rightarrow x=1$
 $\int_{0}^{12} g(x)dx = \text{area of rectangle OEDF} - \int_{0}^{1} f(x)dx$
 $= 1 \times 12 - \int_{0}^{1} (6x^5+4x^3+2x)dx = 12 - 3 = 9 \text{ sq. units.}$
 $E(0,12)$
 $y=f(x)$
 $A(0,1)$
 $F(1,0)$
 $F(1$

Ex.9 For any real t, $x = \frac{1}{2} (e^t + e^{-t})$, $y = \frac{1}{2} (e^t - e^{-t})$ is point on the hyperbola $x^2 - y^2 = 1$. Show that the area bounded by the hyperbola and the lines joining its centre to the points corresponding to t_1 and $-t_1$ is t_1 .

Sol. It is a point on hyperbola $x^2 - y^2 = 1$.

Area (PQRP) = 2
$$\int_{1}^{\frac{e^{t_1}+e^{-t_1}}{2}} ydx = 2 \int_{1}^{\frac{e^{t_1}+e^{-t_1}}{2}} \sqrt{x^2-1} dx$$

$$= 2\left[\frac{x}{2}\sqrt{x^2-1} - \frac{1}{2}\ln(x+\sqrt{x^2-1})\right]_{1}^{\frac{e^{t_1}+e^{-t_1}}{2}}$$

$$= \frac{e^{2t_1} - e^{-2t_1}}{4} - t_1$$
Area of $\Delta OPQ = 2 \times \frac{1}{2}\left(\frac{e^{t_1}+e^{-t_1}}{2}\right)\left(\frac{e^{t_1}-e^{-t_1}}{2}\right)$

$$= \frac{e^{2t_1}+e^{-2t_1}}{4}$$

$$\therefore \qquad \text{Required area} = \text{area } \Delta OPQ - \text{area } (PQRP)$$

$$= t_1$$

MATHS FOR JEE MAIN & ADVANCED

Ex.10 Find the smaller of the areas bounded by the parabola $4y^2 - 3x - 8y + 7 = 0$ and the ellipse $x^2 + 4y^2 - 2x - 8y + 1 = 0$. (1, $\sqrt{3}/2$)

П

0

Ν

M (1, $-\sqrt{3}/2$)

(2, 0)

Sol.
$$C_1$$
 is $4(y^2 - 2y) = 3x - 7$

or
$$4(y-1)^2 = 3x-3 = 3(x-1)$$

Above is parabola with vertex at (1, 1)

$$C_2$$
 is $(x^2-2x)+4(y^2-2y)=-1$

or
$$(x-1)^2 + 4(y-1)^2 = -1 + 1 + 4$$

or
$$\frac{(x-1)^2}{2^2} + \frac{(y-1)^2}{1^2} = 1$$
(ii)

Above represents an ellipse with centre at (1, 1). Shift the origin to (1, 1) and this will not affect the magnitude of required area but will make the calculation simpler.

.....**(i)**

Thus the two curves are

$$4Y^2 = 3X$$
 and $\frac{X^2}{2^2} + \frac{Y^2}{1} = 1$
They meet at $\left(1, \pm \frac{\sqrt{3}}{2}\right)$

Required area = $2(A + B) = 2\left[\int Y_1 dX + \int Y_2 dX\right]$

$$= 2\left[\frac{\sqrt{3}}{2}\int_{0}^{1}\sqrt{X}dX + \int_{1}^{2}\frac{\sqrt{4-X^{2}}}{2}dX\right] = \left[\frac{\sqrt{3}}{6} + \frac{2\pi}{3}\right] \text{ sq.units.}$$

- **Ex. 11** Find asymptotes of $y = x + \frac{1}{x}$ and sketch the curve (graph).
- **Sol.** $\lim_{x\to 0} y = \lim_{x\to 0} \left(x + \frac{1}{x}\right) = +\infty \text{ or } -\infty$
 - \Rightarrow x = 0 is asymptote.

$$\lim_{x \to 0} y = \lim_{x \to 0} \left(x + \frac{1}{x} \right) = \infty$$

there is no asymptote of the type y = k

$$\lim_{x \to \infty} \frac{y}{x} = \lim_{x \to \infty} \left(1 + \frac{1}{x^2} \right) = 1$$

$$\lim_{x \to \infty} (y-x) = \lim_{x \to \infty} \left(x + \frac{1}{x} - x \right) = \lim_{x \to \infty} \frac{1}{x} = 0$$

$$y = x + 0$$

y = x is asymptote.

A rough sketch is as follows

 \Rightarrow

Ex. 12 Find the area bounded by the regions $y \ge \sqrt{x}$, $x \ge -\sqrt{y}$ & curve $x^2 + y^2 = 2$.

Sol. Common region is given by the diagram

If area of region OAB = λ

then area of OCD = λ

Because $y = \sqrt{x} \& x = -\sqrt{y}$

will bound same area with x & y axes respectively.

 $y = \sqrt{x} \implies y^2 = x$

 $x = -\sqrt{y} \implies x^2 = y$ and hence both the curves are

symmetric with respect to the line y = x

Area of first quadrant OBC = $\frac{\pi r^2}{4} = \frac{\pi}{2}$ ($\Rightarrow r = \sqrt{2}$)

Area of region OCA = $\frac{\pi}{2} - \lambda$

Area of shaded region = $(\frac{\pi}{2} - \lambda) + \lambda = \frac{\pi}{2}$ sq.units.

- Ex. 13 The area of the figure bounded by the parabola $(y-2)^2 = x 1$, the tangent to it at the point with the ordinate 3 and the x-axis is
- Sol. The curve is $y^2 4y x + 5 = 0$ Equation of tangent at P(2, 3) is $3y-2(y+3) - \frac{1}{2}(x+2) + 5 = 0$ $y-6 - \frac{1}{2}x - 1 + 5 = 0$ x - 2y + 4 = 0

if intersects x-axis at Q(-4, 0) and the line x = 1 at S $\left(1, \frac{5}{2}\right)$

area of the
$$\triangle QRS = \frac{1}{2} \times 5 \times \frac{5}{2} = \frac{25}{4}$$

area of the bounded region =
$$\frac{25}{4} + \int_{1}^{2} \left(\frac{x+4}{2} - (\sqrt{x-1}+2)\right) dx + \int_{1}^{5} (2 - \sqrt{x-1}) dx$$

= $\frac{25}{4} + \left(\frac{x^2}{4} - \frac{2}{3}(x-1)^{3/2}\right)\Big|_{1}^{2} + \left(2x - \frac{2}{3}(x-1)^{3/2}\right)\Big|_{1}^{5}$
= $\frac{25}{4} + 1 - \frac{2}{3} - \frac{1}{4} + 10 - \frac{16}{3} - 2$
= $15 - 6 = 9$

Ex. 14 Find the equation of line passing through the origin & dividing the curvilinear triangle with vertex at the origin, bounded by the curves $y = 2x - x^2$, y = 0 & x = 1 in two parts of equal areas.

Sol. Area of region OBA =
$$\int_{0}^{1} (2x - x^{2}) dx$$

$$= \left[x^{2} - \frac{x^{3}}{3}\right]_{0}^{1} = \frac{2}{3}$$

$$\frac{2}{3} = A_{1} + A_{1} \implies A_{1} = \frac{1}{3}$$
Let pt. C has coordinates $(1, y)$
Area of $\Delta OCB = \frac{1}{2} \times 1 \times y = \frac{1}{3}$
 $y = \frac{2}{3}$
C has coordinates $\left(1, \frac{2}{3}\right)$
Line OC has slope $m = \frac{\frac{2}{3} - 0}{1 - 0} = \frac{2}{3}$
Equation of line OC is $y = mx \implies y = \frac{2}{3}x$.
Ex. 15 Find area contained by cllipse $2x^{3} + 6xy + 5y^{2} = 1$
Sol. $5y^{2} + 6xy + 2x^{2} - 1 = 0$
 $y = \frac{-6x \pm \sqrt{36x^{2} - 20(2x^{2} - 1)}}{10}$
 $y = \frac{-3x \pm \sqrt{5 - x^{2}}}{5}$
 $f = x = \sqrt{5}, y = 3\sqrt{5}$
If $x = 0, y = \pm \frac{1}{\sqrt{5}}$
If $y = 0, x = \pm \frac{1}{\sqrt{2}}$
Required area $= \int_{-5}^{6} (\frac{-3x + \sqrt{5 - x^{2}}}{5} - \frac{-3x - \sqrt{5 - x^{2}}}{5}) dx$
 $= \frac{2}{5} \int_{-5}^{6} \sqrt{5 - x^{2}} dx = \frac{4}{5} \int_{0}^{6} \sqrt{5 - x^{2}} dx$
Put $x = \sqrt{5} \sin \theta$: $dx = \sqrt{5} \cos \theta d\theta$
LL: $x = 0 \implies \theta = 0$
UL: $x = \sqrt{5} \implies \theta = \frac{\pi}{2} = \frac{4}{5} \int_{-5}^{\frac{\pi}{2}} \sqrt{5 - 5\sin^{2}}\theta = \sqrt{5} \cos^{2}\theta d\theta = 4\frac{1}{2}, \frac{\pi}{2} = \pi$

3

С

 $\sqrt{2}$)

-√2,-

 $(\sqrt{2}, -\sqrt{2})$

Ex. 16 Find the area bounded by the curves $x^2 + y^2 = 4$, $x^2 = -\sqrt{2}$ y and the line x = y, below x-axis.

Sol. Let C is
$$x^2 + y^2 = 4$$
, P is $y = -\frac{x^2}{\sqrt{2}}$ and L is $y = x$.

We have above three curves.

Solving P and C we get the points

$$A(-\sqrt{2}, -\sqrt{2}), B(\sqrt{2}, -\sqrt{2})$$

Also the line y = x passes through $A(-\sqrt{2}, -\sqrt{2})$

 \therefore Required area = shaded + dotted

$$= \int_{-\sqrt{2}}^{0} (y_3 - y_1) dx + \int_{0}^{\sqrt{2}} (y_2 - y_1) dx$$

$$= \int_{-\sqrt{2}}^{0} x \, dx + \int_{0}^{\sqrt{2}} \frac{-x^2}{\sqrt{2}} \, dx - \int_{-\sqrt{2}}^{\sqrt{2}} \sqrt{4 - x^2} \, dx$$

$$= \left[\frac{x^2}{2} \right]_{-\sqrt{2}}^{0} - \frac{1}{\sqrt{2}} \left[\frac{x^3}{3} \right]_{0}^{\sqrt{2}} - \left[\frac{x}{2} \sqrt{4 - x^2} + \frac{4}{2} \sin^{-1} \frac{x}{2} \right]_{-\sqrt{2}}^{0} + \frac{1}{\sqrt{2}} \left[\frac{x^3}{3} \right]_{0}^{\sqrt{2}} - \frac{1}{\sqrt{2}} \left[\frac{x^3}{2} \sqrt{4 - x^2} + \frac{4}{2} \sin^{-1} \frac{x}{2} \right]_{-\sqrt{2}}^{0} + \frac{1}{\sqrt{2}} \left[\frac{x^3}{3} \right]_{0}^{\sqrt{2}} - \frac{1}{\sqrt{2}} \left[\frac{x^3}{2} \sqrt{4 - x^2} + \frac{4}{2} \sin^{-1} \frac{x}{2} \right]_{-\sqrt{2}}^{0} + \frac{1}{\sqrt{2}} \left[\frac{x^3}{3} \right]_{0}^{\sqrt{2}} - \frac{1}{\sqrt{2}} \left[\frac{x^3}{2} \sqrt{4 - x^2} + \frac{4}{2} \sin^{-1} \frac{x}{2} \right]_{-\sqrt{2}}^{0} + \frac{1}{\sqrt{2}} \left[\frac{x^3}{3} \right]_{0}^{\sqrt{2}} - \frac{1}{\sqrt{2}} \left[\frac{x^3}{2} \sqrt{4 - x^2} + \frac{4}{2} \sin^{-1} \frac{x}{2} \right]_{-\sqrt{2}}^{0} + \frac{1}{\sqrt{2}} \left[\frac{x^3}{3} \right]_{0}^{\sqrt{2}} - \frac{1}{\sqrt{2}} \left[\frac{x^3}{2} \sqrt{4 - x^2} + \frac{4}{2} \sin^{-1} \frac{x}{2} \right]_{-\sqrt{2}}^{0} + \frac{1}{\sqrt{2}} \left[\frac{x^3}{3} \right]_{0}^{\sqrt{2}} + \frac{1}{\sqrt{2}} \left[\frac{x^3}{3} \sqrt{4 - x^2} + \frac{4}{2} \sin^{-1} \frac{x}{2} \right]_{-\sqrt{2}}^{0} + \frac{1}{\sqrt{2}} \left[\frac{x^3}{3} \sqrt{4 - x^2} + \frac{1}{2} \sin^{-1} \frac{x}{2} \right]_{-\sqrt{2}}^{0} + \frac{1}{\sqrt{2}} \left[\frac{x^3}{3} \sqrt{4 - x^2} + \frac{1}{2} \sin^{-1} \frac{x}{2} \right]_{-\sqrt{2}}^{0} + \frac{1}{\sqrt{2}} \left[\frac{x^3}{3} \sqrt{4 - x^2} + \frac{1}{2} \sin^{-1} \frac{x}{2} \right]_{-\sqrt{2}}^{0} + \frac{1}{\sqrt{2}} \left[\frac{x^3}{3} \sqrt{4 - x^2} + \frac{1}{2} \sin^{-1} \frac{x}{2} \right]_{-\sqrt{2}}^{0} + \frac{1}{\sqrt{2}} \left[\frac{x^3}{3} \sqrt{4 - x^2} + \frac{1}{2} \sin^{-1} \frac{x}{2} \right]_{-\sqrt{2}}^{0} + \frac{1}{\sqrt{2}} \left[\frac{x^3}{3} \sqrt{4 - x^2} + \frac{1}{2} \sin^{-1} \frac{x}{2} \right]_{-\sqrt{2}}^{0} + \frac{1}{\sqrt{2}} \left[\frac{x^3}{3} \sqrt{4 - x^2} + \frac{1}{2} \sin^{-1} \frac{x}{2} \right]_{-\sqrt{2}}^{0} + \frac{1}{\sqrt{2}} \left[\frac{x^3}{3} \sqrt{4 - x^2} + \frac{1}{2} \sin^{-1} \frac{x}{2} \right]_{-\sqrt{2}}^{0} + \frac{1}{\sqrt{2}} \left[\frac{x^3}{3} \sqrt{4 - x^2} + \frac{1}{2} \sin^{-1} \frac{x}{2} \right]_{-\sqrt{2}}^{0} + \frac{1}{\sqrt{2}} \left[\frac{x^3}{3} \sqrt{4 - x^2} + \frac{1}{2} \sin^{-1} \frac{x}{2} \right]_{-\sqrt{2}}^{0} + \frac{1}{\sqrt{2}} \left[\frac{x^3}{3} \sqrt{4 - x^2} + \frac{1}{2} \sin^{-1} \frac{x}{2} \right]_{-\sqrt{2}}^{0} + \frac{1}{\sqrt{2}} \left[\frac{x^3}{3} \sqrt{4 - x^2} + \frac{1}{2} \sin^{-1} \frac{x^3}{3} \right]_{-\sqrt{2}}^{0} + \frac{1}{\sqrt{2}} \left[\frac{x^3}{3} \sqrt{4 - x^2} + \frac{1}{2} \sin^{-1} \frac{x}{2} \right]_{-\sqrt{2}}^{0} + \frac{1}{\sqrt{2}} \left[\frac{x^3}{3} \sqrt{4 - x^2} + \frac{1}{2} \sin$$

Ex. 17 The area of the region enclosed between the two circles $x^2 + y^2 = 1$ and $(x - 1)^2 + y^2 = 1$, is **Sol.** Solving the given equation of circle, we get

$$A = \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right); D = \left(\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)$$

Now area = 2[OBAO] = 2[area OEAO + EBAE]
= 2 $\left[\int_{0}^{x_{\rm E}} \sqrt{[1-(x-1)^2]} \, dx + \int_{x_{\rm E}}^{x_{\rm B}} \sqrt{1-x^2} \, dx\right]$
= 2 $\left[\int_{0}^{1/2} \sqrt{1-(x-1)^2} \, dx + \int_{1/2}^{1} \sqrt{1-x^2} \, dx\right] = \frac{2\pi}{3} - \frac{\sqrt{3}}{2}$ square units

Ex. 18Find the area contained between the two arms of curves
$$(y - x)^2 = x^3$$
 between $x = 0$ and $x = 1$.Sol. $(y - x)^2 = x^3 \Rightarrow y = x \pm x^{3/2}$

For arm

$$\mathbf{y} = \mathbf{x} + \mathbf{x}^{3/2} \qquad \Longrightarrow \qquad \frac{\mathrm{d}\mathbf{y}}{\mathrm{d}\mathbf{x}} = 1 + \frac{3}{2} \mathbf{x}^{1/2} > 0 \qquad \mathbf{x} \ge 0.$$

y is increasing function. For arm

 $y = x - x^{3/2} \implies \frac{dy}{dx} = 1 - \frac{3}{2} x^{1/2}$ $\frac{dy}{dx} = 0 \implies x = \frac{4}{9}, \frac{d^2y}{dx^2} = -\frac{3}{4} x^{-\frac{1}{2}} < 0 \text{ at } x = \frac{4}{9}$ $\therefore \qquad \text{at } x = \frac{4}{9}, y = x - x^{3/2} \text{ has maxima.}$ Required area $= \int_{0}^{1} (x + x^{3/2} - x + x^{3/2}) dx$ $= 2 \int_{0}^{1} x^{3/2} dx = \frac{2 x^{5/2}}{5/2} \Big]_{0}^{1} = \frac{4}{5}$

Ex. 19 Let A (m) be area bounded by parabola $y = x^2 + 2x - 3$ and the line y = mx + 1. Find the least area A(m).

Solving we obtain $x^2 + (2 - m)x - 4 = 0$ Let α, β be roots $\Rightarrow \alpha + \beta = m - 2, \alpha\beta = -4$

Sol.

$$\begin{aligned} A(m) &= \left| \int_{\alpha}^{\beta} (mx + 1 - x^{2} - 2x + 3) dx \right| \\ &= \left| \int_{\alpha}^{\beta} (-x^{2} + (m - 2)x + 4) dx \right| \\ &= \left| \left(-\frac{x^{3}}{3} + (m - 2)\frac{x^{2}}{2} + 4x \right)_{\alpha}^{\beta} \right| \\ &= \left| \frac{\alpha^{3} - \beta^{3}}{3} + \frac{m - 2}{2} (\beta^{2} - \alpha^{2}) + 4(\beta - \alpha) \right| \\ &= \left| \beta - \alpha \right|. \left| -\frac{1}{3} (\beta^{2} + \beta \alpha + \alpha^{2}) + \frac{(m - 2)}{2} (\beta + \alpha) + 4 \right| \\ &= \sqrt{(m - 2)^{2} + 16} \left| -\frac{1}{3} ((m - 2)^{2} + 4) + \frac{(m - 2)}{2} (m - 2) + 4 \right| \\ &= \sqrt{(m - 2)^{2} + 16} \left| \frac{1}{6} (m - 2)^{2} + \frac{8}{3} \right| \\ A(m) &= \frac{1}{6} \left((m - 2)^{2} + 16 \right)^{3/2} \\ Least A(m) &= \frac{1}{6} (16)^{3/2} = \frac{32}{3}. \end{aligned}$$

y=f(x)

P(x, y)

- **Ex. 20** A curve y = f(x) passes through the origin and lies entirely in the first quadrant. Through any point P(x, y) on the curve, lines are drawn parallel to the coordinate axes. If the curve divides the area formed by these lines and coordinate axes in m : n, then show that $f(x) = cx^{m/n}$ or $f(x) = cx^{n/m}$ (c-being arbitrary).
- **Sol.** Area (OAPB) = xy

Area (OAPO) =
$$\int_{0}^{x} f(t) dt$$

Area (OPBO) = $xy - \int_{0}^{x} f(t) dt$
 $\frac{Area (OAPO)}{Area (OPBO)} = \frac{m}{n}$
 $n \int_{0}^{x} f(t) dt = m \left(xy - \int_{0}^{x} f(t) dt \right)$
 $n \int_{0}^{x} f(t) dt = mx f(x) - m \int_{0}^{x} f(t) dt$

Differentiating w.r.t. x

$$nf(x) = m f(x) + mx f^{\diamond}(x) - m f(x)$$

$$\frac{f'(x)}{f(x)} = \frac{n}{m} \frac{1}{x}$$

 $f(x) = cx^{n/m}$

similarly $f(x) = cx^{m/n}$

Ex.21 The area bounded by $y = x^2 + 1$ and the tangents to it drawn from the origin is :-Sol. The parabola is even function & let the equation of tangent is y = mx

The parabola is even function & let the equation of tangent is y = mxNow we calculate the point of intersection of parabola & tangent

 $mx = x^2 + 1$

 $\begin{array}{c} x^{2}-mx+1=0 \implies D=0\\ \Rightarrow m^{2}-4=0 \implies m=\pm 2\\ \text{Two tangents are possible } y=2x \& y=-2x\\ \text{Intersection of } y=x^{2}+1 \& y=2x \text{ is } x=1 \& y=2 \end{array}$

Area of shaded region OAB =
$$\int_{0}^{1} (y_2 - y_1) dx = \int_{0}^{1} ((x^2 + 1) - 2x) dx = \frac{1}{3}$$
 sq. unit

Area of total shaded region = $2\left(\frac{1}{3}\right) = \frac{2}{3}$ sq. units

- **Ex.22** STATEMENT-1 : The area bounded by the curve $|\mathbf{x}| + |\mathbf{y}| = \mathbf{a}$ ($\mathbf{a} > 0$) is $2\mathbf{a}^2$ and area bounded $|\mathbf{p}\mathbf{x} + \mathbf{q}\mathbf{y}| + |\mathbf{q}\mathbf{x} \mathbf{p}\mathbf{y}| = \mathbf{a}$, where $\mathbf{p}^2 + \mathbf{q}^2 = 1$, is also $2\mathbf{a}^2$.
 - **STATEMENT-2:** Since $\alpha x + \beta y = 0$ is perpendicular to $\beta x \alpha y = 0$, we can take one as x-axis and another as y-axis and therefore the area bounded by $|\alpha x + \beta y| + |\beta x \alpha y| = a$ is $2a^2$ for all $\alpha, \beta \in \mathbb{R}, \alpha \neq 0, \beta \neq 0$. (A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1
 - (B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
 - (C) Statement-1 is True, Statement-2 is False
 - (D) Statement-1 is False, Statement-2 is True

Sol. Statement-1 Let
$$\frac{p}{\sqrt{p^2 + q^2}} x + \frac{q}{\sqrt{p^2 + q^2}} y = U$$
 and $\frac{q}{\sqrt{p^2 + q^2}} x - \frac{p}{\sqrt{p^2 + q^2}} y = V$

Then the axis get rotated through an angle θ , where $\cos \theta = \frac{p}{\sqrt{p^2 + q^2}}$ and $\sin \theta = \frac{q}{\sqrt{p^2 + q^2}}$

- :. the equation of the given curve becomes |U| + |V| = a
- \therefore the area bounded = $2a^2$.
- :. statement-1 is true

Statement-2 the equation of the curve is $|\alpha x + \beta y| + |\beta x - \alpha y| = a$ which is equivalent to

$$\left| \frac{\alpha}{\sqrt{\alpha^2 + \beta^2}} \mathbf{x} + \frac{\beta}{\sqrt{\alpha^2 + \beta^2}} \mathbf{y} \right| + \left| \frac{\beta}{\sqrt{\alpha^2 + \beta^2}} \mathbf{x} - \frac{\alpha}{\sqrt{\alpha^2 + \beta^2}} \mathbf{y} \right| = \frac{\mathbf{a}}{\sqrt{\alpha^2 + \beta^2}}$$

$$\therefore \qquad \text{area bounded} = \frac{2\mathbf{a}^2}{\alpha^2 + \beta^2}$$

:. statement-2 is false.

Ex. 23 Determination of unknown parameter

Consider the two curves $C_1: y = 1 + \cos x \& C_2: y = 1 + \cos (x - \alpha)$ for $\alpha \in \left(0, \frac{\pi}{2}\right); x \in [0, \pi]$. Find the value of α , for which the area of the figure bounded by the curves $C_1, C_2 \& x = 0$ is same as that of the figure bounded by $C_2, y = 1 \& x = \pi$.

 $\alpha/2$

Sol.
$$1 + \cos x = 1 + \cos(x - \alpha) \implies x = \frac{\alpha}{2}$$
$$A_1 = \int_0^{\alpha/2} (1 + \cos x) - (1 + \cos(x - \alpha)) dx$$
$$= |\sin x - \sin(x - \alpha)|_0^{\alpha/2} = 2 \sin \frac{\alpha}{2} - \sin \alpha$$
$$1 + \cos(x - \alpha) = 1 \implies x = \alpha + \frac{\pi}{2}$$

$$A_{2} = \int_{\alpha+\frac{\pi}{2}}^{\pi} (1+\cos(x-\alpha)-1)dx = \left|\sin(x-\alpha)\right|_{\alpha+\frac{\pi}{2}}^{\pi}$$
$$= \left|\sin\alpha-1\right| = 1-\sin\alpha$$

$$A_1 = A_2 \implies 2\sin\frac{\alpha}{2} - \sin\alpha = 1 - \sin\alpha$$

$$\alpha = \frac{\pi}{3}$$

24. Comprehension Type

Asymptotes are the tangents to the curve at infinity

To find the asymptotes of a curve we can use the following methods.

- (A) Asymptote parallel to the x-axis is obtained by equating to zero, the coefficient of the highest power to x.
- (B) Asymptote parallel to the y-axis is obtained by equating to zero, the coefficient of the highest power of y.
- (C) Oblique Asymptote : y = mx + c

	(i)	Find ϕ_n (m) by putting x = 1 and y = m in the highest degree (n) terms of the equation similarly find ϕ_{n-1} (m).					
	(ii)	Solve $\phi_n(m) = 0$ for m					
	(iii)	Find c by the formula $c = -\frac{\phi_{n-1}(m)}{\phi'_n(m)}$ Using the value of m as obtained in (ii)					
	(iv)	Obtain the equation of asymptote by putting these values of m and c in $y = mx + c$.					
1.	The eq	puttion of asymptotes of the curve $yx^2 - 4x^2 + x + 2 = 0$					
	(A) y -	-4 = 0 and $x = 0$ (B) $y = 3$ and $x = 2$					
	(C) y -	-4 = 0 and $x = 2$ (D) $y = 3$ and $x = 0$					
Sol.	(y-4)	$x^2 + x + 2 = 0$					
	the co	efficient of the highest power of x i.e. x^2 is $y - 4 = 0$					
	y-4=	0 is the asymptote parallel to the x-axis.					
	The co	befficient of the highest power of y is x, so $x = 0$ is also a asymptotes.					
2.	The ec	juation of asymptotes of the curve $x^3 + y^3 - 3xy = 0$					
	(A) y =	=x+1 (B) $y+x+1=0$ (C) $y+x=2$ (D) $y=2x+1$					
Sol.	$\phi_3(m)$	$=1+m^{3},\phi_{2}(m)=-3m$					
	Putting	$\phi_3(m) = 0 \text{ or } m^3 + 1 = 0$					
	or	$(m+1)(m^2-m+1)=0$					
		$m = -1, m = \frac{1 \pm \sqrt{1-4}}{2}$					
	Only r	eal value of m is – 1					
	Now	we find c from the equation $c = -\frac{\phi_{n-1}(m)}{\phi'_n(m)}$ $c = \frac{3m}{3m^2} = \frac{1}{m} = -1$					
	On put	On putting $m = -1$ and $c = -1$ in $y = mx + c$.					
	The eq	puttion of asymptote is $y = (-1)x + (-1)$ or $x + y + 1 = 0$					

MATHS FOR JEE MAIN & ADVANCED

E	xercise # 1		Single Correct Choi	ce Type Questions]
1.	The area of the figure $(A) e + 1$	bounded by the cur (B) e – 1	twes $y = \Phi nx \& y = (\Phi nx)^2$ is - (C) $3 - e$	(D) 1
2.	Suppose $y = f(x) a$	and $y = g(x)$ are	two functions whose graphs i	ntersect at the three points (0, 4),
	(2, 2) and $(4, 0)$ with $f(x)$	>g(x) for 0 <x<2 a<="" td=""><td>nd f(x) < g(x) for 2 < x < 4. If $\int_{-\infty}^{+\infty} [f(x) \cdot f(x)] dx$</td><td>$-g(x)]dx = 10 \text{ and } \int_{0}^{4} [g(x) - f(x)]dx = 5,$</td></x<2>	nd f(x) < g(x) for 2 < x < 4. If $\int_{-\infty}^{+\infty} [f(x) \cdot f(x)] dx$	$-g(x)]dx = 10 \text{ and } \int_{0}^{4} [g(x) - f(x)]dx = 5,$
	the area between two c	curves for $0 < x < 2$, is	2
	(A) 5	(B) 10	(C) 15	(D) 20
3.	The area bounded by	the curve $x = acc$	$\cos^3 t$, y = a $\sin^3 t$ is	
	(A) $\frac{3\pi a^2}{8}$	(B) $\frac{3\pi a^2}{16}$	(C) $\frac{3\pi a^2}{32}$	(D) 3πa ²
4.	Let 'a' be a positive co	onstant number. Co	onsider two curves C_1 : $y = e^x$, C_2 :	$y = e^{a - x}$. Let S be the area of the part
	surrounding by C_1, C_2	and the y-axis, the	en $\lim_{a\to 0} \frac{S}{a^2}$ equals	
	(A) 4	(B) 1/2	(C) 0	(D) 1/4
5.	Suppose $y = f(x)$ and y f(x) > g(x) for $0 < x < 2$	y = g(x) are two fun and $f(x) < g(x)$ for 2	nctions whose grahps intersect at the $2 < x < 4$.	hree points $(0, 4)$, $(2, 2)$ and $(4, 0)$ with
	$If \int_{0}^{4} [f(x) - g(x)] dx = 1$	0 and $\int_{2}^{4} [g(x) - f(x)]$)] $dx = 5$, the area between two cu	rves for $0 < x < 2$, is -
	(A) 5	(B) 10	(C) 15	(D) 20
6.	3 points $O(0, 0)$, $P(a, a)$ PQ and the parabola as	a^{2}), Q(-b, b^{2}) ($a > 0$ nd let S ₂ be the are), $b > 0$) are on the parabola $y = x^2$. a of the triangle OPQ, the minimum	Let S_1 be the area bounded by the line n value of S_1/S_2 is
	(A) 4/3	(B) 5/3	(C) 2	(D) 7/3
7.	The area bounded by	the curve $y = \frac{1}{x^2}$	and its asymptote from $x = 1$ to	x = 3 is
	(A) $\frac{1}{3}$	(B) $\frac{2}{3}$	(C) $\frac{1}{2}$	(D) $\frac{1}{6}$
8.	The area of the region	(s) enclosed by the	e curves $y = x^2$ and $y = \sqrt{ x }$ is	
	(A) 1/3	(B) 2/3	(C) 1/6	(D) 1
9.	The area of the closed	figure bounded by	y = x, y = -x & the tangent to the c	urve $y = \sqrt{x^2 - 5}$ at the point (3, 2) is -
	(A)5	(B) 2√5	(C) 10	(D) $\frac{5}{2}$
10.	The area bounded by t	he curve $y = f(x), t$	he x-axis & the ordinates $x = 1 \& x$	= b is (b-1)sin (3b+4). Then $f(x) is$:
	(A) $(x-1)\cos(3x+4)$	1) (2 + 1)	(B) $\sin(3x+4)$	
	(C) $\sin(3x+4)+3(x-4)$	1). $\cos(3x+4)$	(D) none	

Z

11.	The ratio in which the	he curve $y = x^2$ divide	es the region bounded	by the curve; $y = sin\left(\frac{\pi x}{2}\right)$
	and the x-axis as x varie	s from 0 to 1, is :		
	(A) 2: π	(B) 1: 3	(C) 3: π	(D) $(6-\pi)$: π
12.	A curve is such that the a	rea of the region bounded b	by the co-ordinate axes, the	curve & the ordinate of any point
	on it is equal to the cube	of that ordinate. The curve	represents	
	(A) a pair of straight lines	8	(B) a circle	
	(C) a parabola		(D) an ellipse	
13.	The area enclosed by the	curves $y = \cos x$, $y = 1 + \sin x$	$2x \text{ and } x = \frac{3\pi}{2} \text{ as } x \text{ varies } x$	from 0 to $\frac{3\pi}{2}$, is -
	(A) $\frac{3\pi}{2} - 2$	$(\mathbf{B}) \ \frac{3 \pi}{2}$	(C) $2 + \frac{3\pi}{2}$	(D) $1 + \frac{3\pi}{2}$
14.	Area enclosed by the grap	ph of the function $y = ln^2x$ -	- 1 lying in the 4 th quadrar	it is
	(A) $\frac{2}{e}$	(B) $\frac{4}{e}$	$(\mathbf{C}) 2 \left(\mathbf{e} + \frac{1}{\mathbf{e}} \right)$	(D) $4\left(e-\frac{1}{e}\right)$
15	The area bounded in the	first quadrant between th	a alling $\frac{x^2}{x} + \frac{y^2}{y^2} = 1$ and	the line $3x \pm 4y = 12$ is:
15.			e empse $\frac{1}{16} + \frac{1}{9} = 1$ and	the fine $5x + 4y - 12$ is.
	(A) $6(\pi - 1)$	(B) $3(\pi-2)$	(C) $3(\pi - 1)$	(D) none
16.	The area bounded by y	$= 2 - 2 - x $ & $y = \frac{3}{ x }$ is	:	
	(A) $\frac{4+3\ln 3}{2}$	(B) $\frac{4-3\ln 3}{2}$	(C) $\frac{3}{2} + ln3$	(D) $\frac{1}{2} + ln3$
17.	Consider two curves C,	$y = \frac{1}{-}$ and $C_0 : y = \ln x$	on the xy plane. Let D, d	enotes the region surrounded by
	C_1, C_2 and the line $x = 1$ at of 'a' -	nd D_2 denotes the region sur	crounded by C_1, C_2 and the l	ine x = a. If $D_1 = D_2$ then the value
	$(\Lambda) =$		(\mathbf{C}) a 1	(1) 2(a 1)
	(A) 2	(b) e	$(\mathbf{C}) \mathbf{e} - \mathbf{I}$	(D) 2(e-1)
18.	The area bounded by the c	curve $y = f(x)$, the co-ordinates $f(x)$, the co-ordinates $f(x)$, the co-ordinates $f(x)$ and $f(x)$ and $f(x)$ and $f(x)$ are constants of the co-ordinates $f(x)$ and $f(x)$ are co-ordinates $f(x)$ are co-ordinates $f(x)$ are co-ordinates $f(x)$ and $f(x)$ are co-ordinates $f(x)$ and $f(x)$ are co-ordinates $f(x)$ are co-ordinates $f(x)$ and $f(x)$ are co-ordinates $f(x)$	ate axes & the line $x = x_1$ is g	given by $x_1 \cdot e^{x_1}$. Therefore $f(x)$
	(A) e ^x	(B) $x e^{x}$	(C) $xe^{x}-e^{x}$	(D) $x e^{x} + e^{x}$
19.	If $f(x) = \sin x, \forall x \in [0,$	$\left[\frac{\pi}{2}\right], f(\mathbf{x}) + f(\pi - \mathbf{x}) = 2. \forall$	$\mathbf{x} \in \left(\frac{\pi}{2}, \pi\right]$ and $\mathbf{f}(\mathbf{x}) = \mathbf{f}(2\pi)$	$-x$), $\forall x \in (\pi, 2\pi]$, then the area
	enclosed by $y = f(x)$ and	x-axis is		
	(A) π	(B) 2π	(C) 2	(D) 4
20.	Suppose $g(x) = 2x + 1$ and	d $h(x) = 4x^2 + 4x + 5$ and h	(x) = (fog)(x). The area end	losed by the graph of the function
	y = f(x) and the pair of tag	ngents drawn to it from the	origin, is	
	(A) 8/3	(B) 16/3	(C) 32/3	(D) none

MATHS FOR JEE MAIN & ADVANCED

The area of the region for which $0 < y < 3 - 2x - x^2 \& x > 0$ is -21. (A) $\int_{-1}^{3} (3-2x-x^2) dx$ (B) $\int_{-1}^{3} (3-2x-x^2) dx$ (C) $\int_{-1}^{1} (3-2x-x^2) dx$ (D) $\int_{-1}^{3} (3-2x-x^2) dx$ The area bounded by the curves $y = -\sqrt{-x}$ and $x = -\sqrt{-y}$ where $x, y \le 0$ 22. (A) cannot be determined **(B)** is 1/3 (C) is 2/3 (D) is same as that of the figure bounded by the curves $y = \sqrt{-x}$; $x \le 0$ and $x = \sqrt{-y}$; $y \le 0$ The area bounded by the curve y = f(x), x-axis and the ordinates x = 1 and x = b is $(b-1) \sin (3b+4)$, $\forall b \in C$ 23. R, then f(x) =(A) $(x-1) \cos(3x+4)$ **(B)** $\sin(3x+4)$ (C) $\sin(3x+4) + 3(x-1)\cos(3x+4)$ (D) none of these Area of the region enclosed between the curves $x = y^2 - 1$ and $x = |y| \sqrt{1 - y^2}$ is 24. (C) 2/3 **(A)** 1 **(B)** 4/3 $(\mathbf{D})2$ The area bounded by the curves $y = x(1 - \mathbf{\Phi}nx)$ and positive x-axis between $x = e^{-1}$ and x = e is -25. **(B)** $\left(\frac{e^2 - 5e^{-2}}{4}\right)$ **(C)** $\left(\frac{4e^2 - e^{-2}}{5}\right)$ **(D)** $\left(\frac{5e^2 - e^{-2}}{4}\right)$ (A) $\left(\frac{e^2 - 4e^{-2}}{5}\right)$ Area enclosed by the curves y = lnx; y = ln |x|; y = lnx and y = ln |x| is equal to 26. **(A)**2 **(B)**4 **(C)**8 (D) cannot be determined Let $f:[0,\infty) \to R$ be a continuous and strictly increasing function such that $f^3(x) = \int t f^2(t) dt$, $\forall x \ge 0$. The area 27. enclosed by y = f(x), the x-axis and the ordinate at x = 3 is **(B)** $\frac{5}{2}$ (C) $\frac{7}{2}$ (A) $\frac{3}{2}$ (D) none of htese If (a, 0); a > 0 is the point where the curve $y = \sin 2x - \sqrt{3} \sin x$ cuts the x-axis first, A is the area bounded by this part 28. of the curve, the origin and the positive x-axis, then (A) $4A + 8 \cos a = 7$ **(B)** $4A + 8 \sin a = 7$ (**D**) $4A - 8 \cos a = 7$ (C) $4A - 8 \sin a = 7$ Area of the curve $y^2 = (7 - x)(5 + x)$ above x-axis and between the ordinates x = -5 and x = 1 is 29. (A) 9π **(B)** 18 π (C) 15π (D) none A function y = f(x) satisfies the differential equation, $\frac{dy}{dx} - y = \cos x - \sin x$, with initial condition that y is bounded 30. when $x \to \infty$. The area enclosed by y = f(x), $y = \cos x$ and the y-axis in the 1st quadrant is-(**D**) $\frac{1}{\sqrt{2}}$ (A) $\sqrt{2}$ -1 (B) $\sqrt{2}$ **(C)**1

Exercise # 2 Part # I > [Multiple Correct Choice Type Questions]

- Let 'a' be a positive constant number. Consider two curves $C_1 : y = e^x$, $C_2 : y = e^{a-x}$. Let S be the area of the part 1. surrounding by C1, C2 and the y-axis, then -
 - (A) $\lim_{a \to -\infty} S = 1$
 - (C) Range of S is $[0,\infty)$

B)
$$\lim_{a \to 0} \frac{S}{a^2} = \frac{1}{4}$$

- (D) S(a) is neither odd nor even
- If $C_1 = y = \frac{1}{1 + x^2}$ and $C_2 = y = \frac{x^2}{2}$ are two curves lying in the XY plane. Then -2.

C) area bounded by
$$C_1$$
 and C_2 is $1 - \frac{\pi}{2}$

(A) area bounded by curve C_1 and y = 0 is π (B) area bounded by C_1 and C_2 is $\frac{\pi}{2} - \frac{1}{2}$

- (D) area bounded by curve C_1 and x-axis is $\frac{\pi}{2}$
- Consider $f(x) = \begin{cases} \cos x & 0 \le x < \frac{\pi}{2} \\ \left(\frac{\pi}{2} x\right)^2 & \frac{\pi}{2} \le x < \pi \end{cases}$ such that f is periodic with period π , then 3.

- (A) The range of f is $\left| 0, \frac{\pi^2}{4} \right|$
- (B) f is continuous for all real x, but not differentiable for some real x
- (C) f is continuous for all real x

(D) The area bounded by
$$y = f(x)$$
 and the X-axis from $x = -n\pi$ to $x = n\pi$ is $2n\left(1 + \frac{\pi^3}{24}\right)$ for a given $n \in \mathbb{N}$

Area enclosed by the curve y = sinx between $x = 2n\pi$ to $x = 2(n+1)\pi$ is-4.

(A) $\int_{-\infty}^{2\pi} \sin x \, dx$

5.

(B) $2\int_{0}^{\pi} \sin x \, dx$ **(C)** $4\int_{0}^{\pi/2} \sin x \, dx$ **(D)**4 Let T be the triangle with vertices (0, 0), $(0, c^2)$ and (c, c^2) and let R be the region between y = cx and $y = x^2$ where c

> 0 then -
(A) Area (R) =
$$\frac{c^3}{6}$$
 (B) Area of R = $\frac{c^3}{3}$ (C) $\lim_{c \to 0^+} \frac{\operatorname{Area}(T)}{\operatorname{Area}(R)} = 3$ (D) $\lim_{c \to 0^+} \frac{\operatorname{Area}(T)}{\operatorname{Area}(R)} = \frac{3}{2}$

6. Let
$$f(x) = |x| - 2$$
 and $g(x) = |f(x)|$.
Now area bounded by x-axis and $f(x)$ is A_1 and area bounded by x-axis and $g(x)$ is A_2 then –
(A) $A_1 = 3$ (B) $A_1 = A_2$ (C) $A_2 = 4$ (D) $A_1 + A_2 = 8$

If (a, 0) & (b,0) [a, b > 0] are the points where the curve $y = \sin 2x - \sqrt{3} \sin x$ cuts the positive x-axis first & second 7. time, A & B are the areas bounded by the curve & positive x-axis between x=0 to x=a and x = a to x=b respectively, then -

(A)
$$4A + 8\cos a = 7$$
 (B) $AB = \frac{1}{16}$ (C) $4A + 4B + 14\cos b = 0$ (D) $B - A = 4\cos a$

MATHS FOR JEE MAIN & ADVANCED

8. Consider the following regions in the plane :

 $R_1 = \{(x, y) : 0 \le x \le 1 \text{ and } 0 \le y \le 1\} \text{ and } R_2 = \{(x, y) : x^2 + y^2 \le 4/3\}$ The area of the region $R_1 \cap R_2$ can be expressed as $\frac{a\sqrt{3} + b\pi}{9}$, where a and b are integers, then -(A) a = 3 (B) a = 1 (C) b = 1 (D) b = 3

9. Consider the functions f (x) and g (x), both defined from $R \rightarrow R$ and are defined as $f(x) = 2x - x^2$ and $g(x) = x^n$ where $n \in N$. If the area between f(x) and g(x) is 1/2 then *n* is a divisor of (A) 12 (B) 15 (C) 20 (D) 30

10. The area of the region of the plane bounded by $(|x| | y|) \le 1$ & $xy \le \frac{1}{2}$ is -

(A) less then $4 \bullet n 3$ (B) $\frac{15}{4}$ (C) $2 + 2 \bullet n 2$ (D) $3 + \bullet n 2$

11. For which of the following values of m, is the area of the region bounded by the curve $y = x - x^2$ and the line y = mx equals to 9/2?

(A) -4 (B) -2 (C) 2 (D) 4

Part # II >> [Assertion & Reason Type Questions]

These questions contains, Statement I (assertion) and Statement II (reason).

- (A) Statement-I is true, Statement-II is true; Statement-II is correct explanation for Statement-I.
- (B) Statement-I is true, Statement-II is true ; Statement-II is NOT a correct explanation for statement-I.
- (C) Statement-I is true, Statement-II is false.
- (D) Statement-I is false, Statement-II is true.
- 1. Statement-I: The area of the curve $y = \sin^2 x$ from 0 to π will be more than that of curve $y = \sin x$ from 0 to π . Statement-II: $t^2 > t$ if $t \in R - [0, 1]$.
- 2. Statement-I: $\int_{0}^{10\pi} |\cos x| dx = 20$ Statement-II: $\int_{0}^{b} f(x) dx \ge 0$, then $f(x) \ge 0$, $\forall x \in (a, b)$
- 3. Statement-I : The area bounded by the curves $y = x^2 3$ and y = kx + 2 is the least, if k = 0. Statement-II : The area bounded by the curves $y = x^2 - 3$ and y = kx + 2 is $\sqrt{k^2 + 20}$.
- 4. Statement-I: Area bounded by $y = \tan x$, $y = \tan^2 x$ in between $x \in \left(0, \frac{\pi}{4}\right)$ is equal to $\left(\frac{\pi}{4} + \ln\sqrt{2} 1\right)$.

Statement-II: Area bounded by y = f(x) and $y = g(x) \{f(x) > g(x)\}$ between x = a, x = b is $\int_{a}^{b} (f(x) - g(x)) dx$.

(b > a)

5. Consider the two curves $y = x - \lambda x^2$ and $y = \frac{x^2}{\lambda}$, $(\lambda > 0)$.

Statement-I: The area bounded between the curves is maximum when $\lambda = 1$.

Statement-II: The area bounded between the curves is $\frac{\lambda^2}{(1+\lambda^2)^2}$ square units.

Exercise # 3 Part # I > [Matrix Match Type Questions]

Following question contains statements given in two columns, which have to be matched. The statements in Column-I are labelled as A, B, C and D while the statements in Column-II are labelled as p, q, r and s. Any given statement in Column-I can have correct matching with one or more statement(s) in Column-II.

1.	Let f(z	x = x , g(x) = x - 1 and $h(x) = x + 1 .$		
		Column-I	Colum	n-II
	(A)	Area bounded by min $(f(x), g(x))$ and x-axis is	(p)	$\frac{1}{8}$ sq. unit
	(B)	Area bounded by min $(f(x), h(x))$ and x-axis is	(q)	$\frac{1}{4}$ sq. unit
	(C)	Area bounded by min $((f(x), g(x), h(x))$ and x-axis is	(r)	$\frac{1}{2}$ sq. unit
	(D)	Area bounded by min (f(x), g(x), h(x)) and $y = \frac{1}{2}$ is	(s)	$\frac{3}{4}$ sq. unit
2.	Colun	nn – I	Colum	n–II
	(A)	Area bounded by region $0 \le y \le 4x - x^2 - 3$ is	(p)	32/3
	(B)	Area of the region enclosed by $y^2 = 8x$ and $y = 2x$ is	(q)	1/2
	(C)	The area bounded by $ \mathbf{x} + \mathbf{y} \le 1$ and $ \mathbf{x} \ge 1/2$ is	(r)	8/3
	(D)	Area bounded by $x \le 4 - y^2$ and $x \ge 0$ is	(\$)	4/3
3.		Column I	Colum	n–II
	(A)	The area bounded by the curve $x = 3y^2 - 9$ and the lines	(p)	1
	(B)	If a curve $f(x) = a\sqrt{x} + bx$, $(f(x) \ge 0 \forall x \in [0, 9])$ passes through the point (1, 2) and the area bounded by the curve, line $x = 4$	(q)	4
	(C)	and x-axis is 8 square unit, then $2a + b$ is equal to The area enclosed between the curves $y = \sin^2 x$ and $y = \cos^2 x$ in the interval $0 \le x \le \pi$ in square units in equal to	(r)	8
	(D)	The area bounded by the curve $y^2 = 16x$ and line $y = mx$ is $\frac{2}{3}$	(s)	5
		square units, then m is equal to		

3. Area enclosed by y = f(x), $y = f^{-1}(x)$, x + y = 2 and $x + y = -\frac{1}{2} \ln 5$ is

(A)
$$8 + \frac{1}{8}(\ln 5)^2$$
 (B) $8 - 2\sqrt{5} + \frac{1}{8}(\ln 5)^2$ (C) $2\sqrt{5} - \frac{1}{8}(\ln 5)^2$ (D) $8 + 2\sqrt{5} - \frac{1}{8}(\ln 5)^2$

Comprehension # 3

Five curves defined as follows : $C_1 : |x + y| \le 1$ $C_2 : |x - y| \le 1$

$$C_2 : |\mathbf{x} - \mathbf{y}| \le 1$$

 $C_3 : |\mathbf{x}| \le \frac{1}{2}$
 $C_4 : |\mathbf{y}| \le \frac{1}{2}$
 $C_5 : 3\mathbf{x}^2 + 3\mathbf{y}^2 = 1$

On the basis of above information, answer the following questions :

The area bounded by C_1 and C_2 which does not contain the area bounded by C_5 , is -

(A)
$$2 - \frac{\pi}{4}$$
 (B) $2 - \frac{\pi}{6}$ (C) $2 - \frac{\pi}{3}$ (D) 2

2. That part of area of curve C_5 which does not contain points satisfying C_3 and C_4 , is -

(A)
$$\frac{\pi}{3} - \frac{1}{2}$$
 (B) $\frac{\pi}{3} - 1$ (C) $\frac{\pi}{3} - \frac{1}{6}$ (D) $\frac{2\pi}{9} - \frac{1}{\sqrt{3}}$

- 3. That part of area which is bounded by C_1 and C_2 but not bounded by C_3 and C_4 , is -
 - (A) 1 (B) $\frac{1}{2}$ (C) $\frac{1}{3}$ (D) none of these

1.

Exercise # 4

[Subjective Type Questions]

- 1. Find the area of the region $\{(x,y): 0 \le y \le x^2 + 1, 0 \le y \le x + 1, 0 \le x \le 2\}$.
- 2. For what value of 'a' is the area of the figure bounded by

$$y = \frac{1}{x}$$
, $y = \frac{1}{2x-1}$, $x = 2$ & $x = a$ equal to $\Phi n \frac{4}{\sqrt{5}}$

- 3. Find the area enclosed between the curve $y = x^3 + 3$, y = 0, x = -1, x = 2.
- 4. A figure is bounded by the curves $y = \left| \sqrt{2} \sin \frac{\pi x}{4} \right|$, y = 0, x = 2 & x = 4. At what angles to the positive x-axis straight lines must be drawn through (4,0) so that these lines divide the figure into three parts of the same size.
- 5. Consider the collection of all curve of the form $y = a bx^2$ that pass through the point (2, 1), where a and b are positive constants. Determine the value of a and b that will minimise the area of the region bounded by $y = a bx^2$ and x-axis. Also find the minimum area.
- 6. Compute the area of the figure bounded by straight lines x = 0, x = 2 and the curves $y = 2^x$ and $y=2x-x^2$
- 7. The tangent to the parabola $y = x^2$ has been drawn so that the abscissa x_0 of the point of tangency belongs to the interval [1, 2]. Find x_0 for which the triangle bounded by the tangent, x-axis & the straight line $y = x_0^2$ has the greatest area.
- 8. Let $C_1 \& C_2$ be two curves passing through the origin as shown in the figure. A curve C is said to "bisect the area" the region between $C_1 \& C_2$, if for each point P of C, the two shaded regions A & B shown in the figure have equal areas. Determine the upper curve C_2 , given that the bisecting curve C has the equation

 $y = x^2$ & that the lower curve C₁ has the equation $y = x^2/2$.

- 9. Let $f(x) = Maximum \{x^2, (1-x)^2, 2x(1-x)\}$, where $0 \le x \le 1$. Determine the area of the region bounded by the curves y = f(x), x-axis, x = 0 and x = 1.
- 10. For what value of 'a' is the area bounded by the curve $y = a^2x^2 + ax + 1$ and the straight lines y = 0, x = 0 & x = 1 the least ?
- 11. Show that the area bounded by the curve $y = \frac{\ln x c}{x}$, the x-axis and the vertical line through the maximum point of the curve is independent of the constant c. Also find the area.
- 12. Let $f(x) = \sqrt{\tan x}$. Show that area bounded by y = f(x), y = f(c), x = 0 and x = a, $0 < c < a < \frac{\pi}{2}$ is minimum when $c = \frac{a}{2}$

- 13. Consider the curve $y = x^n$ where n > 1 in the 1st quadrant. If the area bounded by the curve, the x-axis and the tangent line to the graph of $y = x^n$ at the point (1, 1) is maximum then find the value of n.
- 14. The line 3x + 2y = 13 divides the area enclosed by the curve, $9x^2 + 4y^2 18x 16y 11 = 0$ in two parts. Find the ratio of the larger area to the smaller area.
- 15. (i) Find the area cut off between x = 0 and $x = 4 y^2$.
 - (ii) Find the area of the region bounded by the curve $y^2 = 2y x$ and the y-axis.
- 16. Let $f(x) = Maximum \{x^2, (1-x)^2, 2x(1-x)\}$, where $0 \le x \le 1$. Determine the area of the region bounded by the curves y=f(x), x-axis, x=0 & x=1.
- 17. Let A_n be the area bounded by the curve $y = (\tan x)^n$ & the lines x = 0, y = 0 & $x = \pi/4$. Prove that for n > 2, $A_n + A_{n-2} = 1/(n-1)$ & deduce that $1/(2n+2) < A_n < 1/(2n-2)$.
- 18. (i) Draw graph of $y = (\tan x)^n$, $n \in N$, $x \in \left[0, \frac{\pi}{4}\right]$. Hence show $0 < (\tan x)^{n+1} < (\tan x)^n$, $x \in \left(0, \frac{\pi}{4}\right)$
 - (ii) Let A_n be the area bounded by the curve $y = (\tan x)^n$ and the lines x = 0, y = 0 and $x = \pi/4$. Prove that for n > 2, $A_n + A_{n-2} = 1/(n-1)$ and deduce that $1/(2n+2) < A_n < 1/(2n-2)$.
- 19. Find the area enclosed between the curves : $y = \log_e(x + e)$, $x = \log_e(1 / y)$ & the x-axis.
- 20. A polynomial function f(x) satisfies the condition f(x + 1) = f(x) + 2x + 1. Find f(x) if f(0) = 1. Find also the equations of the pair of tangents from the origin on the curve y = f(x) and compute the area enclosed by the curve and the pair of tangents.
- 21. Find the area bounded by the y-axis and the curve $x = e^y \sin \pi y$, y = 0, y = 1.
- 22. Find the value(s) of the parameter 'a' (a > 0) for each of which the area of the figure bounded by the straight line

$$y = \frac{a^2 - ax}{1 + a^4}$$
 & the parabola $y = \frac{x^2 + 2ax + 3a^2}{1 + a^4}$ is the greatest

23. Consider a square with vertices at (1, 1), (-1, 1), (-1, -1) & (1, -1). Let S be the region consisting of all points inside the square which are nearer to the origin than to any edge. Sketch the region S & find its area.

24. (i) If
$$f(x) = \min \{x + 1, \sqrt{1 - x}\}$$
, then find the value of $\int_{-1}^{1} \frac{12}{7} f(x) dx$

(ii) Find the area of the region bounded by $y = \{x\}$ and 2x - 1 = 0, y = 0, $(\{\}\}$ stands for fraction part)

25. Find the positive value of 'a' for which the parabola $y = x^2 + 1$ bisects the area of the rectangle with vertices $(0, 0), (a, 0), (0, a^2 + 1)$ and $(a, a^2 + 1)$.

- 26. Let f(x) be a continuous function given by $f(x) = \begin{cases} 2x & \text{for } |x| \le 1 \\ x^2 + ax + b & \text{for } |x| > 1 \end{cases}$. Find the area of the region in the third quadrant bounded by the curves, $x = -2y^2$ and y = f(x) lying on the left of the line 8x + 1 = 0
- 27. Find the area included between the parabolas $y^2 = x$ and $x = 3 2y^2$.
- 28. In what ratio does the x-axis divide the area of the region bounded by the parabolas $y = 4x x^2$ and $y = x^2 x$?
- 29. A tangent is drawn to the curve $x^2 + 2x 4ky + 3 = 0$ at a point whose abscissa is 3. This tangent is perpendicular to x + 3 = 2y. Find the area bounded by the curve, this tangent and ordinate x = -1
- 30. Find the area bounded by $y = x + \sin x$ and its inverse between x = 0 and $x = 2\pi$.

E	xercise # 5	Part # I F	evious Year Questions]	[AIEEE/JEE-N	MAIN]
1.	If the area bounded $b > 1$, then $f(x)$ is-	by the x-axis, curve $y = f(x)$) and the lines $x = 1, x = 1$	b is equal to $\sqrt{b^2}$.	$+1 - \sqrt{2}$ for all [AIEEE-2002]
	(1) $\sqrt{(x-1)}$	(2) $\sqrt{(x+1)}$	(3) $\sqrt{(x^2+1)}$	$(4) \frac{x}{\sqrt{1+x^2}}$	
2.	The area of the regio	on bounded by the curves $y =$	x - 1 and $y = 3 - x $ is -		[AIEEE-2003]
	(1) 6 sq. units	(2) 2 sq. units	(3) 3 sq. units	(4) 4 sq. units	
3.	The area of the regio	on bounded by the curves $y =$	x - 2 , x = 1, x = 3 and the x	-axis is-	[AIEEE-2004]
	(1) 1	(2) 2	(3) 3	(4) 4	
4.	Area of the greatest	rectangle that can be inscribe	the d in the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{1}{a^2}$	1 is -	[AIEEE-2005]
	(1) 2ab	(2) ab	(3) √ab	(4) $\frac{a}{b}$	
5.	The area enclosed be	etween the curve $y = \log_e(x+$	e) and the cooordinate axes	s is-	[AIEEE-2005]
	(1) 1	(2) 2	(3) 3	(4) 4	
6.	The parabolas $y^2 = 4$ If S ₁ , S ₂ , S ₃ are respe	x and $x^2 = 4y$ divide the square actively the areas of these particular	e region bounded by the line ts numbered from top to bo	es $x = 4$, $y = 4$ and th ttom; then $S_1 : S_2 : S_3$	e coordinate axes. ₃ is -
	(1) 1 : 2 : 1	(2) 1 : 2 : 3	(3) 2 : 1 : 2	(4) 1 : 1 : 1	[AIEEE-2005]
7.	Let f(x) be a non-ne	egative continu <mark>ous</mark> function s	such that the area bounded	by the curve y= f(x), x-axis and the
	ordinates $x = \frac{\pi}{4}$ and	$x = \beta > \frac{\pi}{4}$ is $\left(\beta \sin \beta + \frac{\pi}{4} \cos \beta$	$(\beta + \sqrt{2}\beta)$. Then $f\left(\frac{\pi}{2}\right)$ is -		[AIEEE-2005]
	$(1)\left(\frac{\pi}{4}+\sqrt{2}-1\right)$	$(2)\left(\frac{\pi}{4}-\sqrt{2}+1\right)$	$(3)\left(1-\frac{\pi}{4}-\sqrt{2}\right)$	(4) $\left(1 - \frac{\pi}{4} + \frac{\pi}{4}\right)$	$\sqrt{2}$
8.	The area enclosed b	etween the curves $y^2 = x$ and y	$y = \mathbf{x} $ is-		[AIEEE-2007]
	(1) $\frac{2}{3}$	(2) 1	(3) $\frac{1}{6}$	(4) $\frac{1}{3}$	
9.	The area of the plane	e region bounded by the curv	es $x + 2y^2 = 0$ and $x + 3y^2 =$	1 is equal to-	[AIEEE-2008]
	$(1)\frac{5}{3}$	(2) $\frac{1}{3}$	(3) $\frac{2}{3}$	(4) $\frac{4}{3}$	
10.	The area of the region the x-axis is :-	on bounded by the parabola ($(y-2)^2 = x - 1$, the tangent	to the parabola at th	te point (2, 3) and [AIEEE-2009]
	(1) 9	(2) 12	(3) 3	(4) 6	
	Add. 41	-42A, Ashok Park Mai + 91 – 9	n, New Rohtak Road, 9350679141	New Delhi-1100)35

AREA UNDER THE CURVE

11.	The area bounded by the	e curves $y = \cos x$ and $y =$	sin x between the ordinates	s x = 0 and x = $\frac{3\pi}{2}$ is	-
	(1) $4\sqrt{2} - 2$	(2) $4\sqrt{2} + 2$	(3) $4\sqrt{2} - 1$	(4) $4\sqrt{2} + 1$ [AIF	CEE-2010]
12.	The area of the region er	nclosed by the curves $y = x$	$x, x = e, y = \frac{1}{x}$ and the positive	tive x-axis is - [Al	EEE-2011]
	(1) $\frac{3}{2}$ square units	(2) $\frac{5}{2}$ square units	(3) $\frac{1}{2}$ square units	(4) 1 square units	
13.	The area bounded by the	e curves $y^2 = 4x$ and $x^2=4y$	is:=	[AI	EEE-2011]
	(1) 0	(2) $\frac{32}{3}$	(3) $\frac{16}{3}$	(4) $\frac{8}{3}$	
14.	The area bounded betwee	en the parabolas $x^2 = \frac{y}{4}$ and	nd $x^2 = 9y$, and the straight	line $y = 2$ is : [A]	EEE-2012]
	(1) $10\sqrt{2}$	(2) $20\sqrt{2}$	(3) $\frac{10\sqrt{2}}{3}$	(4) $\frac{20\sqrt{2}}{3}$	
15.	The area (in square units) bounded by the curves y	$=\sqrt{x}$, $2y - x + 3 = 0$, x-a	xis and lying in the firs	st quadrant
	15			JEE (Ma	ain)-2013]
	(1) 9	(2) 36	(3) 18	(4) $\frac{27}{4}$	
16.	The area of the region des	scribed by A = $\{(x, y) : x^2 + y\}$	$y^2 \le 1$ and $y^2 \le 1 - x$ } is	[N	[ain 2014]
	(1) $\frac{\pi}{2} + \frac{4}{3}$	(2) $\frac{\pi}{2} - \frac{4}{3}$	(3) $\frac{\pi}{2} - \frac{2}{3}$	(4) $\frac{\pi}{2} + \frac{2}{3}$	
17.	The area (in sq. units) of t	the region described by {(x,	$y): y^2 \le 2x \text{ and } y \ge 4x - 1$	} is [N	1ain 2015]
	(1) $\frac{15}{64}$	(2) $\frac{9}{32}$	(3) $\frac{7}{32}$	(4) $\frac{5}{64}$	
18.	The area (in sq. units) of t	he region $\{(x, y) : y^2 \ge 2x a$	nd $x^2 + y^2 \le 4x, x \ge 0$, $y \ge 0$	0} [N	Iain 2016]
	(1) $\pi - \frac{8}{3}$	(2) $\pi - \frac{4\sqrt{2}}{3}$	(3) $\frac{\pi}{2} - \frac{2\sqrt{2}}{3}$	(4) $\pi - \frac{4}{3}$	
	Part # II	[Previous Year Quest	ions][IIT-JEE ADVAI	NCED]	
			2.1.1		1
1.	the first quadrant. If its an	the tangent to the curve $f(x) =$ rea is 2, then the value of b	$x^2 + bx - b$ at the point (1, is -	I) and the coordinates a	JEE 2001]
	(A)-1	(B) 3	(C) -3	(D) 1	
2.	The area bounded by the	curves $y = x - 1$ and $y = - x $	x + 1 is -	[JEE 2002 (Se	creening)]
	(A) 1	(B) 2	(C) $2\sqrt{2}$	(D) 4	

Add. 41-42A, Ashok Park Main, New Rohtak Road, New Delhi-110035 +91-9350679141

MATHS FOR JEE MAIN & ADVANCED

Find the area of the region bounded by the curves $y = x^2$, $y = |2 - x^2|$ and y = 2, which lies to the right of the line 3. [JEE 2002, (Mains)] x = 1. The area of the quadrilateral formed by the tangents at the end points of latus recta to the ellipse $\frac{x^2}{0} + \frac{y^2}{5} = 1$, is-4. (A) (B) 9 sq. units (A) 27/4 sq. units (C) 27 sq. units **(D)** 27/2 sq. units The area bounded by the curves $y = \sqrt{x}$, 2y + 3 = x and x-axis in the 1st quadrant is -**(B) (A)** 18 **(B)** 27/4 (C) 36 (D) 9 [JEE 2003 (Screening)] The area bounded by the angle bisectors of the lines $x^2 - y^2 + 2y = 1$ and the line x + y = 3, is -5. (A) **(B)** 3 (A) 2 **(D)** 6 **(C)** 4 The area enclosed between the curves $y = ax^2$ and $x = ay^2$ (a > 0) is 1 sq. unit, then the value of a is -**(B)** (A) $\frac{1}{\sqrt{3}}$ **(B)** $\frac{1}{2}$ (D) $\frac{1}{3}$ [JEE 2004 (Screening)] **(C)** 1 The area bounded by the parabolas $y = (x + 1)^2$ and $y = (x - 1)^2$ and the line y = 1/4 is - [JEE 2005 (Screening)] 6. **(B)** 1/6 sq. units (C) 4/3 sq. units (A) 4 sq. units (D) 1/3 sq. units Find the area bounded by the curves $x^2 = y$, $x^2 = -y$ and $y^2 = 4x - 3$. [JEE 2005, (Mains)] 7. 4a 1 4b 1 4b 1 4c 1) = $a^2 + 3a$, f(x) is a quadratic function and its maximum value occurs at a point 8. V. A is a point of intersection of y = f(x) with x-axis and point B is such that chord AB subtends a right angle at V. Find the area enclosed by f(x) and chord AB. [**JEE 2005 (Mains)**] Match the following -9. $\int_{0}^{\pi/2} (\sin x)^{\cos x} (\cos x \cot x - \ln(\sin x)^{\sin x}) dx$ (A) **(p)** 1 Area bounded by $-4y^2 = x$ and $x - 1 = -5y^2$ **(B)** 0 **(q)** Cosine of the angle of intersection of curves **(C)** $y = 3^{x-1} \ln x$ and $y = x^x - 1$ is 6 **●**n2 **(r)** (D) Let $\frac{dy}{dx} = \frac{6}{x+y}$, where y (0) = 0, then the value of **(s)** 4/3y when x + y = 6 is [**JEE 2006, 6M**]

Paragraph for Question Nos. 10 to 12

Consider the functions defined implicitly by the equation $y^3 - 3y + x = 0$ on various intervals in the real line. If $x \in (-\infty, -2) \cup (2, \infty)$, the equation implicitly defines a unique real valued differentiable function y = f(x). If $x \in (-2, 2)$, the equation implicitly defines a unique real valued differentiable function y = g(x) satisfying g(0) = 0.

10. If $f(-10\sqrt{2}) = 2\sqrt{2}$, then $f'(-10\sqrt{2}) =$

x = 0 and $x = \frac{\pi}{4}$ is :-

- (A) $\frac{4\sqrt{2}}{7^3 3^2}$ (B) $-\frac{4\sqrt{2}}{7^3 3^2}$ (C) $\frac{4\sqrt{2}}{7^3 3}$ (D) $-\frac{4\sqrt{2}}{7^3 3}$
- 11. The area of the region bounded by the curve y = f(x), the x-axis, and the lines x = a and x = b, where $-\infty < a < b < -2$, is [JEE 2008]

(A)
$$\int_{a}^{b} \frac{x}{3((f(x))^{2}-1)} dx + bf(b) - af(a)$$
 (B) $-\int_{a}^{b} \frac{x}{3((f(x))^{2}-1)} dx + bf(b) - af(a)$

(C)
$$\int_{a}^{b} \frac{x}{3((f(x))^{2}-1)} dx - bf(b) + af(a)$$
 (D) $-\int_{a}^{b} \frac{x}{3((f(x))^{2}-1)} dx - bf(b) + af(a)$

12.
$$\int_{-1}^{1} g'(x) dx =$$
 [JEE 2008]

(A)
$$2g(-1)$$
 (B) 0 (C) $-2g(1)$ (D) $2g(1)$

13. The area of the region between the curves $y = \sqrt{\frac{1 + \sin x}{\cos x}}$ and $y = \sqrt{\frac{1 - \sin x}{\cos x}}$ bounded by the lines

[**JEE 2008**]

(A)
$$\int_{0}^{\sqrt{2}-1} \frac{t}{(1+t^2)\sqrt{1-t^2}} dt$$

(B) $\int_{0}^{\sqrt{2}-1} \frac{4t}{(1+t^2)\sqrt{1-t^2}} dt$
(C) $\int_{0}^{\sqrt{2}+1} \frac{4t}{(1+t^2)\sqrt{1-t^2}} dt$
(D) $\int_{0}^{\sqrt{2}+1} \frac{t}{(1+t^2)\sqrt{1-t^2}} dt$

14.

Area of the region bounded by the curve $y = e^x$ and lines x = 0 and y = e is -

[JEE 2009]

(B)
$$\int_{1}^{e} \ln(e+1-y) dy$$
 (C) $e - \int_{0}^{1} e^{x} dx$ **(D)** $\int_{1}^{e} \ln y dy$

(A) e - 1

Paragraph for Question 15 to 17

Consider the polynomial

 $f(x) = 1 + 2x + 3x^2 + 4x^3.$

Let s be the sum of all distinct real roots of f(x) and let t = |s|.

15. The real number s lies in the interval

(A)
$$\left(-\frac{1}{4}, 0\right)$$
 (B) $\left(-11, -\frac{3}{4}\right)$ **(C)** $\left(-\frac{3}{4}, -\frac{1}{2}\right)$ **(D)** $\left(0, \frac{1}{4}\right)$

16. The area bounded by the curve y = f(x) and the lines x = 0, y = 0 and x = t, lies in the interval

(A)
$$\left(\frac{3}{4}, 3\right)$$
 (B) $\left(\frac{21}{64}, \frac{11}{16}\right)$ (C) (9, 10)
The function $f(x)$ is

17. The function f(x) is

A) increasing in
$$\left(-t, -\frac{1}{4}\right)$$
 and decreasing in $\left(-\frac{1}{4}, t\right)$
B) decreasing in $\left(-t, -\frac{1}{4}\right)$ and increasing in $\left(-\frac{1}{4}, t\right)$

(C) increasing in (-t, t)

(D) decreasing in (-t, t)

18.(A) Let the straight line x = b divide the area enclosed by $y = (1 - x)^2$, y = 0 and x = 0 into two parts $R_1(0 \le x \le b)d$ and $R_2(b \le x \le 1)$ such that $R_1 - R_2 = \frac{1}{4}$. Then b equals

(A)
$$\frac{3}{4}$$
 (B) $\frac{1}{2}$ (C) $\frac{1}{3}$ (D) $\frac{1}{4}$

(B) Let $f:[-1,2] \rightarrow [0,\infty)$ be a continuous function such that f(x) = f(1-x) for all $x \in [-1,2]$. Let $R_1 = \int_{-1}^{2} x f(x) dx$, and R_2 be the area of the region bounded by y = f(x), x=-1, x=2, and the x-axis. Then - [JEE 2011] (A) $R_1 = 2R_2$ (B) $R_1 = 3R_2$ (C) $2R_1 = R_2$ (D) $3R_1 = R_2$

19. The area enclosed by the curve y = sinx + cosx and y = |cosx - sinx| over the interval $\left[0, \frac{\pi}{2}\right]$ is

[JEE Ad. 2013]

(A)
$$4(\sqrt{2}-1)$$
 (B) $2\sqrt{2}(\sqrt{2}-1)$ (C) $2(\sqrt{2}+1)$ (D) $2\sqrt{2}(\sqrt{2}+1)$

20. For a point P in the plane, let $d_1(P)$ and $d_2(P)$ be the distances of the point P from the lines x - y = 0 and x + y = 0 respectively. The area of the region R consisting of all points P lying in the first quadrant of the plane and satisfying $2 \le d_1(P) + d_2(P) \le 4$, is [JEE Ad. 2014]

21. Area of the region
$$\{(x, y) \in \mathbb{R}^2 : y \ge \sqrt{|x+3|}, 5y \le x+9 \le 15\}$$
 is equal to [JEE Ad. 2016]
(A) $\frac{1}{6}$ (B) $\frac{4}{3}$ (C) $\frac{3}{2}$ (D) $\frac{5}{3}$

B

Add. 41-42A, Ashok Park Main, New Rohtak Road, New Delhi-110035 +91-9350679141

[**JEE 2010**]

(D) $\left(0, \frac{21}{64}\right)$

10. Which of the following statements are true/false –

S₁: Area between
$$x^2 = 4by$$
 and $y^2 = 4ax$ is $\frac{16ab}{3}$

S₂: Area enclosed by $|\mathbf{x}| + |\mathbf{y}| = 1$ is 1.

S₃: Smaller area enclosed by
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 and $\frac{x}{a} + \frac{y}{b} = 1$ is $\frac{\pi ab}{4} - \frac{ab}{2}$

S₄: Area enclosed by y = [x] and $y = \{x\}$ is 1.

1 (1

SECTION - II : MULTIPLE CORRECT ANSWER TYPE-

11. The area bounded by a curve, the axis of co-ordinates & the ordinate of some point of the curve is equal to the length of the corresponding arc of the curve. If the curve passes through the point P(0, 1) then the equation of this curve can be :

(A)
$$y = \frac{1}{2} (e^{x} - e^{-x} + 2)$$

(B) $y = \frac{1}{2} (e^{x} + e^{-x})$
(C) $y = 1$
(D) $y = \frac{2}{e^{x} + e^{-x}}$

12. If $f(x) = 2^{\{x\}}$, where $\{x\}$ denotes the fractional part of x. Then which of the following is true ?

(A) f is periodic (B) $\int_{0}^{1} 2^{\{x\}} dx = \frac{1}{\ln 2}$ (C) $\int_{0}^{1} 2^{\{x\}} dx = \log_2 e$ (D) $\int_{0}^{100} 2^{\{x\}} dx = 100 \log_2 e$

13. Let T be the triangle with vertices (0, 0), $(0, c^2)$ and (c, c^2) and let R be the region between y = cx and $y = x^2$ where c > 0 then

(A) Area (R) =
$$\frac{c^3}{6}$$

(B) Area of R = $\frac{c^3}{3}$
(C) $\lim_{c \to 0^+} \frac{\text{Area}(T)}{\text{Area}(R)} = 3$
(D) $\lim_{c \to 0^+} \frac{\text{Area}(T)}{\text{Area}(R)} = \frac{3}{2}$

14. Let $f(x) = \int_{0}^{x} |2t-3| dt$, then f is

(A) continuous at $x = 3/2$	(B) continuous at $x = 3$
C) differentiable at $x = 3/2$	(D) differentiable at $x = 0$

15. Consider the functions f (x) and g (x), both defined from $R \rightarrow R$ and are defined as $f(x) = 2x - x^2$ and $g(x) = x^n$ where $n \in N$. If the area between f(x) and g(x) is 1/2 then *n* is a divisor of (A) 12 (B) 15 (C) 20 (D) 30

SECTION - III : ASSERTION AND REASON TYPE

16. Statement-I: The area bounded by the curve |x| + |y| = a (a > 0) is $2a^2$ and area bounded |px + qy| + |qx - py| = a, where $p^2 + q^2 = 1$, is also $2a^2$.

Statement-II: Since $\alpha x + \beta y = 0$ is perpendicular to $\beta x - \alpha y = 0$, we can take one as x-axis and another as y-axis and therefore the area bounded by $|\alpha x + \beta y| + |\beta x - \alpha y| = a$ is $2a^2$ for all $\alpha, \beta \in \mathbb{R}, \alpha \neq 0, \beta \neq 0$.

- (A) Statement-I is True, Statement-II is True; Statement-II is a correct explanation for Statement-I
- (B) Statement-I is True, Statement-II is True; Statement-II is NOT a correct explanation for Statement-I
- (C) Statement-I is True, Statement-II is False
- (D) Statement-I is False, Statement-II is True
- 17. A curve C has the property that its initial ordinate of any tangent drawn is less than the abscissa of the point of tangency by unity.

Statement-I: Differential equation satisfying the curve is linear.

Statement-II: Degree of differential equation is one

- (A) Statement-I is True, Statement-II is True; Statement-II is a correct explanation for Statement-I
- (B) Statement-I is True, Statement-II is True; Statement-II is NOT a correct explanation for Statement-I
- (C) Statement-I is True, Statement-II is False
- (D) Statement-I is False, Statement-II is True

18. Statement-I: Area bounded by $y = \tan x$, $y = \tan^2 x$ in between $x \in \left(0, \frac{\pi}{4}\right)$ is equal to $\left(\frac{\pi}{4} + \ln\sqrt{2} - 1\right)$.

Statement-II: Area bounded by y = f(x) and $y = g(x) \{f(x) > g(x)\}$ between x = a, x = b is $\int_{a}^{b} (f(x) - g(x)) dx \cdot (b > a)$

(A) Statement-I is True, Statement-II is True; Statement-II is a correct explanation for Statement-I

- (B) Statement-I is True, Statement-II is True; Statement-II is NOT a correct explanation for Statement-I
- (C) Statement-I is True, Statement-II is False
- (D) Statement-I is False, Statement-II is True
- 19. C_1 is a circle of radius 2 touching x-axis and y-axis. C_2 is another circle of radius greater than 2 and touching both the axes as well as the circle C_1 .

Statement-I: Radius of circle C_2 is $\sqrt{2}(\sqrt{2}+1)(\sqrt{2}+2)$.

Statement-II : Centres of both circles always lie on the line y = x.

- (A) Statement-I is True, Statement-II is True; Statement-II is a correct explanation for Statement-I
- (B) Statement-I is True, Statement-II is True; Statement-II is NOT a correct explanation for Statement-I
- (C) Statement-I is True, Statement-II is False
- (D) Statement-I is False, Statement-II is True

20. Statement-I : Area bounded by parabola $y = x^2 - 4x + 3$ and y = 0 is 4/3 sq. units.

Statement-II: Area bounded by curve $y = f(x) \ge 0$ and y = 0 between ordinates x = a and x = b (b > a) is $\int f(x) dx$

(A) Statement-I is True, Statement-II is True; Statement-II is a correct explanation for Statement-I

- (B) Statement-I is True, Statement-II is True; Statement-II is NOT a correct explanation for Statement-I
- (C) Statement-I is True, Statement-II is False
- (D) Statement-I is False, Statement-II is True

SECTION - IV : MATRIX - MATCH TYPE

21.

22.

Colun	ın – I	Colur	nn – II
(A)	The area bounded by the curve $y = x + \sin x$ and its inverse	(p)	0
	function between the ordinates $x = 0$ to $x = 2\pi$ is 4s		
	Then the value of s is		
(B)	The area bounded by $y = x e^{ x }$ and lines $ x = 1$, $y = 0$ is	(q)	1
(C)	The area bounded by the curves $y^2 = x^3$ and $ y = 2x$ is	(r)	$\frac{16}{5}$
(D)	The smaller area included between the curves	(\$)	$\frac{1}{3}$
	$\sqrt{x} + \sqrt{ y } = 1$ and $ x + y = 1$ is		2
		(t)	2
Colun	1n – I	Colur	nn – II
(A)	Area enclosed by $y = x $, $ x = 1$ and $y = 0$ is	(p)	3
(B)	Area enclosed by the curve $y = sinx$, $x = 0$, $x = \pi$ and $y = 0$	(q)	4
	is		
(C)	If the area of the region bounded by $x^2 \le y$ and $y \le x + 2$ is $\frac{k}{4}$,	(r)	27
	then $k = 4$		
(D)	Area of the quadrilateral formed by tangents at the ends of latus	(s)	18
	rectum of ellipse $\frac{x^2}{9} + \frac{y^2}{5} = 1$ is		
		(t)	1

SECTION - V : COMPREHENSION TYPE

23. Read the following comprehension carefully and answer the questions. Let f(x) be a differentiable function, satisfying f(0) = 2, f'(0) = 3 and f''(x) = f(x)

1. Graph of y = f(x) cuts x -axis at

(A)
$$x = -\frac{1}{2} \ln 5$$
 (B) $x = \frac{1}{2} \ln 5$ (C) $x = -\Phi n5$ (D) $x = \Phi n5$

2. Area enclosed by y = f(x) in the second quadrant is

(A)
$$3 + \frac{1}{2} \ln \sqrt{5}$$
 (B) $2 + \frac{1}{2} \ln 5$ (C) $3 - \sqrt{5}$ (D) 3

3. Area enclosed by
$$y = f(x)$$
, $y = f^{-1}(x)$, $x + y = 2$ and $x + y = -\frac{1}{2} \ln 5$ is
(A) $8 + \frac{1}{8} (\ln 5)^2$ (B) $8 - 2\sqrt{5} + \frac{1}{8} (\ln 5)^2$ (C) $2\sqrt{5} - \frac{1}{8} (\ln 5)^2$

(D)
$$8 + 2\sqrt{5} - \frac{1}{8}(1 \text{ n} 5)^2$$

24. Read the following comprehension carefully and answer the questions.

Asymptotes are the tangents to the curve at infinity

To find the asymptotes of a curve we can use the following methods.

- (A) Asymptote parallel to the x-axis is obtained by equating to zero, the coefficient of the highest power to x.
- (B) Asymptote parallel to the y-axis is obtained by equating to zero, the coefficient of the highest power of y.
- (C) Oblique Asymptote : y = mx + c
 - (i) Find ϕ_n (m) by putting x = 1 and y = m in the highest degree (n) terms of the equation similarly find ϕ_n (m).
 - (ii) Solve $\phi_n(m) = 0$ for m
 - (iii) Find c by the formula $c = -\frac{\phi_{n-1}(m)}{\phi'_n(m)}$ Using the value of m as obtained in (ii)
 - (iv) Obtain the equation of asymptote by putting these values of m and c in y = mx + c.
- 1. The equation of asymptotes of the curve $yx^2 4x^2 + x + 2 = 0$ (A) y-4=0 and x=0(B) y=3 and x=2(C) y-4=0 and x=2(D) y=3 and x=0
- 2. The equation of asymptotes of the curve $x^3 + y^3 3xy = 0$ (A) y = x + 1 (B) y + x + 1 = 0 (C) y + x = 2 (D) y = 2x + 1

3. The equation of asymptotes of the curve $y^2 = \frac{x^3}{(2-x)}$ is ax + by + c = 0, then the value of |a + b + c| is

- (A) 0 (B) 1 (C) 2 (D) 4
- 25. Read the following comprehension carefully and answer the questions.

If $y = \int_{u(x)}^{v(x)} f(t) dt$, let us define $\frac{dy}{dx}$ in a different manner as $\frac{dy}{dx} = v'(x) f^2(v(x)) - u'(x) f^2(u(x))$ and the equation of the tangent at (a, b) as $y - b = \left(\frac{dy}{dx}\right)_{(a,b)} (x - a)$

- 1. If $y = \int_{x}^{x^{2}} t^{2} dt$, then equation of tangent at x = 1 is (A) y = x + 1 (B) x + y = 1 (C) y = x - 1 (D) y = x
- 2. If $F(x) = \int_{1}^{x} e^{t^{2}/2} (1 t^{2}) dt$, then $\frac{d}{dx} F(x)$ at x = 1 is (A) 0 (B) 1 (C) 2 (D) - 1 3. If $y = \int_{1}^{x^{4}} 1$ nt dt , then $\lim_{x \to 0^{+}} \frac{dy}{dx}$ is
 - If $y = \int_{x^3} \ln t \, dt$, then $\lim_{x \to 0^+} \frac{dy}{dx}$ is (A) 0 (B) 1 (C) 2 (D) - 1

SECTION - VI : INTEGER TYPE

- 26. Find the area of the region bounded by y = f(x), y = |g(x)| and the lines x = 0, x = 2, where 'f', 'g' are continuous functions satisfying $f(x + y) = f(x) + f(y) 8xy \forall x, y \in R$ and $g(x + y) = g(x) + g(y) + 3xy (x + y) x, y \in R$ also f'(0) = 8 and g'(0) = -4.
- 27. Find the area enclosed by the solution set of [x] · [y] = 2.Where [·] represent greatest integer function of x.
- 28. Let ABC be a triangle with vertices A(6, 2($\sqrt{3} + 1$)), B(4, 2) and C(8, 2). If R be the region consisting of all these points and point P inside \triangle ABC which satisfy d(P, BC) \ge max. {d(P, AB), d(P, AC)} where d(P, L) denotes the distance of the point P from the line L. Sketch the region R and find its area.
- 29 The area of the loop of the curve, $a y^2 = x^2 (a x)$ is $\frac{\lambda a^2}{15}$, then find λ
- 30. Find the area of the region which is inside the parabola $y = -x^2 + 6x 5$, out side the parabola $y = -x^2 + 4x 3$ and left of the straight line y = 3x 15.

ANSWER KEY

EXERCISE - 1

 1. C
 2. C
 3. A
 4. D
 5. C
 6. A
 7. B
 8. B
 9. A
 10. C
 11. D
 12. C
 13. C

 14. B
 15. B
 16. B
 17. B
 18. D
 19. B
 20. B
 21. C
 22. B
 23. C
 24. D
 25. B
 26. B

 27. B
 28. A
 29. A
 30. A

EXERCISE - 2 : PART # I

1. ABCD 2. AB 3. AD 4. BCD 5. AC 6. BCD 7. ABCD 8. AC 9. BCD 10. AD 11. BD

PART - II

1. D 2. C 3. C 4. A 5. C

EXERCISE - 3 : PART # I

1. $A \rightarrow q \ B \rightarrow q \ C \rightarrow r \ D \rightarrow s$ 2. $A \rightarrow s \ B \rightarrow s \ C \rightarrow q \ D \rightarrow p$ 3. $A \rightarrow r \ B \rightarrow s \ C \rightarrow p \ D \rightarrow q$

PART - II

Comprehension #1: 1. A 2. D 3. D Comprehension #2: 1. A 2. C 3. B Comprehension #3: 1. C 2. D 3. A

EXERCISE - 5 : PART # I

 1. 4
 2. 4
 3. 1
 4. 1
 5. 1
 6. 4
 7. 4
 8. 3
 9. 4
 10. 1
 11. 1
 12. 1
 13. 3

 14. 4
 15. 1
 16. 1
 17. 2
 18. 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 3
 3

PART - II

1. C **2.** B **3.** $\left(\frac{20}{3} - 4\sqrt{2}\right)$ sq. units **4.** A. C **B.** D **5.** A. A **B.** A **6.** D **7.** $\frac{1}{3}$ sq. units

8. $\frac{125}{3}$ sq. units 9. $A \rightarrow p B \rightarrow s C \rightarrow p D \rightarrow r$ 10. B 11. A 12. D 13. B 14. BCD 15. C 16. A 17. B 18. A. B B. C 19. B 20. 6 21. C

MOCK TEST

 1. C
 2. D
 3. B
 4. C
 5. B
 6. D
 7. D
 8. A
 9. B
 10. A
 11. BC
 12. ABCD

 13. AC
 14. ABD
 15. BCD
 16. C
 17. B
 18. A
 19. C
 20. B

 21. A \rightarrow t B \rightarrow t C \rightarrow r D \rightarrow s
 22. A \rightarrow t B \rightarrow p C \rightarrow s D \rightarrow r
 23. 1. A
 2. C
 3. B
 24. 1. A

2. B **3.** B **25. 1.** C **2.** A **3.** A **26.** $\frac{4}{3}$ **27.** 4 **28.** $\frac{4\sqrt{3}}{3}$ **29.** 8 **30.** $\frac{73}{6}$