

23. Length of subnormal = $y \frac{dy}{dx}$ $y^2 = 8ax \implies 2y \frac{dy}{dx} = 8a$ $\therefore y \frac{dy}{dx} = 4a$ 28. $f(x) = \int_{-\infty}^{x} \left(t + \frac{1}{t}\right) dt \implies f'(x) = x + \frac{1}{x}$ \therefore g(x)=x+ $\frac{1}{x}$ for x $\in \left[\frac{1}{2}, 3\right]$ $g\left(\frac{1}{2}\right) = 2 + \frac{1}{2} = \frac{5}{2}, \quad g(3) = 3 + \frac{1}{3} = \frac{10}{3}$ Let $P = (c, g(c)), c \in \left[\frac{1}{2}, 3\right]$ By LMVT, $g'(c) = \frac{g(3) - g(\frac{1}{2})}{3 - \frac{1}{2}}$ $\therefore \quad 1 - \frac{1}{c^2} = \frac{\frac{10}{3} - \frac{5}{2}}{3 - \frac{1}{2}}$ \Rightarrow c² = $\frac{3}{2}$ \Rightarrow c = $\sqrt{\frac{3}{2}}$:. $g(c) = \sqrt{\frac{3}{2}} + \frac{1}{\sqrt{\frac{3}{2}}} = \frac{5}{\sqrt{6}}$ $\therefore \mathbf{P} \equiv \left(\sqrt{\frac{3}{2}}, \frac{5}{\sqrt{6}}\right)$ 31. $f(x) = \sin x - \cos x - ax + b$ $f(x) = \cos x + \sin x - a \le 0 \ \forall x \in R$ \Rightarrow a $\geq \cos x + \sin x \forall x \in R$

35.
$$f'(x) = \left(\frac{\sqrt{p+4}}{1-p} - 1\right) 5x^4 - 3$$

It is sufficient to solve for p, the condition $f \ni (x) \le 0 \forall x \in R$

$$\left(\frac{\sqrt{p+4}}{1-p} - 1\right) 5x^4 - 3 \le 0 \quad \forall \ x \in \mathbb{R}$$

Case - I 1-p < 0 p > 1Inequality holds true. Case - II 1-p > 0 p < 1

Inequality holds if
$$\frac{\sqrt{p+4}}{1-p} - 1 \le 0$$

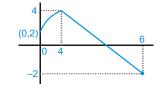
⇒
$$p \ge -4$$
, $p + 4 \le (1-p)^2$
⇒ $p \ge -4$, $p^2 - 3p - 3 \ge 0$

$$\Rightarrow -4 \le p \le \frac{3-\sqrt{21}}{2}$$

Hence
$$\mathbf{p} \in \left[-4, \frac{3-\sqrt{21}}{2}\right] \cup (1, \infty)$$

36.
$$f(x) = \begin{cases} \frac{(2 - \sqrt{x})(2 + \sqrt{x})}{(2 - \sqrt{x})}, & 0 < x < 4 \\ 4, & x = 4 \\ 16 - 3x, & 4 < x < 6 \end{cases}$$

$$\Rightarrow f(x) = \begin{cases} 2 + \sqrt{x} , & 0 < x < 4 \\ 4 , & x = 4 \\ 16 - 3x , & 4 < x < 6 \end{cases}$$



So f(x) is continuous only

37. Using LMVT in [2, 4]

$$f(c) = \frac{f(4) - f(2)}{4 - 2} = \frac{f(4) + 4}{2}$$

 $f(x) \ge 6 \implies \frac{f(4)+4}{2} \ge 6 \implies f(4) \ge 8$

 $\Rightarrow a \ge \sqrt{2}$

Add. 41-42A, Ashok Park Main, New Rohtak Road, New Delhi-110035 +91-9350679141 **39.** f(-2) = f(3) = 0

f(x) is continuous in [-2, 3] & derivable in (-2, 3) so Rolle's theorem is applicable.

so $\exists c \in (-2, 3)$ such that f(c) = 0

$$\Rightarrow \frac{2c^3 - 5c^2 + 4c - 1}{(c - 1)^2} = 0 \Rightarrow c = 1/2$$

44. Using LMVT for f in [1, 2]

$$\forall c \in (1,2) \quad \frac{f(2) - f(1)}{2 - 1} = f'(c) \le 2$$

$$f(2) - f(1) \le 2 \implies f(2) \le 4 \quad \dots (1)$$
again using LMVT in [2, 4]
$$\forall d \in (2,4) \quad \frac{f(4) - f(2)}{4 - 2} = f'(d) \le 2$$

$$\therefore \quad f(4) - f(2) \le 4$$

$$8 - f(2) \le 4 \quad \dots (2)$$

from (1) and (2) f(2)=4

47. $f(x) = 3\tan x + x^3 - 2$, $f(x) = 3(\sec^2 x + x^2) > 0$ $\Rightarrow f(x) \text{ is increasing in } \forall x \in (0, \pi/4)$

$$f(0) < 0 \& f\left(\frac{\pi}{4}\right) > 0$$

 \Rightarrow f(x) =0 has exactly one root in $\left(0, \frac{\pi}{4}\right)$.

49. For $x \in (0, 2)$

$$f(c) = \frac{f(x) - f(0)}{x - 0} \quad (\text{Here } c \in (0, x))$$

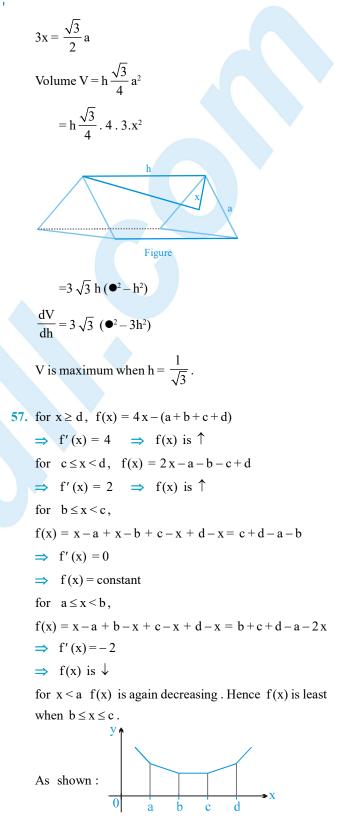
$$\Rightarrow \quad f(x) = 2.f'(x)$$

$$f(x) \le 1$$

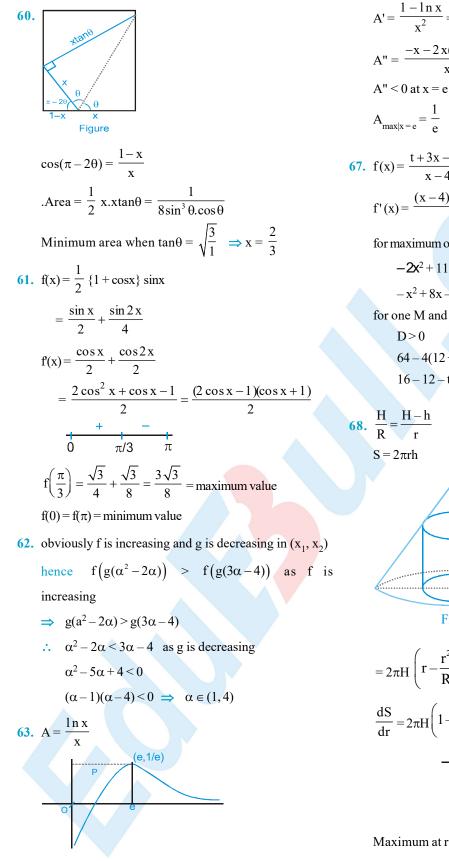
52. $f(x) = x^{25} (1-x)^{75}$ $f(x) = 25 \cdot x^{24} (1-x)^{75} - 75 \cdot (1-x)^{74} \cdot x^{25}$ $= 25 \cdot x^{24} (1-x)^{74} \{1-x-3x\}$ $= 25x^{24} (1-x)^{74} (1-4x)$ $\frac{1}{4}$

55. $\bullet^2 = h^2 + x^2$

Area of base (triangle) is $\frac{\sqrt{3}}{4}a^2$



59. $f(x) = x(2^2 + 4^2 \cdot x^2 + 6^2 \cdot x^4 + \dots + 100^2 \cdot x^{98})$



$$A' = \frac{1 - \ln x}{x^2} = 0 \text{ at } x = e$$

$$A'' = \frac{-x - 2x(2 - \ln x)}{x^2}$$

$$A'' < 0 \text{ at } x = e \implies \text{maxima}$$

$$A_{\text{max}|x=e} = \frac{1}{e}$$
67.
$$f(x) = \frac{t + 3x - x^2}{x - 4};$$

$$f'(x) = \frac{(x - 4)(3 - 2x) - (t + 3x - x^2)}{(x - 4)^2}$$
for maximum or minimum,
$$f'(x) = 0$$

$$-2x^2 + 11x - 12 - t - 3x + x^2 = 0$$

$$-x^2 + 8x - (12 + t) = 0$$
for one M and m,

$$D > 0$$

$$64 - 4(12 + t) > 0$$

$$16 - 12 - t > 0 \implies 4 > t \text{ or } t < 4$$
68.
$$\frac{H}{R} = \frac{H - h}{r}$$

$$S = 2\pi rh$$

$$Figure$$

$$= 2\pi H \left(r - \frac{r^2}{R}\right)$$

$$\frac{dS}{dr} = 2\pi H \left(1 - \frac{2r}{R}\right)$$

$$\frac{dS}{dr} = 2\pi H \left(1 - \frac{2r}{R}\right)$$

$$\frac{dS}{dr} = \pi$$

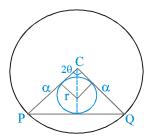
Add. 41-42A, Ashok Park Main, New Rohtak Road, New Delhi-110035 +91-9350679141

72.
$$r = \frac{\Delta}{s}$$

where $\Delta =$ Area of triangle CPQ and s = semiperimeter of Δ CPQ.

$$r = \frac{\alpha^2 \sin 2\theta}{2s} = \frac{\alpha^2 \sin 2\theta}{2\alpha + 2\alpha \sin \theta} = \frac{\alpha}{2} \cdot \frac{\sin 2\theta}{1 + \sin \theta}$$

Consider $f(\theta) = \frac{\sin 2\theta}{1 + \sin \theta}$



$$f'(\theta) = \frac{(1+\sin\theta)2\cos 2\theta - \sin 2\theta \cdot \cos \theta}{(1+\sin\theta)^2} = 0$$
$$2(1+\sin\theta)(1-2\sin^2\theta) - 2\sin\theta(1-\sin^2\theta) = 0$$
$$2(1-2\sin^2\theta) = 2\sin\theta(1-\sin\theta)$$
$$1-2\sin^2\theta = \sin\theta - \sin^2\theta$$
$$\sin^2\theta + \sin\theta - 1 = 0$$

$$\sin\theta = \frac{-1\pm\sqrt{1+4}}{2} \qquad \qquad \therefore \quad \sin\theta = \frac{\sqrt{5}-1}{2}$$

74. Let d be distance between (k, 0) and any point (x, y) on curve.

$$d = \sqrt{(k-x)^{2} + y^{2}}$$

$$d = \sqrt{-x^{2} + 2(1-k)x + k^{2}}$$

$$(\Rightarrow y^{2} = 2x - 2x^{2}).$$

Maximum d =
$$\sqrt{\frac{4(-1)k^2 - 4(1-k)^2}{4(-1)}}$$

Maximum d =
$$\sqrt{2k^2 - 2k + 1}$$

EXERCISE - 2
Part # 1 : Multiple Choice
1. (A)
$$2y \frac{dy}{dx} = 4a \implies \left(\frac{dy}{dx}\right)_1 = \frac{2a}{y_1} = \frac{2a}{e^{-x/2a}} = m_1$$

For IInd curve $\left(\frac{dy}{dx}\right)_2 = \frac{-1}{2a}e^{\frac{-x}{2a}} = m_2$
 $m_1 m_2 = -1$
(B) $2y \left(\frac{dy}{dx}\right)_1 = 4a$; $2x = 4a \left(\frac{dy}{dx}\right)_2$
 $m_1 = \frac{2a}{y_1}$ $m_2 = \frac{x_1}{2a}$
 $y_1^2 = 4ax_1...(i)$ $x_1^2 = 4ay_1....(ii)$
 $m_1m_2 \neq -1$
(C) $y = \frac{a^2}{x}$; $x^2 - y^2 = b^2$
 $m_1 = -\frac{a^2}{x_1^2}$; $2x_1 - 2y_1m_2 = 0 \Rightarrow m_2 = \frac{x_1}{y_1}$
 $m_1m_2 = \frac{-a^2}{a_1^2} = -1$

(D)
$$m_1 = \frac{dy}{dx} = a$$
; $2x + 2ym_2 = 0$

$$m_2 = -\frac{x}{y}$$

$$m_1 m_2 = -\frac{ax}{y} = -\frac{ax}{ax} = -1$$

3. $f(x) = 2x^{3} - 3(2 + \lambda)x^{2} + 12\lambda x$ $f(x) = 6x^{2} - 6(2 + \lambda)x + 12\lambda$ D > 0 $36(2 + \lambda)^{2} - 24.12 \cdot \lambda > 0$ $\Rightarrow (\lambda - 2)^{2} > 0$ $\Rightarrow \lambda \neq 2$ so required set is option (A,C,D)

4. $2y^{3} = ax^{2} + x^{3}$ $6y^{2} \frac{dy}{dx} = 2ax + 3x^{2}$ $\frac{dy}{dx}\Big|_{(a,a)} = \frac{5a^{2}}{6a^{2}} = \frac{5}{6}$ Tangent at (a, a) is 5x - 6y = -a $\alpha = \frac{-a}{5}, \beta = \frac{a}{6}$ $\alpha^{2} + \beta^{2} = 61 \implies \frac{a^{2}}{25} + \frac{a^{2}}{36} = 61$ $a^{2} = 25.36$ $a = \pm 30$ 6. $\frac{dy}{dx} = K^{2}e^{kx}$

 $\left. \frac{\mathrm{d}y}{\mathrm{d}x} \right|_{x=0} = \mathrm{K}^2 = \mathrm{tan}\theta$

(where θ is angle made by x-axis)

Let $\boldsymbol{\phi}$ be the angle made by y-axis

$$\tan \theta = \tan\left(\frac{3\pi}{2} - \phi\right) = \cot\phi$$

$$\cot \phi = K^{2}$$

$$\phi = \cot^{-1} (K^{2})$$

$$\Rightarrow \phi = \sin^{-1}\left(\frac{1}{\sqrt{1 + K^{4}}}\right)$$

7. $f(0) = 0 \neq f(1)$

there will be no $x \in (0, \infty)$ (\therefore Rolle's theorem is not applicable)

for which f'(x) = 0 i.e, $\cot^{-1} x = \frac{x}{1+x^2}$

$$f''(x) = \frac{-1}{1+x^2} - \frac{(1+x^2) - 2x^2}{(1+x^2)^2} = \frac{-1}{1+x^2} + \frac{x^2 - 1}{(x^2+1)^2}$$
$$f''(x) = \frac{-2}{(x^2+1)^2} < 0$$

f'(x) is strictly decreasing

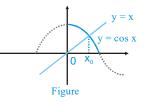
$$\lim_{x\to\infty} f'(x) = \lim_{x\to\infty} \left(\frac{-x}{1+x^2} + \cot^{-1}x\right) = 0$$

 $f(0^+) = \lim_{x \to 0^+} \left(\cot^{-1} x - \frac{x}{1 + x^2} \right) = \frac{\pi}{2}$ $\frac{f\left(x + \frac{2}{\pi}\right) - f(x)}{2/\pi} = f'(c) \quad c \in \left(0, \frac{\pi}{2}\right)$ (:. LMVT is applicable) :. $f'(c) < \frac{\pi}{2}$ $f\left(x + \frac{2}{\pi}\right) - f(x) < \frac{2}{\pi} \times \frac{\pi}{2}$ $f\left(x + \frac{2}{\pi}\right) - f(x) < 1$ $f'(x) \ge 0; f(x) \text{ is increasing}$:. $f(x) \in [f(0), f(\infty))$ f(0) = 0 $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} x \cot^{-1} x = \lim_{x \to 0} \frac{\cot^{-1} x}{1/x}$ $= \lim_{x \to \infty} \frac{-1}{1 + x^2} \times (-x^2) = 1$ $f(x) \in [0, 1)$

 $f(x) = \sec x$ will have no solution

$$f'(x) = \frac{\sec^2 x(\cos x + x) (\cos x - x)}{(1 + x \tan x)^2}$$

The only factor in f'(x) which changes sign is $\cos x - x$. Let us consider graph of $y = \cos x$ and y = x

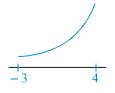


It is clear from figure that for $x \in (0, x_0)$, $\cos x - x > 0$

and for
$$x \in \left(x_0, \frac{\pi}{2}\right)$$

 $\cos x - x < 0, \implies f'(x)$ has maxima at x_0

10. (A) f(x) has no relative minimum on (-3, 4)



8.

MATHS FOR JEE MAIN & ADVANCED

- **(B)** f(x) is continuous function on [-3, 4]
 - \Rightarrow f(x) has min. and max. on [-3, 4] by IVT
- (C) $f''(x) > 0 \Rightarrow f(x)$ is concave upwards on [-3, 4]
- **(D)** f(3) = f(4)
 - By Rolle's theorem
 - $c \in (3, 4)$, where f'(c) = 0
 - \Rightarrow critical point in [-3, 4]

11. $y = \frac{2(x-2)+3}{x-2}$ $y = 2 + \frac{3}{(x-2)}$ $\frac{dy}{dx} = \frac{-3}{(x-2)^2} < 0$ ∴ y decreases $\forall x \in \mathbb{R}$ Now, $x = \frac{2y-1}{y-2}$ xy-2x=2y-1 y(x-2)=2x-1 $y = \frac{2x-1}{x-2} = f^{-1}(x)$ [Also, $y \in \mathbb{R} - \{1\}$]

14. Slope of tangent = 1

$$f'(x) = 1$$

$$x^{2} - 5x + 7 = 1$$

$$x^{2} - 5x + 6 = 0$$

$$x = 2, 3$$

$$f(2) = \frac{8}{3}, f(3) = \frac{7}{2}$$

⇒ f'(c) = 0 for at least one $c \in (c_1, c_2)$

20. (A) $f(x) = x - \tan^{-1}x$

$$f'(x) = 1 - \frac{1}{1+x^2} = \frac{x^2}{1+x^2} > 0$$

- $\Rightarrow f is increasing in (0, 1)$ f(x)>f(0) but f(0)=0 f(x)>0 $\Rightarrow x> \tan^{-1}x in (0, 1)$
- (B) $f(x) = \cos x 1 + \frac{x^2}{2}$ $f'(x) = -\sin x + x = x - \sin x > 0 \text{ in } (0, 1)$
- \Rightarrow (B) is not correct

(C)
$$f(x) = 1 + x ln \left(x + \sqrt{1 + x^2} \right) - \sqrt{1 + x^2}$$

$$f'(x) = x \left(\frac{1 + \frac{1}{2} \cdot \frac{2x}{\sqrt{1 + x^2}}}{x + \sqrt{1 + x^2}} \right) + \ln\left(x + \sqrt{1 + x^2}\right) - \frac{x}{\sqrt{1 + x^2}}$$

$$= \frac{x}{\sqrt{1+x^{2}}} + \ln\left(x + \sqrt{1+x^{2}}\right) - \frac{x}{\sqrt{1+x^{2}}} > 0 \ \forall \ x \in \mathbb{R}$$

 \Rightarrow (C) is true

(D)
$$f(x) = x - \frac{x^2}{2} - \ln(1+x)$$

 $f'(x) = (1-x) - \frac{1}{1+x} = \frac{(1-x^2) - 1}{1+x} = -\frac{x^2}{1+x} < 0$

\Rightarrow (D) is correct

hence f(x) is decreasing in (0, 1)

23.
$$\frac{dx}{dt} = \frac{2(-\cos ec^2 t)}{\cot t}$$

at $t = \frac{\pi}{4}, \frac{dx}{dt} = -4$
$$\frac{dy}{dt} = \sec^2 t - \csc e^2 t$$

at $t = \frac{\pi}{4}$ $\frac{dy}{dt} = 0$
$$\frac{dy}{dx} = 0 \text{ for tangent & hence it is parallel to x-axis & its}$$

normal is parallel to y axis

24. $2y = x^2$

2y' = 2x

$$\mathbf{y}' = \mathbf{h}$$

Equation of normal at (h, k)

$$(y-k) = -\frac{l}{h}(x-h)$$

As it passes through (0, 3)

- So, $(3-k)h = -(-h) \implies (3-k)h = h$
- or, h(3-k-1)=0
- or, h(2-k) = 0
- or, 2h-hk=0
- or, $2h \frac{h^3}{2} = 0$ $\left(\begin{array}{cc} Q & k = \frac{h^2}{2} \end{array} \right)$
- or, $4h h^3 = 0$
- or, $h = 0, \pm 2$
- :. Required points are (2, 2) & (-2, 2)

(Rejecting (0, 0) since, its distance from point (0,3) is 3 which is not shortest.)

26.
$$f'(x) = 2 - \frac{1}{1 + x^2} - \frac{1}{\sqrt{x^2 + 1}} = 1 - \frac{1}{1 + x^2} + 1 - \frac{1}{\sqrt{x^2 + 1}}$$
$$= \frac{x^2}{1 + x^2} + \left(1 - \frac{1}{\sqrt{x^2 + 1}}\right) \ge 0$$

27. $\phi(x) = f^3(x) - 3f^2(x) + 4f(x) + 5x + 3\sin x + 4\cos x$

 $\phi'(x) = (3f^{2}(x) - 6f(x) + 4)f'(x) + 5 + 3\cos x - 4\sin x \dots (i)$ 3\cos x - 4\sin x \ge - 5

 $5 + (3\cos x - 4\sin x) \ge 0$

also $3f^2(x) - 6f(x) + 4 > 0 \Rightarrow D < 0$

$$\phi'(x) > 0 \quad \forall f'(x) > 0$$

Now let f'(x) = -11

 $\phi'(x) \leq -1$

$$\phi'(x) = -11(3f^{2}(x) - 6f(x) + 4) + 5 + 3\cos x - 4\sin x$$

Now $3f^{2}(x) - 6f(x) + 4 > 1$

$$\Rightarrow -11 (3f^{2}(x) - 6f(x) + 4) \le -11 \dots (ii)$$

$$3\cos x - 4\sin x \le 5$$

$$\Rightarrow 5 + (3\cos x - 4\sin x) \le 10 \dots (iii)$$

$$(ii) + (iii)$$

$$\Rightarrow -11 (3f^{2}(x) - 6f(x) + 4) + 5 + (3\cos x - 4\sin x) \le -1$$

28.
$$f(x) = \int_{0}^{\pi} \cos t \cos(x - t) dt \quad \dots(1)$$
$$= \int_{0}^{\pi} -\cos t \cdot \cos(x - \pi + t) dt \text{ (using King)}$$
$$f(x) = \int_{0}^{\pi} \cos t \cdot \cos(x + t) dt \quad \dots(2)$$
$$(1) + (2) \text{ gives}$$
$$2 f(x) = \int_{0}^{\pi} \cos t (2 \cos x \cdot \cos t) dt$$
$$\therefore \quad f(x) = \cos x \int_{0}^{\pi} \cos^{2} t \, dt = 2 \cos x \int_{0}^{\pi/2} \cos^{2} t \, dt$$
$$f(x) = \frac{\pi \cos x}{2} \text{ Now verify.}$$
Only (A) & (B) are correct.

30.
$$f(x) = \int_{0}^{x} \sqrt{1 - t^{4}} dt a$$

 $f(-x) = \int_{0}^{-x} \sqrt{1 - t^{4}} dt$
 $= -\int_{0}^{x} \sqrt{1 - u^{4}} du \quad (Put t = -u)$

 $f(-x) = -f(x) \implies$ 'f is odd function. Check other options.

31.
$$f(x) = \frac{1}{3x^{2/3}}$$

$$f(0) \rightarrow \infty \text{ tangent is vertical at } x = 0$$
Equation of tangent at (0, 0) is $x = 0$
Equation of normal is $y = 0$

$$f(x) = f^{-1}(x)$$

$$x^{\frac{1}{3}} = x^{3} \implies x^{9} = x$$

$$\Rightarrow x = 0; 1 ; -1$$
36.
$$y = x^{1/3}(x-1)$$

$$\frac{dy}{dx} = \frac{4}{3}x^{1/3} - \frac{1}{3} \cdot \frac{1}{x^{2/3}} = \frac{1}{3x^{2/3}} [4x-1]$$
hence f is \uparrow for $x > \frac{1}{4}$ and $f \downarrow$ for $x < \frac{1}{4}$

$$\left[x^{2/3}\text{ is always positive and } x = 1/4\right]$$

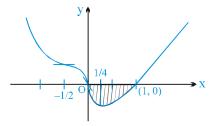
the curves has a local minima

now f'(x) =
$$\frac{4}{3}x^{1/3} - \frac{1}{3} \cdot x^{-2/3}$$

(non existent at x = 0, vertical tangent)

$$f''(x) = \frac{4}{9} \cdot \frac{1}{x^{2/3}} + \frac{1}{3} \cdot \frac{2}{3} \cdot \frac{1}{x^{5/3}}$$
$$= \frac{2}{9x^{2/3}} \left[2 + \frac{1}{x} \right] = \frac{2}{9x^{2/3}} \left[\frac{2x+1}{x} \right]$$
$$\therefore f''(x) = 0 \text{ at } x = -\frac{1}{2} \quad \text{(inflection point)}$$

graph of f(x) is as



$$A = \int_{0}^{1} \left(x^{4/3} - x^{1/3} \right) dx = \frac{3}{7} x^{3/7} - \frac{3}{4} x^{4/3} \bigg]_{0}^{1}$$
$$= \left| \frac{3}{7} - \frac{3}{4} \right| = 3 \left| \frac{4 - 7}{28} \right| = \frac{9}{28} \implies (D)$$

38. $\phi'(x) = (3(f(x))^2 - 6(f(x)) + 4)f'(x) + 5 + 3\cos x - 4\sin x$ $5 - \sqrt{9 + 16} \le 5 + 3\cos x - 4\sin x \le 5 + \sqrt{9 + 16}$ adding $(3(f(x))^2 - 6(f(x)) + 4)f'(x)$ $(3(f(x))^2 - 6(f(x)) + 4)f'(x) \le \phi'(x) \le (3(f(x))^2 - 6(f(x)) + 4)f'(x) + 10$

- → 3(f(x))²-6f(x)+4=3 (f(x)-1)²+1>0 (3(f(x))²-6(f(x))+4)f'(x)≥0 when ever f(x) is increasing.
- $\Rightarrow \phi'(x) \ge 0$
- $\Rightarrow \phi(x)$ is increasing, when ever f(x) is increasing.
- If f'(x) = -11 then

 $(3(f(x))^2 - 6f(x) + 4) f'(x) + 10 = -33 (f(x) - 1)^2 - 1 < 0$

$$\Rightarrow \phi'(x) < 0 \Rightarrow \phi(x) \text{ is decreasing.}$$

41.
$$f'(x) = (x-1)^{n-1} (x+1)^{n-1}$$

 $[2(n+1)x^3 + (2n+1)x^2 + 2(n-1)x - 1]$
At $x = 1$ $2(n+1)x^3 + (2n+1)x^2 + 2(n-1)x - 1 \neq 0$

for $n \in N$

- \therefore n 1 must be odd \Rightarrow n is even
- **44.** (A) let $f(x) = \sin x e^{-x}$
 - then f'(x) = $\cos x + e^{-x}$

Now between 2 roots of f(x) = 0 i.e. $e^x \sin x = -1$

there will be one root of f'(x) = 0

 $\sin x - e^{-x}$

 $e^x \cos x = -1$

(B) Let $f(x) = x^{100} + \sin x - 1$

$$f'(x) = 100x^{99} + \cos x > 0, x \in [0, 1]$$

- \Rightarrow f(x) is increasing.
- (C) Suppose $f(x) = ax^3 2bx^2 + cx$, then clearly f(0) = 0
- and f(1) = a 2b + c = 0,
- $\Rightarrow f(0) = f(1)$

:. By Rolle's theorem $f'(x) = 3ax^2 - 4bx + c = 0$ for at least one x in (0, 1) which is positive

(D)
$$y^2 = 4ax \Rightarrow \frac{dy}{dx} = \frac{2a}{y} \Rightarrow y = e^{\frac{-x}{2a}}$$

 $\Rightarrow \frac{dy}{dx} = \frac{-1}{2a}e^{\frac{-x}{2a}} = \frac{-1}{2a}y$
Product of slopes $= \left(\frac{2a}{y}\right)\left(\frac{-y}{2a}\right) = -1$
 $f(x) = \frac{1}{2a} = -3x + \sin x$

5.
$$f(x) = \frac{1}{(x+1)^3} - 3x + \sin x$$

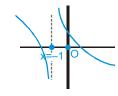
Domain of 'f' is $(-\infty, -1) \cup (-1, \infty)$

$$f'(x) = -3\left(\frac{1}{(x+1)^4} + 1\right) + \cos x.$$

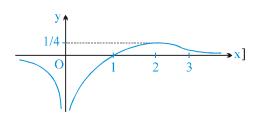
 \Rightarrow f'(x)<0 \Rightarrow f is decreasing

$$\lim_{x \to -1^+} f(x) \to \infty \quad \lim_{x \to -1^-} f(x) \to -\infty$$

$$\lim_{x \to \infty} f(x) \to -\infty \lim_{x \to -\infty} f(x) \to \infty$$



 \Rightarrow f(x) = 0 has exactly two roots.



48.
$$f'(x) = \frac{-40.12x(x+3)(x-1)}{(3x^4+8x^3-18x^2+60)^2}$$
$$f'(x) = 0$$
$$\frac{+}{-3} = \frac{+}{0} + \frac{+}{1}$$
signs of f (x)

at x=0, x=-3, x=1so at x=0, f(x) has local minima. and at x=-3, x=1; f(x) has local maxima

$$f(1) = \frac{40}{53}$$
, $f(-3) = \frac{-40}{75}$. $f(-3) < 0$, $f(1) > 0$ and $f(x) \neq 0$

⇒ f(x) is undefined at point(s) in (-3, 1). Hence f(x) has no absolute maxima.

49.
$$g(x) = 2f\left(\frac{x}{2}\right) + f(1-x)$$

and Now g'(x) = f'(x/2) - f'(1-x)g(x) is increasing if g'(x) ≥ 0

$$f'\left(\frac{x}{2}\right) \ge f'(1-x)$$

[f''(x) < 0 i.e. f'(x) is decreasing]

 $\Rightarrow 2/3 \le x \le 1$

$$\Rightarrow \frac{x}{2} \le 1 - x \qquad \Rightarrow x \le 2 - 2x$$

$$\Rightarrow 3x \le 2 \qquad \Rightarrow x \le 2/3 \qquad \Rightarrow 0 \le x \le \frac{2}{3}$$

$$\Rightarrow g(x) \text{ increases in } 0 \le x \le 2/3$$

and g'(x) \le 0 for decreasing

$$\Rightarrow f'\left(\frac{x}{2}\right) \le f'(1 - x) \qquad \Rightarrow \quad \frac{x}{2} \ge 1 - x$$

50.
$$f'(x) = \frac{1}{1+x^2} - \frac{1}{2}\frac{1}{x}, x > 0 = \frac{-(x-1)^2}{2x(1+x^2)} \le 0 \quad \forall x > 0.$$

 $f(x) \text{ is decreasing } \forall x > 0.$
 $On\left[\frac{1}{\sqrt{3}}, \sqrt{3}\right], \text{ greatest value is}$
 $f\left(\frac{1}{\sqrt{3}}\right) = \frac{\pi}{6} - \frac{1}{2} \bullet n\left(\frac{1}{\sqrt{3}}\right) \text{ and least value is}$

$$f(\sqrt{3}) = \frac{\pi}{3} - \frac{1}{2} \bullet n \sqrt{3}$$

Part # II : Assertion & Reason

3. Statement-II :

$$f(x)$$
 is continuous, derivable & f(1) = f(2) = 0

$$\Rightarrow$$
 f'(x) = 0 has at least one root in (1, 2).

$$\Rightarrow e^{10x}(2x-3)+10e^{10x}(x^2-3x+2)=0$$

has atleast one root in (1, 2).

$$\Rightarrow$$
 10x²-28x+17=0 has at least one root in (1, 2).

Statement-I is true & statement-II explains statement-I.

$$f'(x) = 50x^{49} - 20x^{19}$$
$$= 10x^{19}(5x^{30} - 2)$$

x = 0 is stationary point. Statement-2 is ture. f(0) = 0

$$f\left(\left(\frac{2}{5}\right)^{1/30}\right) = \left(\frac{2}{5}\right)^{5/3} - \left(\frac{2}{5}\right)^{2/3} < 0$$

f(1) = 0

- :. Global maximum is 0. Statement-1 is true.
- 5. Consider $f(x) = x^{1/x}$

$$\mathbf{f}(\mathbf{x}) = \mathbf{x}^{1/\mathbf{x}} \left(\frac{1 - \ln \mathbf{x}}{\mathbf{x}^2} \right) \ \forall \ \mathbf{x} > 0 \qquad \overbrace{\mathbf{0}}^{\mathbf{x}} \stackrel{\mathbf{e}}{\mathbf{e}}$$

 \therefore at x = e, f(x) has absolute maximum value.

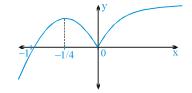
$$3^{1/3} > 4^{1/4} = 2^{1/2}$$
.

Hence both statements are true & statement-II explains statements I.

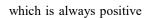
 $x \ge 2/3$

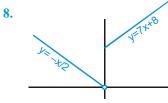
6.
$$f(x) = \begin{bmatrix} x + \sqrt{x} & \text{if } x \ge 0 \\ \\ x + \sqrt{-x} & \text{if } x < 0 \end{bmatrix}$$

The graph of f(x) is shown with f'(x) = 0 as x = -1/4. Also derivative fails at x = 0. Hence there are two critical points.



7. $\frac{dy}{dx} = 7x^6 + 24x^2 + 2$





From figure st. I is false, because $f(0-h) \le f(0)$ st. II is obviously true.

10. Let f(x) = 0 has two roots say $x = r_1$

and
$$\mathbf{x} = \mathbf{r}_2$$
 where $\mathbf{r}_1, \mathbf{r}_2 \in$

$$\Rightarrow$$
 f(r₁)=f(r₂)

hence there must exist some $c \in (r_1, r_2)$ where f'(c) = 0

[a, b]

but
$$f'(x) = x^6 - x^5 + x^4 - x^3 + x^2 - x + 1$$

 $f'(x) = (x^6 - x^5) + (x^4 - x^3) + (x^2 - x) + 1 > 0$ for $x \ge 1$,

 $f'(x) = (1-x) + (x^2 - x^3) + (x^4 - x^5) + x^6 > 0$ for $x \leq 1$,

hence f'(x) > 0 for all x

- :. Rolles theorem fails
- \Rightarrow f(x) = 0 can not have two or more roots.

12.
$$f'(x) = \frac{x^{1/x}}{x^2} (1 - \Phi nx)$$

- $f'(x) \le 0$, when $x \ge e$
- f(x) is decreasing function, when $x \ge e$

 \Rightarrow f(π) < f(e) $\pi > e$ $\pi^{1/\pi} < e^{1/e}$ $\Rightarrow e^{\pi} > \pi^{e}$

:. Statement-1 is True, Statement-2 is False

+91 - 9350679141

3. St. II :-
$$f(x) = \frac{x^2}{x^3 + 200}$$

 $f'(x) = \frac{2x(x^3 + 200) - 3x^4}{(x^3 + 200)^2} = \frac{x(400 - x^3)}{(x^3 + 200)^2}$
 $+ \frac{-}{0}$
(400)^{1/3}
(400)^{1/3}

St. II is false.

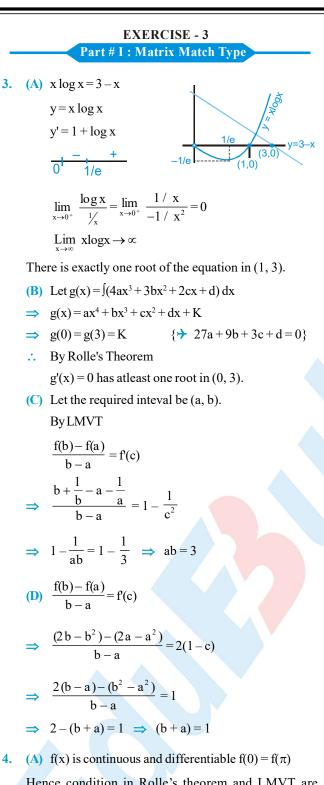
1

- St. I \rightarrow f(x) has maxima at x = (400)^{1/3} & 7 is the closest natural number.
- \therefore a_n has greatest value for n = 7.

6.
$$f(x) = ln(2+x) - \frac{2x+2}{x+3}$$
 is continuous in $(-2, \infty)$
 $f'(x) = \frac{1}{x+2} - \frac{4}{(x+3)^2} = \frac{(x+3)^2 - 4(x+2)}{(x+2)(x+3)^2}$
 $= \frac{x^2 + 2x + 1}{(x+2)(x+3)^2} = \frac{(x+1)^2}{(x+2)(x+3)^2} > 0$
(f'(x)=0 at x = -1)
 \Rightarrow f is increasing in $(-2, \infty)$

also
$$\lim_{x \to -2^+} f(x) \to -\infty$$
 and $\lim_{x \to \infty} f(x) \to \infty$

unique root



Hence condition in Rolle's theorem and LMVT are satisfied.

(B)
$$f(1^{-}) = -1, f(1) = 0, f(1^{+}) = 1$$

f(x) is not continuous at x = 1, belonging to $\left|\frac{1}{2}, \frac{3}{2}\right|$

Hence, atleast one condition in LMVT and Rolle's theorem is not satisfied

C)
$$f'(x) = \frac{2}{5}(x-1)^{-3/5}, x \neq 1$$

At x = 1, f(x) is not differentiable.

Hence at least one condition in LMVT and Rolle's theorem is not satisfied.

(D) At x = 0
L.H.D. =
$$\lim_{x \to 0^{-}} t \frac{x \left(\frac{e^{\frac{1}{x}} - 1}{e^{\frac{1}{x}} + 1}\right) - 0}{x - 0} = \frac{0 - 1}{0 + 1} = -1$$

R.H.D. = 1

At x = 0, f(x) is not differentiable

Hence at least one condition in LMVT and Rolle's theorem is not satisfied.

$$y = ax^2 + bx + c$$

Points A, B and D lies on the curve.

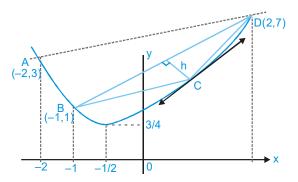
$$4a - 2b + c = 3$$
$$a - b + c = 1$$

$$4a + 2b + c = 7$$

Solving the equations we get a = b = c = 1.

:
$$y = x^2 + x + 1$$

To maximize area of W_{ABCD} , we maximize area (ΔBCD).



To maximize Area(Δ BCD) we have to maximize h (as shown in figure)

for maximum h

 \Rightarrow Slope of BD = Slope of tangent at C

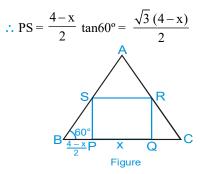
$$\frac{7-1}{2+1} = (2x+1)$$

$$x = \frac{1}{2}$$
$$y = \frac{1}{4} + \frac{1}{2} + 1 = \frac{7}{4}$$
$$C \equiv \left(\frac{1}{2}, \frac{7}{4}\right)$$

On the basis of this the coloumns can be matched.

6. (A) Let PQ = x

Then BP = $\frac{4-x}{2}$



: area A of rectangle =
$$\frac{\sqrt{3}}{2}(4-x)x$$

$$\frac{dA}{dx} = \frac{\sqrt{3}}{2}(4-2x) = 0 \implies x=2$$

$$\frac{\mathrm{d}^2 \mathrm{A}}{\mathrm{d} \mathrm{x}^2} = -\sqrt{3} < 0$$

- \therefore A is maximum, when x = 2.
- $\therefore \quad \text{Maximum area} = \frac{\sqrt{3}}{2} \ 2.2 = 2\sqrt{3} \ .$

Square of maximum area = 12

(B) Dimensions be x, 2x, h

$$72 = x \cdot 2x \cdot h$$

$$36 = x^2 h \dots (1)$$

$$S = 4x^2 + 6x^2$$

$$S = 4x^2 + 6\frac{36}{x}$$

$$\frac{dS}{dx} = 8x - \frac{216}{x^2} = \frac{8(x^3 - 3^3)}{x^2}$$

For least S, x = 3 and least S is 108.

7. (A)
$$4y \frac{dy}{dx} = 2ax \Rightarrow -4 \frac{dy}{dx} = 2a$$

 $\Rightarrow \frac{dy}{dx} = \frac{-a}{2} = -1 \Rightarrow a = 2$
 $2y^2 = ax^2 + b$
 $2 = a + b$
 $b = 0$
 $a - b = 2 - 0 = 2$
(B) Slope of normal = -1
Slope of tangent = 1 = $\frac{dy}{dx}$
 $18y \frac{dy}{dx} = 3x^2$
 $b = \frac{a^2}{6}$ (i)
 $9b^2 = a^3 \Rightarrow a = 4; b = \frac{16}{6} = \frac{8}{3}$
 $a - b = 4 - \frac{8}{3} = \frac{4}{3}$
 $(c) (1, 2)$ satisfies $y = ax^2 + bx + \frac{7}{2}$
 $\Rightarrow 2 = a + b + \frac{7}{2} \Rightarrow a + b = \frac{-3}{2}$
 $(c) (1, 2)$ satisfies $y = ax^2 + bx + \frac{7}{2}$
 $\Rightarrow 2 = a + b + \frac{7}{2} \Rightarrow a + b = \frac{-3}{2}$
 $(c) (1, 2)$ satisfies $y = ax^2 + bx + \frac{7}{2}$
 $(c) (1, 2)$ satisfies $y = ax^2 + bx + \frac{7}{2}$
 $(c) (1, 2)$ satisfies $y = ax^2 + bx + \frac{7}{2}$
 $(c) (1, 2)$ satisfies $y = ax^2 + bx + \frac{7}{2}$
 $(c) (1, 2)$ satisfies $y = ax^2 + bx + \frac{7}{2}$
 $(c) (1, 2)$ satisfies $y = ax^2 + bx + \frac{7}{2}$
 $(c) (1, 2)$ satisfies $y = ax^2 + bx + \frac{7}{2}$
 $(c) (1, 2)$ satisfies $y = ax^2 + bx + \frac{7}{2}$
 $(c) (1, 2)$ satisfies $y = ax^2 + bx + \frac{7}{2}$
 $(c) (1, 2)$ satisfies $y = ax^2 + bx + \frac{7}{2}$
 $(c) (1, 2)$ satisfies $y = ax^2 + bx + \frac{7}{2}$
 $(c) (1, 2)$ satisfies $y = ax^2 + bx + \frac{7}{2}$
 $(c) (1, 2)$ satisfies $y = ax^2 + bx + \frac{7}{2}$
 $(c) (1, 2)$ satisfies $y = ax^2 + bx + \frac{7}{2}$
 $(c) (1, 2)$ satisfies $y = ax^2 + bx + \frac{7}{2}$
 $(c) (1, 2)$ satisfies $y = ax^2 + bx + \frac{7}{2}$
 $(c) (1, 2)$ satisfies $y = ax^2 + bx + \frac{7}{2}$
 $(c) (1, 2)$ satisfies $y = ax^2 + bx + \frac{7}{2}$
 $(c) (1, 2)$ satisfies $y = ax^2 + bx + \frac{7}{2}$
 $(c) (1, 2)$ satisfies $y = ax^2 + bx + \frac{7}{2}$
 $(c) (1, 2)$ satisfies $y = ax + bx = \frac{7}{2}$
 $(c) (1, 2)$ satisfies $y = ax + bx = \frac{7}{2}$
 $(c) (1, 2)$ satisfies $y = ax + bx = \frac{7}{2}$
 $(c) (1, 2)$ satisfies $y = ax + bx = \frac{7}{2}$
 $(c) (1, 2)$ satisfies $y = ax + bx = \frac{7}{2}$
 $(c) (1, 2)$ satisfies $y = ax + bx = \frac{7}{2}$
 $(c) (1, 2)$ satisfies $y = ax + bx = \frac{7}{2}$
 $(c) (1, 2)$ satisfies $y = ax + bx = \frac{7}{2}$
 $(c) (1, 2)$ satisfies $y = ax + bx = \frac{7}{2}$
 $(c) (1, 2)$ satisfies $y = ax + bx = \frac{7}{2}$
 $(c) (1, 2)$ satisfies $y = ax + bx$

Comprehension #1

$$f(x) = x^{2}f(1) - xf'(2) + f''(3)$$

$$f(0) = 2 \implies f''(3) = 2$$

$$f(x) = x^{2}f(1) - xf'(2) + 2$$

$$f'(x) = 2xf(1) - f'(2)$$

$$f''(2) = 4f(1) - f'(2) \qquad \dots \dots (i)$$

$$f''(x) = 2if(1)$$

$$2 = 2if(1) \implies f(1) = 1$$

$$f'(2) = 4(1) - f'(2) \quad (from (i))$$

$$f'(2) = 2$$

$$f(x) = x^{2} - 2x + 2$$
1.
$$f'(x) = 2x - 2 \implies f'(3) = 4$$
equation of tangent at (3, 5) is

$$y - 5 = 4(x - 3)$$

$$y = 4x - 7$$
3.
$$2e^{2x} = x^{2} - 2x + 2$$
interseting at (0, 2)

$$\left(\frac{dy}{dx}\right)_{1} = -2 \quad ; \quad \left(\frac{dy}{dx}\right)_{2} = 4$$
angle of intersection =
$$\left|\frac{m_{1} - m_{2}}{1 + m_{1}m_{2}}\right|$$

$$\tan \theta = \left|-\frac{6}{7}\right| \implies \theta = \tan^{-1}\left(\frac{6}{7}\right)$$
Comprehension #2
1-3

$$\frac{da}{dt} = 2 \implies a = 2t + c$$

$$\Rightarrow c = 0 \qquad {\Rightarrow} a = 0, \text{ when } t = 0$$

$$\therefore \text{ the curve } y = x^{2} - 2ax + a^{2} + a \text{ becomes}$$

$$y = x^{2} - 4tx + 4t^{2} + 2t$$

if x = 0, then $y = 4t^2 + 2t$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x - 4t \qquad \therefore \quad \frac{\mathrm{d}y}{\mathrm{d}x}\Big|_{\mathrm{at } x=0} = -4t$$

: equation of the tangent

$$y - (4t^2 + 2t) = -4t (x - 0)$$

i.e.
$$y = -4t x + 4t^2 + 2t$$

vertex of $y = x^2 - 4t x + 4t^2 + 2t$ is (2t, 2t)

- \therefore distance of vertex from the origin = $2\sqrt{2}$ t
- :. rate of change of distance of vertex from origin with respect to $t = 2\sqrt{2}$

i.e.
$$k = 2\sqrt{2}$$

$$c(t) = 4t^2 + 2t$$

$$\therefore \quad \frac{dc}{dt} = 8t + 2 \quad \therefore \quad \frac{dc}{dt} \Big|_{at \ t = 2\sqrt{2}} = 16\sqrt{2} + 2$$
$$\bullet = 16\sqrt{2} + 2$$
$$m(t) = -4t$$

$$\therefore \quad \frac{\mathrm{dm}}{\mathrm{dt}} = -4 \qquad \therefore \quad \frac{\mathrm{dm}}{\mathrm{dt}}\Big|_{\mathrm{at t}=1} = -4$$

Comprehension #3

1. a = 1 $f(x) = 8x^3 + 4x^2 + 2bx + 1$ $f'(x) = 24x^2 + 8x + 2b = 2(12x^2 + 4x + b)$ for increasing function, $f'(x) \ge 0 \quad \forall x \in \mathbb{R}$

$$\therefore D \le 0 \implies 16 - 48b \le 0 \implies b \ge \frac{1}{2} \implies (C)$$

2. if
$$b = 1$$

 $f(x) = 8x^3 + 4ax^2 + 2x + a$

$$f'(x) = 24x^2 + 8ax + 2$$
 or $2(12x^2 + 4ax + 1)$

for non monotonic f'(x) = 0 must have distinct roots

hence
$$D > 0$$

i.e. $16a^2 - 48 > 0 \implies a^2 > 3$;
 $\therefore a > \sqrt{3} \text{ or } a < -\sqrt{3}$
 $\therefore a \in 2, 3, 4, \dots$
sum = 5050 - 1 = 5049 Ans.

3. If
$$x_1, x_2$$
 and x_3 are the roots then

$$\log_{2} x_{1} + \log_{2} x_{2} + \log_{2} x_{3} = 5$$
$$\log_{2} (x_{1} x_{2} x_{3}) = 5$$
$$x_{1} x_{2} x_{3} = 32$$
$$-\frac{a}{8} = 32 \implies a = -256 \text{ Ans.}$$

Comprehension #4

At x = -5 f'(x) changes from + ve to - ve and x = 4, f'(x) change sign for + ve to - ve hence maxima at x = -5 and 4. f is continuous and f'(x) is not defined hence x = 2 must be geometrical sharp corner

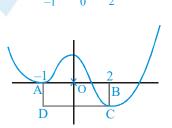
Comprehension # 7

$$f(x) = 3x^{4} - 4x^{3} - 12x^{2} + 5$$

$$f(x) = 12x^{3} - 12x^{2} - 24x$$

$$= 12x (x - 2) (x + 1)$$

$$\therefore a_{1} = -1, a_{2} = 0 \& a_{3} = 2$$



on the basis of above graph, the given questions can be solved.

Comprehension #8

1.
$$\lim_{x \to 0^+} x \ln\left(1 + \frac{1}{x}\right) = \lim_{x \to 0^+} \frac{\ln\left(\frac{x+1}{x}\right)}{\frac{1}{x}} \quad \left(\frac{\infty}{\infty}\right)$$

Using L'Hospital's Rule

$$l = \lim_{x \to 0} -\left(\frac{1}{x+1} - \frac{1}{x}\right) x^{2} = \lim_{x \to 0} \left(\frac{1}{x} - \frac{1}{x+1}\right) \cdot x^{2}$$
$$= \lim_{x \to 0} \frac{1}{x(x+1)} \cdot x^{2} = \lim_{x \to 0} \frac{x}{(x+1)} = 0 \text{ Ans.}$$

- 2. $\lim_{x \to 0} f(x) = 1$ (can be verified) $\lim_{x \to \infty} f(x) = e$
 - Also f is increasing for all $x > 0 \Rightarrow (D)$ y_{\uparrow}

(can be verified)

$$l = \left(\prod_{k=1}^{n} \left(1 + \frac{n}{k}\right)^{k/n}\right)^{1/n}$$

{given
$$f(x) = (1 + 1/x)^x$$
 and $f(k/n) = \left(1 + \frac{n}{k}\right)^{k/n}$ }

e

 $\frac{(0,1)}{0}$

taking log,

$$ln \ l = \lim_{n \to \infty} \frac{1}{n} \cdot \sum_{k=1}^{n} \ln\left(1 + \frac{n}{k}\right)^{k/n}$$

= $\lim_{n \to \infty} \frac{1}{n} \cdot \sum_{k=1}^{n} \frac{k}{n} \ln\left(1 + \frac{1}{k/n}\right) dx$
= $\int_{0}^{1} \frac{x}{11} \ln\left(1 + \frac{1}{x}\right) dx$
= $\ln\left(1 + \frac{1}{x}\right) \cdot \frac{x^2}{2} \int_{0}^{1} + \int_{0}^{1} \left(\frac{1}{x} - \frac{1}{x+1}\right) \cdot \frac{x^2}{2} dx$
= $\left(\frac{1}{2}\ln 2 - 0\right) + \frac{1}{2} \int_{0}^{1} \frac{x+1-1}{x+1} dx$
= $\frac{1}{2}\ln 2 + \frac{1}{2} [x - \ln(x+1)]_{0}^{1}$
= $\frac{1}{2}\ln 2 + \frac{1}{2} [(1 - \ln 2) - 0] = \frac{1}{2}$
 $l = \sqrt{e}$ Ans.

Comprehension #9

Let $g(x) = \frac{x + \sin x}{2}$, $x \in [0, \pi]$. g(x) is increasing function of x.

 \therefore range of g(x) is $\left[0, \frac{\pi}{2}\right]$

$$f(x) = \frac{x + \sin x}{2}, x \in [0, \pi]$$
Now let $\pi \le t \le 2\pi$,
then $f(t) + f(2\pi - t) = \pi$
i.e $f(t) + \frac{2\pi - t + \sin(2\pi - t)}{2} = \pi$
i.e $f(t) + \pi - \frac{t}{2} - \frac{\sin t}{2} = \pi$
i.e $f(t) = \frac{t + \sin t}{2}$

$$f(x) = \frac{x + \sin x}{2} \text{ for } \pi \le x \le 2\pi$$
Thus $f(x) = \frac{x + \sin x}{2} \text{ for } 0 \le x \le 2\pi$
Also $f(x) = f(4\pi - x) \text{ for all } x \in [2\pi, 4\pi]$

$$\Rightarrow f(x) \text{ is symmetric about } x = 2\pi$$

 \therefore from graph of f(x)

$$\therefore \quad \alpha = 2\pi - 0 = 2\pi$$

$$\beta = \alpha$$

Maximum value is $f(2\pi) = \pi = \frac{\beta}{2}$

Comprehension # 10

 $f(x) = tan^{-1}(\bullet n x)$

- 1. \rightarrow tan⁻¹(x) & •n x are increasing functions.
 - \Rightarrow f(x) is also increasing function.

2.
$$\lim_{x \to 0^+} \tan^{-1}(\P n x) \to -\frac{\pi}{2}$$
$$\lim_{x \to \infty} \tan^{-1}(\P n x) \to \frac{\pi}{2} \Rightarrow \text{ range of 'f' is } \left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$$

MATHS FOR JEE MAIN & ADVANCED

3. From graph, g(x) is discontinuous at $x = x_1, x_2, x_3$ $\tan^{-1}(\mathbf{\Phi} n x_1) = -1; \tan^{-1}(\mathbf{\Phi} n x_2) = 0; \tan^{-1}(\mathbf{\Phi} n x_3) = 1$

$$\Rightarrow x_1 = \frac{1}{e^{\tan 1}}; \quad x_2 = 1; \quad x_3 = e^{\tan 1}$$
$$x_1 + x_2 + x_3 = e^{\tan 1} + \frac{1}{e^{\tan 1}} + 1 > 3.$$

Comprehension #11

$$\begin{array}{c|cccc}
\text{Lt} & 1 & \bullet n \\
x \to 0 & \frac{1}{x} & \bullet n \\
\end{array} \begin{vmatrix}
f(x) & 1 & 0 \\
0 & \frac{1}{x} & 1 \\
1 & 0 & \frac{1}{x} \\
1 & 0 & \frac{1}{x}
\end{vmatrix} = 2$$
Lt $f(x) = 0$ $f(x) = 1$ $f(x) = 1$ (1)

for limit to exist

$$Lt_{x\to 0} \frac{f(x)}{x^3} = 0$$

$$\Rightarrow f(x) = a_0 x^6 + a_1 x^5 + a_2 x^4$$

Also $f'(0) = f'(2) = f'(1) = 0$
 $f'(x) = 6a_0 x^5 + 5a_1 x^4 + 4a_2 x^3$
 $= x^3(6a_0 x^2 + 5a_1 x + 4a_2)$
 $f'(2) = 0$

$$\Rightarrow 24a_0 + 10a_1 + 4a_2 = 0 \dots (2)$$

 $f'(1) = 0$
 $6a_0 + 5a_1 + 4a_2 = 0 \dots (3)$

Consider eqⁿ. (1)

$$\ln \left\{ \underset{x \to 0}{\text{Lt}} \left(\frac{f(x)}{x^3} + 1 \right)^{\frac{1}{x}} \right\} = 2$$

• n e ^{$\left(\underset{x \to 0}{\text{im}} \frac{f(x)}{x^4} \right)$} = 2
 $\Rightarrow \underset{x \to 0}{\text{Lt}} \frac{a_0 x^6 + a_1 x^5 + a_2 x^4}{x^4}$
 $\Rightarrow a_2 = 2$
Putting a_2 in (2) & (3)
 $24a_0 + 10a_1 = -8$
 $6a_0 + 5a_1 = -8$
on solving this we get

= 2

On the above basis the answers can be given.

EXERCISE - 4 Subjective Type

- 2. $f(x) = \sin 2x 8(a+1) \sin x + (4a^2 + 8a 14)x$ $f(x) = 2\cos 2x - 8(a+1)\cos x + (4a^2 + 8a - 14)$ $f(x) = 2(2\cos^2 x - 1) - 8(a + 1)\cos x + 4a^2 + 8a - 14$ $=4\{\cos^2 x - 2(a+1)\cos x\} + 4a^2 + 8a - 16$ $=4\{\cos x - (a+1)\}^2 - 20 > 0$ $= \{\cos x - (a+1)\}^2 - (\sqrt{5})^2 > 0$ $f(x) = \{\cos x - (a+1) - \sqrt{5}\} \{\cos x - (a+1) + \sqrt{5}\} > 0$ $\Rightarrow \cos x > a + 1 + \sqrt{5}$ or $\cos x < (a+1) - \sqrt{5}$ $\forall x \in R$ $a+1+\sqrt{5} < -1$ or $(a+1)-\sqrt{5} > 1$ $a < -2 - \sqrt{5}$ or $a > \sqrt{5}$ $a \in (-\infty, -2 - \sqrt{5}) \cup (\sqrt{5}, \infty)$ 4. (B) $f(x) = -(x-1)^3 (x+1)^2$ $f(x) = -\{3(x-1)^2(x+1)^2 + (x-1)^3 2(x+1)\}$ $= -(x-1)^2 (x+1) \{3x+3+2x-2\}$ $= -(x-1)^{2}(x+1)(5x+1)$ (C) $f(x) = x \bullet_n x$ $f(x) = 1 + \bullet_n x$ $f''(x) = \frac{1}{x} > 0$
 - \Rightarrow concave up
 - $\lim_{x\to 0^+} x \bullet_n x = 0, \lim_{x\to\infty} x \bullet_n x \to \infty$

1.0)

5. At t = 0 the point is origin

$$\frac{dx}{dt} = \lim_{t \to 0} \frac{2t + t^2 \sin 1 / t - 0}{t} = 2$$

$$\frac{dy}{dt} = \lim_{t \to 0} \frac{\frac{1}{t} \sin t^2}{t} = 1$$

$$\frac{dy}{dx} = \frac{1}{2}$$
equation of tangent is $y = 0 = \frac{1}{t}(x - 0)$

equation of tangent is $y - 0 = \frac{1}{2}(x - 0)$ equation of normal is y - 0 = -2(x - 0)

7. Let AC be pole, DE be man and B be farther end of shadow as shown in figure From triangles ABC and DBE

$$\frac{4.5}{x+y} = \frac{1.5}{y}$$

$$3y = 1.5 x$$

$$A = x + y = B$$

$$\frac{dy}{dt} = 2, \quad \frac{d}{dt} (x + y) = \frac{dx}{dt} + \frac{dy}{dt}$$
$$= 4 + 2 = 6$$

10. Consider
$$g(x) = \begin{cases} f(a) & f(b) & f(x) \\ \phi(a) & \phi(b) & \phi(x) \\ \psi(a) & \psi(b) & \psi(x) \end{cases}$$

Apply LMVT in g(x) in [a, b]

12. Let the point is (x_1, y_1) Slope of line joining $(0, 0) \& (x_1, y_1)$ is

$$\mathbf{m}_1 = \frac{\mathbf{y}_1}{\mathbf{x}_1}$$

3y

$$\frac{(2x + 2yy')}{(x^2 + y^2)} = \frac{C\left(\frac{y'}{x} - \frac{y}{x^2}\right)}{\left(1 + \frac{y^2}{x^2}\right)}$$

$$\frac{2(x_1 + y_1y')}{(x_1^2 + y_1^2)} = \frac{C(y'x_1 - y_1)}{(x_1^2 + y_1^2)}$$
$$2x_1 + 2y_1y' = Cx_1y' - Cy_1$$
$$2x_1 + Cy_1 = y'(Cx_1 - 2y_1)$$

$$y := \frac{(2x_1 + Cy_1)}{(Cx_1 - 2y_1)} = m_2$$

Calculate $\tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|$

14. Let (h, k) be point of inflection h sin h = k ...(i)

$$y' = \sin x + x \cos x$$

 $y'' = \cos x + \cos x - x \sin x$
 $y'' = 0 \Rightarrow 2 \cosh - h \sinh = 0 \Rightarrow 2 \cosh = k$...(ii)
 $\sin^2 h + \cos^2 h = 1$
 $\frac{k^2}{h^2} + \frac{k^2}{4} = 1 \Rightarrow 4k^2 + h^2k^2 = 4h^2$
 $\therefore \quad \log y^2 (4 + x^2) = 4x^2$
15. $f(x) = \begin{vmatrix} 2ax & 2ax - 1 & 2ax + b + 1 \\ b & b + 1 & -1 \end{vmatrix}$

$$f(x) = \begin{vmatrix} b & b+1 & -1 \\ 0 & 0 & 1 \end{vmatrix}$$

$$(R_3 \to R_3 - (R_1 + 2R_2))$$

$$f(x) = 2ax + b \implies f(x) = ax^2 + bx + c$$

$$f(x) \text{ is maximum at } x = \frac{5}{2}$$
(5)

$$f'\left(\frac{5}{2}\right) = 0 \implies 5a + b = 0$$

$$f(0) = 2 \implies c = 2, f(1) = 1 \implies a + b + c = 0$$

:.
$$a = \frac{1}{4}$$
, $b = -\frac{5}{4}$, $c = 2$
 $f(x) = \frac{1}{4}x^2 - \frac{5}{4}x + 2$

20.
$$f(x_1) = g(x_1) = 0$$

 $m_1 m_2 = -1$ and $|m_1| = |m_2|$
 $\Rightarrow m_1 = 1; m_2 = -1$ or $m_1 = -1; m_2 = 1$

$$ax^{2} + 2bxy + ay^{2} - c = 0$$

$$2xa + 2b\left(y + x\frac{dy}{dx}\right) + 2ay\frac{dy}{dx} = 0$$

$$\frac{dy}{dx} = \frac{-(2ax + 2by)}{2bx + 2ay}$$
slope of normal = $\frac{bx + ay}{ax + by}$
slope of line joining origin & point $(x_{1}, y_{1}) = \frac{y_{1}}{x_{1}}$
minimum distance is along normal.

so $\frac{bx_{1} + ay_{1}}{ax_{1} + by_{1}} = \frac{y_{1}}{x_{1}} \implies x_{1}^{2} = y_{1}^{2}$

$$\Rightarrow$$
 x₁ = y₁ or x₁ = -y₁(ii)

22.

for
$$\mathbf{x}_1 = \mathbf{y}_1$$
; $\left(\sqrt{\frac{c}{2(a+b)}}, \sqrt{\frac{c}{2(a+b)}}\right)$ & $\left(-\sqrt{\frac{c}{2(a+b)}}, -\sqrt{\frac{c}{2(a+b)}}\right)$
for $\mathbf{x}_1 = -\mathbf{y}_1\left(\pm\sqrt{\frac{c}{2(a-b)}}, m\sqrt{\frac{c}{2(a-b)}}\right)$ not possible
since $\mathbf{a} - \mathbf{b} < 0$

5.
$$f(x) = \sin^{3}x + \lambda \sin^{2}x$$
$$f'(x) = \sin x \cos x (3\sin x + 2\lambda)$$
$$f''(x) = 6\sin x \cos^{2}x - 3\sin^{3}x + 2\lambda \cos 2x$$
$$f'(x) = 0 \implies \sin x = 0 \text{ or } \cos x = 0 \text{ or } \sin x = \frac{-2\lambda}{3}$$
$$\cos x \neq 0 \text{ if } -\frac{\pi}{2} < x < \frac{\pi}{2}$$
$$\sin x = 0 \implies x = 0$$
$$\sin x = \frac{-2\lambda}{3}$$
$$-1 < \sin x < 1 \implies -1 < \frac{-2\lambda}{3} < 1$$
$$\implies \frac{-3}{2} < \lambda < \frac{3}{2}$$
$$\lambda \neq 0 \text{ otherwise there is only one critical point.}$$
$$If \lambda > 0, \text{ then } f''(0) > 0$$

⇒ x = 0 point of minima & f'(x) changes sign from positive to negative for $x = \sin^{-1}\left(\frac{-2\lambda}{3}\right)$ (point of maxima).

 $\lim_{h\to 0}$

26

If $\lambda < 0$ then x = 0 is a point of maxima while

$$x = \sin^{-1}\left(\frac{-2\lambda}{3}\right)$$
 is a point of minima. Thus for

$$\lambda \in \left(-\frac{3}{2}, \frac{3}{2}\right) - \{0\}$$
 function has exactly one maxima &

exactly one minima.

27. Let No. of children of john & anglina = y $\therefore x + (x+1) + y = 24$

$$y = 23 - 2x$$

Number of fights

$$F = x(x+1) + x(23-2x) + (x+1)(23-2x)$$

$$F = -3x^2 + 45x + 23$$

$$\frac{df}{dx} = 0 \implies -6x + 45 = 0 \implies x = 7.5$$

But 'x' wil be integral.

check x = 6 or x = 7

$$F = 191$$

30. Any point on curve $y = x^2$ is $P(t, t^2)$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 2\,\mathrm{x}$$

equation of normal at (t, t^2) is

$$y-t^2 = -\frac{1}{2t}(x-t)$$

Solving with $y = x^2$ we get

$$x^{2}-t^{2} = \frac{-1}{2t} (x-t) \implies (x-t)\left(x+t+\frac{1}{2t}\right) = 0$$

$$\Rightarrow x = -t - \frac{1}{2t}$$

So normal cuts the curve again at

$$Q\left(-t - \frac{1}{2t}, \left(-t - \frac{1}{2t}\right)^{2}\right)$$
$$z = PQ^{2} = 4t^{2}\left(1 + \frac{1}{4t^{2}}\right)^{3}$$
$$Now \frac{dz}{dt} = 0 \implies t = \pm \frac{1}{\sqrt{2}}, 0$$
$$\frac{dz}{dt} \text{ changes sign from negative to positive}$$

e about

t =
$$\frac{1}{\sqrt{2}}$$
 as well as t = $-\frac{1}{\sqrt{2}}$
(No chord is formed for t = 0)
z is minimum at t = $\pm \frac{1}{\sqrt{2}}$ & minimum value of z=PQ²=3
Shortest normal chord has length $\sqrt{3}$ & its equation is x + $\sqrt{2}y - \sqrt{2} = 0$

or
$$x - \sqrt{2}y + \sqrt{2} = 0$$

36. Let the vertices L, M, N of the square S be (1, 0), (1, 1) & (0, 1) respectively & the vertex O be origin. Let the co-ordinate of vertices A, B, C, D of the quadrilateral be (p, 0)(1, q)(r, 1) & (0, s)

Then
$$a^2 = (1-p)^2 + q^2$$

 $b^2 = (1-q)^2 + (1-r)^2$
 $c^2 = (1-s)^2 + r^2$
 $d^2 = p^2 + s^2$

Thus $a^2 + b^2 + c^2 + d^2 = (1 - p)^2 + q^2 + (1 - q)^2$ $+(1-r)^{2}+(1-s)^{2}+r^{2}+p^{2}+s^{2}$ Let $f(x) = x^2 + (1-x)^2$ $0 \le x \le 1$ f(x) = 2x - 2(1 - x)

$$f(x) = 0 \implies x = 1/2$$

- f'(x) = 4
- \Rightarrow f(x) is minimum at x = 1/2 & max. value of f(x) occur at x = 0, x = 1

$$\therefore \quad 1/2 \le f(x) \le 1$$

So $2 \le a^2 + b^2 + c^2 + d^2 \le 4$

37.
$$A+B+C=\pi \implies dA+dB=0 \implies dA=-dB$$

$$\frac{c}{\sin C} = 2R = constant$$

$$a = 2RsinA \implies da = 2RcosAdA \qquad \dots (i)$$
similarly
$$db = 2RcosBdB \qquad \dots (ii)$$
Divide (i) by (ii)

$$\frac{da}{db} = \frac{\cos A(dA)}{\cos B(dB)}$$

$$\Rightarrow \quad \frac{\mathrm{da}}{\mathrm{db}} = -\frac{\cos A}{\cos B}$$

EXERCISE - 5 Part # I : AIEEE/JEE-MAIN	I.	$2(a^2+b^2)-(a+b)^2$ $2a^2+2b^2-a^2-b^2-2ab$
		$2a^2 + 2b^2 - a^2 - b^2 - 2ab$ $a^2 + b^2 - 2ab = (a - b)^2$
2. $f(x) = 2x^3 - 9ax^2 + 12a^2x + 1 \ a > 0$ $\therefore f'(x) = 6x^2 - 18ax + 12a^2$	(
(x) = 0x - 18ax + 12a (x) = 12x - 18a	0.	$x = a(1 + \cos\theta), y = a\sin\theta$
for maximum or minimum		$\frac{dx}{d\theta} = -asin\theta$; $\frac{dy}{d\theta} = acos\theta$
$6x^2 - 18ax + 12a^2 = 0$		$d\theta = -a\sin\theta$, $d\theta = a\cos\theta$
$x^2 - 3ax + 2a^2 = 0$		
x = a or $x = 2a$		$\left(\frac{dy}{dx}\right) = -\frac{\cos\theta}{\sin\theta}$ slope of normal $= -\left(\frac{dx}{dy}\right) = \frac{\sin\theta}{\cos\theta}$
maximum at $x = a$ and minimum at $x = 2a$		$(dx) \sin \theta$ $(dy) \cos \theta$
\therefore (a > 0) given)		sin A
p=a, q=2a		$y - asin\theta = \frac{sin \theta}{cos \theta} (x - a - acos\theta)$
$\therefore p^2 = q$		
$a^2 = 2a$		$y\cos\theta - a\sin\theta\cos\theta = x(\sin\theta) - a\sin\theta(1 + \cos\theta)$
a(a-2) = 0 $a = 2$		$x\sin\theta - y\cos\theta = a\sin\theta(1 + \cos\theta - \cos\theta)$
		clearly passes through (a, 0)
3. $f(x) = x + \frac{1}{x}$ $f'(x) = 1 - \frac{1}{x^2}$	7.	Check the option one by one
$x=\pm 1$		third option $f(x) = 3x^2 - 2x + 1$
$f''(x) = \frac{2}{x^3}$		$f'(x) = 6x - 2 \ge 0$ $x \ge 1/3$ it is incorrect
minimum at $x = 1$	8.	$x = a(\cos\theta + \theta \sin\theta) \& y = a(\sin\theta - \theta \cos\theta)$
4. $u = \sqrt{a^2 \cos^2 \theta + b^2 \sin^2 \theta} + \sqrt{a^2 \sin^2 \theta + b^2 \cos^2 \theta}$		
		$\frac{\mathrm{d}x}{\mathrm{d}\theta} = \mathrm{a}(-\mathrm{sin}\theta + \mathrm{sin}\theta + \theta\mathrm{cos}\theta),$
$u^{2} = a^{2} + b^{2} + 2\sqrt{(a^{2} \cos^{2} \theta + b^{2} \sin^{2} \theta)(a^{2} \sin^{2} \theta + b^{2} \cos^{2} \theta)}$		
$a^4 \cos^2 \theta \sin^2 \theta + a^2 b^2 \cos^4 \theta$		$\frac{\mathrm{d}y}{\mathrm{d}\theta} = \mathrm{a}(\cos\theta - \cos\theta + \theta\sin\theta)$
$u^{2} = a^{2} + b^{2} + 2\sqrt{a^{4} \cos^{2} \theta \sin^{2} \theta + a^{2} b^{2} \cos^{4} \theta + a^{2} b^{2} \sin^{4} \theta + b^{4} \sin^{2} \theta \cos^{2} \theta}$		40
		$\therefore \frac{dy}{dx} = \frac{\sin \theta}{\cos \theta}$
$u^{2} = a^{2} + b^{2} + 2 \sqrt{a^{2}b^{2}(1 - 2\sin^{2}\theta\cos^{2}\theta)} + a^{4}\cos^{2}\theta\sin^{2}\theta + b^{4}\cos^{2}\theta\sin^{2}\theta}$		
		slope of normal = $-\frac{\cos\theta}{\sin\theta} = -\cot\theta$
$= a^{2} + b^{2} + 2\sqrt{a^{2}b^{2} + (a^{4} - b^{4} - 2a^{2}b^{2})\sin^{2}\theta\cos^{2}\theta}$		it makes angle $\left(\frac{p}{2} + q\right)$ with the x-axis
$= a^{2} + b^{2} + 2\sqrt{a^{2}b^{2} + (a^{2} - b^{2})^{2}} \times \left(\frac{\sin 2\theta}{2}\right)^{2}$		eq of normal y – a sin θ + a θ cos θ = – $\frac{\cos \theta}{\sin \theta}$
$= a^2 + b^2 + \sqrt{4 a^2 b^2 + (a^2 - b^2)^2 \sin^2 2\theta}$		$(x - a \cos \theta - a \theta \sin \theta)$
u^2 is maximum when $\sin^2 2\theta = 1$		$\Rightarrow x \cos \theta + y \sin \theta = a.$
u^2 is minimum when $sin^2 2\theta = 0$		Hence it is at a constant distance 'a' from the origin.
$u_{(max.)}^2 - u_{(min.)}^2$		

9. Angle between the tangents $\frac{dy}{dx} = 2x - 5$

$$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_{(2,0)} = -1$$
 $\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_{(3,0)} = 1 \Longrightarrow \text{Angle} = \frac{\pi}{2}$

10.
$$f(x) = \frac{x}{2} + \frac{2}{x}$$

 $\Rightarrow f'(x) = \frac{1}{2} - \frac{2}{x^2}$

~

For maximum or minimum, f'(x) = 0

$$\frac{1}{2} - \frac{2}{x^2} = 0$$

$$\Rightarrow x^2 = 4 \qquad \Rightarrow x = \pm 2$$

Now,
$$f''(x) = \frac{4}{x^3}$$

at x=2, $f''(x) > 0$

and
$$x=-2$$
, $f''(x) < 0$
and $x=-2$

So, there exists a local minimum at x = 2.

11. A triangular park

$$\Delta = \frac{1}{2} (2x\cos\theta)(x\sin\theta)$$

$$= \frac{1}{2} x^{2}\sin2\theta$$

$$\Delta_{\text{max.}} = \frac{x^{2}}{2}$$

tanx < 1

π

12.
$$f(x) = \tan^{-1}(\sin x + \cos x)$$

$$f(x) = \frac{1 \times (\cos x - \sin x)}{1 + (\sin x + \cos x)^2} > 0$$

 $\cos x - \sin x > 0$ $\cos x > \sin x$

$$\sin x < \cos x$$
$$x < \frac{\pi}{4}$$

13. Using A.M. \geq G.M.

$$\frac{p^{2} + q^{2}}{2} \ge p.q$$

$$\Rightarrow pq \le \frac{1}{2}$$

$$\Rightarrow (p+q)^{2} = p^{2} + q^{2} + 2pq$$

$$\Rightarrow (p+q) \le \sqrt{2}$$

15. Graph of P(x) under given
conditions. It is clear that P(x)
has max. at 1 but not minimum at -1.
16. Point (t², t) is on the parabola x = y²
Its distance from y - x = 1

$$d(t) = \frac{t^{2} - t + 1}{\sqrt{2}}$$

$$d'(t) = \frac{1}{\sqrt{2}} [2t-1] = 0$$

$$t = \frac{1}{2}$$

$$d''(t) = \frac{2}{\sqrt{2}} > 0$$

$$d(t) \text{ is min at } t = \frac{1}{2}$$
Its value

$$d\left(\frac{1}{2}\right) = \frac{1}{\sqrt{2}} \left(\frac{1}{4} - \frac{1}{2} + 1\right)$$

$$d\left(\frac{1}{2}\right) = \frac{3\sqrt{2}}{8}$$
17. $f(x) = \frac{1}{e^{x} + 2e^{-x}}$ Let $e^{x} = t \in (0, \infty)$

$$y = \frac{1}{t + \frac{2}{t}} \Rightarrow y = \frac{t}{t^{2} + 2} \Rightarrow t^{2}y - t + 2y = 0$$

$$D \ge 0$$

$$1 - 8y^{2} \ge 0$$

$$\Rightarrow 8y^{2} - 1 \le 0 \Rightarrow y \in \left[\frac{1}{2\sqrt{2}}, \frac{1}{2\sqrt{2}}\right]$$
but $y > 0$

$$\therefore y \in \left[0, \frac{1}{2\sqrt{2}}\right]$$

$$\therefore f(0) = \frac{1}{3}$$

$$\therefore f(c) = \frac{1}{3} (c \in \mathbb{R})$$
So Statement. 1 is true Statement. 2 is true :

So Statement–1 is true, Statement–2 is true ; Statement–2 is a correct explanation for Statement–1.

18.
$$y = x + \frac{4}{x^2}$$

 $\frac{\mathrm{d}y}{\mathrm{d}x} = 1 - \frac{8}{x^3}$

Equation of tangent is parallel to x-axis

$$\therefore \frac{dy}{dx} = 0$$

$$\Rightarrow 1 - \frac{8}{x^3} = 0 \Rightarrow x^3 = 8 \Rightarrow x = 2$$
At, $x = 2, y = 2 + \frac{4}{4} = 3 \Rightarrow y_1 = 3$

$$\therefore \text{ point is } (2, 3) \text{ equation of tangential}$$

- :. point is (2, 3) equation of tangent is : $y - y_1 = 0(x - x_1)$ y = 3
- **19.** f has a local minimum at x = -1

$$\lim_{x \to -1} f(x) \ge f(-1)$$

$$k + 2 \le 1$$

$$k \le -1$$

$$\therefore k = -1$$

20. $f'(x) = \sqrt{x} \sin x$

f'(π) & f'(2 π) are 0. f'(x) + -

- \Rightarrow local maximum at x = π and local minimum at x = 2π
- 22. At x=0 f(x)=1and for x = h and x = -h $(h \rightarrow 0; h > 0)$

$$\frac{\tan x}{x} > 1$$

- \therefore Function has a minima at x = 0
- :. Statement–1 is true.

Now $f(\mathbf{x}) = \begin{cases} \frac{\tan x}{x} ; x \neq 0\\ 1 ; x = 0 \end{cases}$ $f'(\mathbf{x}) = \begin{cases} \frac{x \sec^2 x \tan x}{x^2} ; x \neq 0\\ 0 & x = 0 \end{cases}$

f'(0) = 0

: Statement-2 is also true.

23. $V = \frac{4}{3} \pi r^{3}$ Initially $r = 4500 \pi$, $r = r_{0}$ $4500 \pi = \frac{4}{3} \pi r_{0}^{3} \Rightarrow [r_{0} = 15 m]$ Now $\frac{dV}{dt} = \frac{4}{3} \pi (3r^{2}) \frac{dr}{dt}$ $-72 \pi = 4\pi r^{2} \frac{dr}{dt} \Rightarrow \frac{dr}{dt} = \frac{-18}{r^{2}}$(i) $\int r^{2} dr = -\int 18 dt \Rightarrow \frac{r^{3}}{3} = -18 t + C$ At t = 0, r = 15 mSo, $\frac{(15)^{3}}{3} = -18(0) + C \Rightarrow C = 1125$ $\Rightarrow r^{3} = -54t + 3375$(ii) At time $t = 49 \min r = 9 m$ from eq. (i)

$$\left(\frac{\mathrm{dr}}{\mathrm{dt}}\right)_{\mathrm{t}=49} = \frac{-18}{(9)^2} = -2/9$$

(Negative sign shows decrement in radii)

24.
$$f'(x) = \frac{1}{x} + 2bx + a$$

 $f'(-1) = -1 - 2b + a = 0 \dots (1)$
 $f'(2) = \frac{1}{2} + 4b + a = 0 \dots (2)$
solve (1) & (2) $\Rightarrow a = \frac{1}{2}, b = -\frac{1}{4}$
 \therefore st : 2 is true
 $f''(x) = -\frac{1}{x^2} - \frac{1}{2} = -\left(\frac{1}{x^2} + \frac{1}{2}\right)$ (always -ive)
 $f''(-1) = -\frac{3}{2} < 0$
 $f''(2) = -\frac{3}{4} < 0$
 \therefore Local maximum at $x = -1$ & 2
25. $y = \int_{0}^{x} t| dt$
 $\frac{dy}{dx} = |x| = 2 \Rightarrow x = \pm 2$

If
$$x=2$$
, $y = \int_{0}^{2} t dt = 2$
If $x=-2$, $y = \int_{0}^{2} -t dt = -2$
Tangents are $(y-2) = 2(x-2)$
or $(y+2) = 2(x+2)$
x intercepts $= \pm 1$.
26. $f(x) = 2x^{3} + 3x + k$
 $f'(x) = 6x^{2} + 3 > 0$
 \Rightarrow f is increasing function
 \Rightarrow $f(x) = 0$ has exactly one real root
(as it is an odd degree polynomial)
28. $4x + 2\pi r = 2 \Rightarrow 2x + \pi r = 1$
 $\Rightarrow r = \frac{1-2x}{\pi}$
 $f(x) = x^{2} + \pi r^{2}$
 $= x^{2} + \pi \times \frac{[1-2x]^{2}}{\pi^{2}}$
 $f(x) = x^{2} + \frac{(1-2x)^{2}}{\pi}$
 $f(x) = 2x - \frac{2(1-2x)\times(2)}{\pi} = 0$
 $\Rightarrow x = \frac{2(1-2x)}{\pi}$
 $\Rightarrow \pi x = 2 - 4x$
 $\Rightarrow \pi x = 2 - 4x$

6. $f(x) = 4x^3 - 3x - p$ $f\left(\frac{1}{2}\right) = -(p+1)$ f(1) = (1-p) $f(1) \cdot f\left(\frac{1}{2}\right) = -(1-p^2) \le 0 \Rightarrow p \in [-1,1]$ \therefore f(x) = 0 has at least one root in $\left|\frac{1}{2}, 1\right|$ f'(x) = 3(2x-1)(2x+1) \Rightarrow f'(x)>0 \forall x> $\frac{1}{2}$ $\Rightarrow f(x) = 0 \text{ has exactly one root in } \left\lceil \frac{1}{2}, 1 \right\rceil$ Let the root be $x = \cos \theta$ $\therefore 4\cos^3\theta - 3\cos\theta = p$ $\cos 3 \theta = p$ $\Rightarrow \theta = \frac{1}{3}\cos^{-1}(p) \Rightarrow x = \cos\left(\frac{1}{3}\cos^{-1}(p)\right)$ 8. $3y^2y' + 6x = 12y'$ $2x = y'(4 - y^2)$ $y' = \frac{2x}{(4 - v^2)}$ For vertical tangent $y = \pm 2$ At y = 2 $8 + 3x^2 = 24 \implies 3x^2 = 16 \implies x = \pm \frac{4}{\sqrt{3}}$ At y = -2 $-8 + 3x^2 = -24$ $x^2 = negative$ Not possible 9. (A) $\cos x - 1 > -\frac{x^2}{2}$ (given)(i) consider f(x) = sin(tanx) - x $f'(x) = cos(tanx)(1 + tan^2x) - 1$ $=(\tan^2 x)\cos(\tan x) + \cos(\tan x) - 1$

 $\cos(\tan x) - 1 > -\frac{\tan^2 x}{2}$ from (i) and 'g' is increasing & concave up in $0, \frac{\pi}{2}$ & $f\left(\frac{\pi}{2}\right) > g\left(\frac{\pi}{2}\right)$. $(\tan^2 x)\cos(\tan x) + \cos(\tan x) - 1 > \tan^2 x \left\{\cos(\tan x) - \frac{1}{2}\right\}$ \Rightarrow f'(x)>tan²x {cos(tanx) - $\frac{1}{2}$ } $0 \le \tan x \le 1 \quad \{ \Rightarrow 0 \le x \le \frac{\pi}{4} \}$ from the graph $f(x) \ge g(x) \forall x \in [0, \frac{\pi}{2}]$ $\Rightarrow \cos(\tan x) > \frac{1}{2}$ \Rightarrow f'(x)>0 17. Consider $g(x) = x^2 - f(x)$ \Rightarrow f(x) \geq f(0) \Rightarrow f(x) \geq 0 'g' is continuous-derivable **(B)** Consider $g(x) = \int_{0}^{x^{2}} f(t)dt$... By Rolle's theorem $g(1) = g(2) \Rightarrow g'(c_1) = 0$ for at least one $c_1 \in (1, 2)$ g(1) - g(0) $= g'(\alpha), \alpha \in (0, 1) \{by LMVT in [0, 1]\}$(i) $g(2) = g(3) \Rightarrow g'(c_2) = 0$ for at least one $c_2 \in (2, 3)$ g(2) - g(1) $g'(c_1) = g'(c_2)$ $= g'(\beta), \beta \in (1, 2) \{by LMVT in [1, 2]\}$(ii) ⇒ g''(c) = 0 for at least one $c \in (c_1, c_2)$. (i) + (ii) \Rightarrow g(2) - g(0) = g'(\alpha) + g'(\beta) $\Rightarrow 2-f''(c)=0$ $\Rightarrow \int_{0}^{4} f(t)dt = 2 \{ \alpha f(\alpha^{2}) + \beta f(\beta^{2}) \}$ ⇒ f"(c)=2 14. Let $g(x) = \int p(x) dx + K$ **19.** Put $x_1 = x + h \& x_2 = x$ $|f(x+h) - f(x)| < h^2$ $g(x) = \frac{x^{102}}{2} - 23 x^{101} - \frac{45 x^2}{2} + 1035 x + K$ $\lim_{h \to 0} \left| \frac{f(x+h) - f(x)}{h} \right| \le \lim_{h \to 0} h$ $=\frac{x^{102}-46x^{101}-45x^2+2070x}{2}+K$ |f'(x)| < 0 $=\frac{x(x^{100}-45)(x-46)}{2}+K$ Possible only if f'(x) = 0f(x) = c $g(45^{1/100}) = g(46)$ at point (1, 2)f(x) = 2 \Rightarrow g'(x) = 0 has exactly one root in (45^{1/100}, 46) y = 215. Let $f(x) = \sin x + 2x$ & $g(x) = \frac{3x^2 + 3x}{\pi}$ **20.** Let $p(x) = ax^3 + bx^2 + cx + d$ p(-1) = 10 $f'(x) = \cos x + 2$ $g'(x) = \frac{6x + 3}{\pi}$ \Rightarrow -a + b - c + d = 10.....(i) p(1) = -6 $f''(x) = -\sin x \qquad g''(x) = \frac{6}{\pi}$ \Rightarrow a + b + c + d = -6**(ii)** p(x) has maxima at x = -1 \Rightarrow 'f is increasing & concave down in $0, \frac{\pi}{2}$: p'(-1) = 0

 \Rightarrow 3a - 2b + c = 0**(iii)** p'(x) has min. at x = 1p''(1) = 0 \Rightarrow 6a + 2b = 0(iv) Solving (i), (ii), (iii) and (iv) we get b = -3aFrom (iv) 3a + 6a + c = 0From (iii) \Rightarrow c = -9a From (ii) $a - 3a - 9a + d = -6 \Rightarrow d = 11a - 6$ From (i) -a - 3a + 9a + 11a - 6 = 10 \Rightarrow 16a = 16 \Rightarrow a = 1 \Rightarrow b = -3, c = -9, d = 5 \therefore p(x) = x³ - 3x² - 9x + 5 \Rightarrow p'(x) = 3x² - 6x - 9 = 0 \Rightarrow 3(x+1)(x-3)=0 \Rightarrow x=-1 is a pt. of max (given) and x=3 is at pt. of min. [> max and min occur alternatively] \therefore pt. of local max is (-1, 10) and pt. of local min is (3, -22)And distance between them is $=\sqrt{[3-(-1)]^2+(-22-10)^2}=\sqrt{16+1024}$ $=\sqrt{1040} = 4\sqrt{65}$ **22.** (a,b) $\Rightarrow g(x) = \int_{0}^{x} f(t) dt$ $\Rightarrow g'(x) = f(x) = \begin{cases} x & 0 \le x \le 1 \\ 2 - e^{x-1} & 1 < x \le 2 \\ x - e & 2 < x \le 3 \end{cases}$ \therefore g'(x) = 0 at $x = 1 + \bullet n2$ x = 0 & x = e $g"(x) = \begin{cases} 1 & 0 \le x \le 1 \\ -e^{x-1} & 1 < x \le 2 \\ 1 & 2 < x \le 3 \end{cases}$

 $\therefore g''(1+\ln 2) = -2 \text{ and } g''(e) = 1$ $\Rightarrow g(x) \text{ has local max. at } x = 1 + \ln 2 \text{ and local min. at } x = e.$

32. (A)
$$y = \frac{x^2 + 2x + 4}{x + 2}$$

 $\Rightarrow x^2 + (2 - y)x + 4 - 2y = 0 x \text{ is real }; \text{ so } D \ge 0$
 $y^2 + 4y - 12 \ge 0$
 $y \le -6, y \ge 2$
so minimum value = 2
(B) $(A + B)(A - B) = (A - B)(A + B)$
 $\Rightarrow AB = BA$
as A is symmetric & B is skew symmetric
 $\Rightarrow (AB)^4 = -AB$
 $\Rightarrow k = 1, 3$
(C) $a = \log_3 \log_3 2 \Rightarrow 3^{-a} = \log_2 3$
Now $1 < 2^{(-k+3)^{-3}} < 2$
 $\Rightarrow 1 < 2^{(-k+\log_2 3)} < 2 \Rightarrow 1 < 3.2^{-k} < 2$
 $\Rightarrow \frac{1}{3} < 2^{-k} < \frac{2}{3} \Rightarrow \frac{3}{2} < 2^k < 3$
so $k = 1$ is possible
(D) $\sin \theta = \cos \phi$
 $\Rightarrow \cos(\frac{\pi}{2} - \theta) = \cos \phi$
 $\frac{\pi}{2} - \theta = 2n\pi \pm \phi$
 $\Rightarrow \theta \pm \phi - \frac{\pi}{2} = -2n\pi$
 $\Rightarrow \frac{1}{\pi}(\theta \pm \phi - \frac{\pi}{2}) = \text{even integer}$
33. $f(x) = \frac{x^2 - ax + 1}{x^2 + ax + 1}$
 $f'(x) = \frac{2a(x^2 - 1)}{(x^2 + ax + 1)^2} \text{ and } f''(x) = \frac{4a(-x^3 + 3x + a)}{(x^2 + ax + 1)^3}$
 $f''(1) = \frac{4a}{(a + 2)^2} \text{ and } f''(-1) = \frac{-4a}{(a - 2)^2}$
 $\therefore (a + 2)^2 f''(1) + (2 - a)^2 f''(-1) = 0$

34. As when $x \in (-1, 1)$, f'(x) < 0so f(x) is decreasing on (-1, 1) at x = 1 $f''(1) = \frac{4a}{(a+2)^2} > 0$ so local minima at x = 1. 35. $g(x) = \int_{0}^{e^{x}} \frac{f'(t)}{1+t^{2}} dt$ $g'(x) = \frac{f'(e^x)}{1 + e^{2x}}e^x = \frac{2a(e^{2x} - 1)e^x}{(e^{2x} + ae^x + 1)^2(1 + e^{2x})}$ g'(x) > 0 when x > 0g'(x) < 0 when x < 0**36.** $f(x) = 2x^3 - 15x^2 + 36x - 48$ Set A = $\{x | x^2 + 20 \le 9x\}$ $x^2 - 9x + 20 < 0$ $(x-5)(x-4) \le 0$ $\Rightarrow x \in [4, 5]$ Now, $f'(x) = 6x^2 - 30x + 36 = 0$ \Rightarrow x²-5x+6=0 x = 2, 3 and $f(x) \uparrow$ in $x \in (-\infty, 2) \cup (3, \infty)$ \Rightarrow In the set A, f(x) is increasing \Rightarrow f(x)_{max}=f(5) =2.125-15.25+36.5-48= 7**37.** Lt $\left(1 + \frac{p(x)}{x^2}\right) = 2$ $\Rightarrow \underset{x \to 0}{\text{Lt}} \frac{p(x)}{x^2} = 1$ Let $p(x) = ax^4 + bx^3 + cx^2$ $\Rightarrow \underset{x \to 0}{\text{Lt}} \quad \frac{p(x)}{x^2} = 1 \quad \Rightarrow c = 1$

 $\Rightarrow \operatorname{Lt}_{x \to 0} \xrightarrow{x^2} x^2 = 1 \implies c = 1$ $p(x) = ax^4 + bx^3 + x^2$ Now, $p'(x) = 4ax^3 + 3bx^2 + 2x$ $\Rightarrow p'(1) = 0, p'(2) = 0$ $\Rightarrow 4a + 3b + 2 = 0$

$$32a + 12b + 4 = 0 \implies a = \frac{1}{4}, b = -1$$

$$\implies p(x) = \frac{1}{4}x^4 - x^3 + x^2 \implies p(2) = 4 - 8 + 4 = 0$$
39. $f(x) = (1 + b^2)x^2 + 2bx + 1$
It is a quadratic expression with coeff. of $x^2 = 1 + b^2 > 0$.
 $\therefore f(x)$ represents an upward parabola whose min value is $\frac{-D}{4a}$, D being the discriminant.
 $\therefore m(b) = -\frac{4b^2 - 4(1 + b^2)}{4(1 + b^2)} \implies m(b) = \frac{1}{1 + b^2}$
For range of m(b):
 $\frac{1}{1 + b^2} > 0$ also $b^2 \ge 0 \implies 1 + b^2 \ge 1$
 $\implies \frac{1}{1 + b^2} \le 1$
Thus m(b) = (0, 1]
41. $f(x) = \ln x + \int_0^x \sqrt{1 + \sin x} dt$
 $f'(x) = \frac{1}{x} + \sqrt{2} \left| \cos\left(\frac{x}{2} - \frac{\pi}{4}\right) \right|$
 $\implies \left| \cos\left(\frac{x}{2} - \frac{\pi}{4}\right) \right|$ is non-derivable
 $\therefore f'(x)$ is non-derivable but continuous.

hence option (A) is incorrect & option (B) is correct. For option C

$$f(x) = (\bullet nx) + \int_{0}^{x} \left(\sqrt{1 + \sin x}\right) dx$$

since f(x) is positive increasing function for all x > 1

$$\Rightarrow |\mathbf{f}(\mathbf{x})| = \mathbf{f}(\mathbf{x}) \& |\mathbf{f}(\mathbf{x})| = \mathbf{f}(\mathbf{x})$$

Let f(x) = y

$$f'(x) - f(x) = \frac{1}{x} - \ln x + \sqrt{1 + \sin x} - \int_{0}^{x} \sqrt{1 + \sin t} dt$$

$$f'(x) - f(x) = \frac{1}{x} - \ln x + \sqrt{1 + \sin x} - \sqrt{2} \int_{0}^{x} \left| \cos\left(\frac{t}{2} - \frac{\pi}{4}\right) \right| dt$$

$$\frac{1}{x} - \ln x < 0 \quad ; \text{ when } \alpha > e$$

$$0 \le \sqrt{1 + \sin x} \le \sqrt{2} \cdot$$

$$\int_{0}^{x} \left| \cos\left(\frac{t}{2} - \frac{\pi}{4}\right) \right| dt > \sqrt{2} \quad \forall \alpha > \frac{3\pi}{2}$$

$$\Rightarrow f(x) - f(x) < 0 \quad \forall \alpha > \frac{3\pi}{2} > 1$$

Hence option (C) is correct.

For option (D) $|f(x)| + |f'(x)| \rightarrow \infty$ when $x \to \infty$.

Therefore option (D) is incorrect. Alternate :

$$f(x) = \bullet nx + \int_{0}^{x} \sqrt{1 + \sin t} dt$$

$$f'(x) = \frac{1}{x} + \sqrt{1 + \sin x} \qquad \dots \dots (i)$$

for x > 1

$$\frac{1}{x} + \sqrt{1 + \sin x} < 1 + \sqrt{2}$$

but $\bullet nx + \int_{0}^{x} \sqrt{1 + \sin t} dt$ will always be more than
 $1 + \sqrt{2}$ for some $\alpha > 1$
 $\Rightarrow \quad \int_{0}^{x} \sqrt{1 + \sin t} > 0 \quad \& \bullet nx \text{ is increasing in } (1, \infty)$
 $\Rightarrow \quad f(x) > f(x) \forall \alpha > 1$
 $\therefore \quad (C) \text{ is correct}$

$$f''(x) = -\frac{1}{x^{2}} + \frac{\cos x}{2\sqrt{1 + \sin x}}$$

 \Rightarrow f' is not derivable on $(0, \infty)$

.: (B) is also correct

f(x) is unbounded near x = 0 in (0, 1) hence |f(x)| can never be made less than a finite number hence |f(x)|+|f'(x)| can never be less than β .

42. If
$$x \in [0, 1]$$

then $x^2 \le x \le 1$
 $x^2 e^{x^2} \le x e^{x^2} \le e^{x^2}$
Add e^{-x^2} to all sides
 $x^2 e^{x^2} + e^{-x^2} \le x e^{x^2} + e^{-x^2} \le e^{x^2} + e^{-x^2}$
 $\Rightarrow h(x) \le g(x) \le f(x)$ (i)
where, $f(x) = e^{x^2} + e^{-x^2}$
 $f'(x) = 2x (e^{x^2} - e^{-x^2}) > 0$
 $\Rightarrow f(x)$ has a maxima at $x = 1$
 $\Rightarrow a = e + \frac{1}{e}$
 $h(x) = x^2 e^{x^2} + e^{-x^2}$
 $h'(x) = 2x^3 e^{x^2} + 2x e^{x^2} - 2x e^{-x^2}$
 $= 2x^3 e^{x^2} + 2x (e^{x^2} - e^{-x^2}) > 0$
 $\Rightarrow h(x)$ has a maxima at $x = 1$
 $\Rightarrow c = e + \frac{1}{e}$
 $\Rightarrow h(x) \le g(x) \le f(x)$
 $\Rightarrow g(x)$ also has a maximum value at $x = 1$
 $\Rightarrow a = b = c$
43. $f'(x)=2010(x-2009)(x-2010)^2(x-2011)^3(x-2012)^4 \forall x \in \mathbb{R}$
 $f(x) = \Phi n(g(x)) \forall x \in \mathbb{R}$
 $g(x) = e^{f(x)}$
 $g'(x) = 0 \Rightarrow e^{f(x)}, f'(x) = 0 \Rightarrow f'(x) = 0$

decreasing decreasing 2010 -+ 2011 2009 _ 2012

local maximum at x = 2009, hence only 1 point.

4

at $\frac{3\pi}{2}, \frac{7\pi}{2}$

44. Ans. (A)

$$f: (0,1) \rightarrow \mathbb{R}$$

 $f(x) = \frac{b-x}{1-bx}$ $b \in (0,1)$
 $\Rightarrow f'(x) = \frac{b^2 - 1}{(bx - 1)^2}$
 $\Rightarrow f'(x) < 0 \forall x \in (0, 1)$
hence $f(x)$ is decreasing function
hence its range $(-1, b)$
 \Rightarrow co-domain \neq range
 $\Rightarrow f(x)$ is non-invertible function
45. Ans. 2
Let $f(x) = x^4 - 4x^3 + 12x^2 + x - 1$
 $f'(x) = 4x^3 - 12x^2 + 24x$
 $f''(x) = 12x^2 - 24x + 24$
 $= 12(x^2 - 2x + 2) > 0$
 $\Rightarrow f'(x)$ is strictly increasing function
 $\Rightarrow f'(x)$ is cubic polynomial
hence number of roots of $f'(x) = 0$ is 1
 \Rightarrow Number of maximum roots of $f(x) = 0$ are 2
Now $f(0) = -1, f(1) = 9, f(-1) = 15$
 $\Rightarrow f(x)$ has exactly 2 distinct real roots.
46. $f(x)=(1-x)^2 \sin^2 x + x^2$
 $P: f(x) + 2x = 2(1 + x^2)$
 $\Rightarrow (1-x)^2 \sin^2 x - x^2 + 2x - 2 = 0$
 $(1-x)^2 \cos^2 x + 1 = 0$
which is not possible.
 \therefore P is false.
 $Q: 2f(x) + 1 = 2x(1 + x)$
 $2x^2 + 2(1 - x)^2 \sin^2 x - 2x + 1, 0$.
Let $h(x) = 2(1 - x)^2 \sin^2 x - 2x + 1, clearly $h(1) = -1$$

and $h(x) = 2(x^2 - 2x + 1)\sin^2 x - 2x + 1$

$$= x^{2} \left[2 \left(1 - \frac{2}{x} + \frac{1}{x^{2}} \right) \cdot \sin^{2} x - \frac{2}{x} + \frac{1}{x^{2}} \right]$$

 \therefore h(x) $\rightarrow \infty$ as x $\rightarrow \infty$.

... By intermediate value theorem

h(x) = 0 has a root which is greater than 1.

Hence Q is true.

47.
$$g(x) = \int_{1}^{x} \left(\frac{2(t-1)}{(t+1)} - 1nt\right) f(t) dt$$

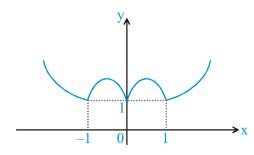
 $g'(x) = \left(\frac{2(x-1)}{x+1} - 1nx\right) f(x)$
 $f(x) > 0 \quad \forall x \in \mathbb{R}$
Suppose.
 $h(x) = \frac{2(x-1)}{x+1} - 1nx$
 $h(x) = 2 - \left(\frac{4}{x+1} + 1nx\right)$
 $h'(x) = \frac{4}{(x+1)^2} - \frac{1}{x}$
 $h'(x) = -\frac{(x-1)^2}{x(x+1)^2}$
 $h'(x) < 0$
So $h(x)$ is decreasing
so $h(x) < h(1)$. $\forall x > 1$
 $h(x) < 0 \quad \forall x > 1$
So $g'(x) = h(x) f(x)$
 $g'(x) < 0 \quad \forall x > 1$
g(x) is decreasing in $(1, \infty)$.
48. $f(x) = \int_{0}^{x} e^{t^2} (t-2)(t-3) dt$
 $\frac{t}{2} - \frac{0}{3}$
 $\Rightarrow f'(x) = e^{x^2} (x-2)(x-3)$

⇒ f''(c) = 0 for same $c \in (2,3)$ (by Rolle's theorem)

 \therefore f'(2) = f'(3) = 0

49. f(x) = |x| + |(x + 1) (x - 1)|

$$\Rightarrow f(x) = \begin{cases} \Rightarrow x^2 - x - 1 & x < -1 \\ \Rightarrow -x^2 - x + 1 & -1 & x < 0 \\ \Rightarrow -x^2 + x + 1 & 0 & x < 1 \\ \Rightarrow x^2 + x - 1 & x & 1 \end{cases}$$



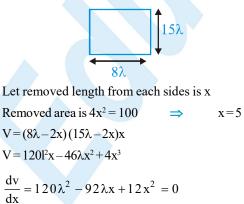
:. f has 5 points where it attains either a local maximum or local minimum.

50. Let P'(x) = k(x-1)(x-3)
= k(x² - 4x + 3)

$$\Rightarrow P(x) = k\left(\frac{x^3}{3} - 2x^2 + 3x\right) + c$$

 $\Rightarrow P(1) = 6$
 $\Rightarrow \frac{4k}{3} + c = 6$ (1)
P(3) = 2
 $\Rightarrow c = 2$ (2)
by (i) and (ii)
 $k = 3$
 $\therefore P'(x) = 3(x - 1)(x - 3)$
 $\Rightarrow P'(0) = 9$

51. Where $P = 8\lambda + 15\lambda + 8\lambda + 15\lambda \& \lambda$ is constant



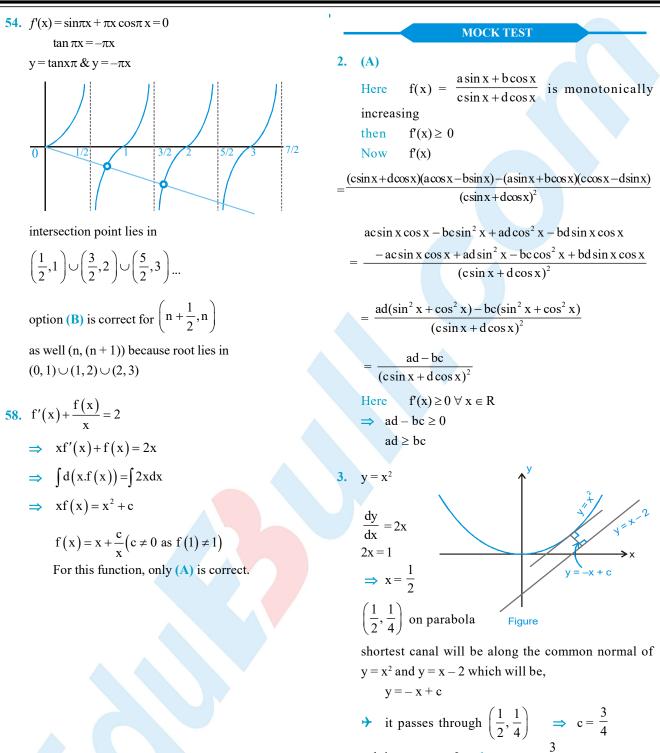
Put x = 5
$$\Rightarrow$$
 120 λ^2 -460 λ +300=0
12 λ^2 -40 λ +30=0
6 λ^2 -23 λ +15=0
(λ -3)(6 λ -5)=0
 λ =3 & $\lambda = \frac{5}{6}$
 $\frac{d^2 v}{dx^2} = -92\lambda + 24x = 120 - 92\lambda$
at $\lambda = 3 \Rightarrow \frac{d^2 v}{dx^2} < 0$
at $\lambda = \frac{5}{6} \Rightarrow \frac{d^2 v}{dx^2} > 0$ (rejected)
52. $f(x) = (a + b) - |b - a|$
 $= \begin{cases} 2a , a \le b \\ 2b , a > b \end{cases} = 2 \min (a, b)$
where $a = 2|x|, b = |x + 2|$
 $\sqrt{2 - \frac{2}{3}} 0$
 \therefore Local maxima and minima at $x = -2, -\frac{2}{3} & 0$
53. $f(x) = x^2 - x \sin x - \cos x$
 $f'(x) = 2x - x \cos x - \sin x + \sin x$
 $= x (2 - \cos x)$
 $-\frac{4}{0}$

 \therefore graph of $f(\mathbf{x})$ will be

$$\therefore$$
 $f(x)$ is zero for 2 values of x

Add. 41-42A, Ashok Park Main, New Rohtak Road, New Delhi-110035 +91-9350679141

MATHS FOR JEE MAIN & ADVANCED



solving,
$$y = x - 2$$
 and $y = -x + \frac{3}{4}$

$$y = -\frac{5}{8}$$
 and $x = \frac{11}{8}$

Hence point on straight line along the

shortest canal is
$$\left(\frac{11}{8}, \frac{-5}{8}\right)$$

4. **(B)**

Consider the function $f(x) = \frac{a_0 x^{n+1}}{n+1} + \frac{a_1 x^n}{n} + \frac{a_2 x^{n-1}}{n-1}$

+ + $\frac{a_{n-1}x^2}{2}$ + a_nx . Then f(0) = 0 and f(1) = 0

hence f'(x) = 0 has at least one solution in (0, 1)

5.
$$f'(x) = \sqrt{4ax - x^2} + \frac{x(4a - 2x)}{2\sqrt{4ax - x^2}} = \frac{6ax - 2x^2}{\sqrt{4ax - x^2}} < 0$$

 $\forall x \in (4a, 3a)$

so f(x) is decreasing in [4a, 3a]

6. (D)

 $f(x) = 8ax - a \sin 6x - 7x - \sin 5x$ $f'(x) = 8a - 6a \cos 6x - 7 - 5\cos 5x$ $= 8a - 7 - 6a \cos 6x - 5\cos 5x$ f(x) is an increasing function $f'(x) \ge 0 \qquad \therefore \qquad 8a - 7 \ge 6a + 5$ $\implies 2a \ge 12$ $a \ge 6$ $a \in [6, \infty)$

7.
$$f'(x)=0 \implies x=\frac{1}{a}, \frac{-2}{3a}$$

since, we have a cubic polynomial with coefficient of x^3 +ve, minima will occur after maxima.

Case - 1: If a > 0

then
$$\frac{1}{a} = \frac{1}{3} \implies a = 3$$
 also $f\left(\frac{1}{3}\right) > 0 \implies b < -\frac{1}{2}$

Case - 2 : If a < 0

then
$$-\frac{-2}{3a} = \frac{1}{3} \implies a = -2$$

also $f\left(\frac{1}{3}\right) > 0 \implies \frac{(-2)^2}{3^2} - \frac{(-2)}{2} \cdot \frac{1}{3^2} - 2\left(\frac{1}{3}\right) - b > 0$
 $\implies \frac{4}{27} + \frac{1}{9} - \frac{2}{3} - b > 0 \implies b < -\frac{11}{27}$

8. (B)

9

Time taken by the truck =
$$\frac{300}{x}$$
 hours
 \therefore Fuel consumed = $\left(2 + \frac{x^2}{600}\right) \frac{300}{x}$ litre
 \therefore expenses on travelling
 $E = 200 \times \frac{300}{x} + \left(2 + \frac{x^2}{600}\right) \frac{3000}{x}$
 $= \frac{60000}{x} + \frac{6000}{x} + 5x = \frac{66000}{x} + 5x$
 $\therefore \frac{dE}{dx} = -\frac{66000}{x^2} + 5 < 0$ for all $x \in [30, 60]$

: most economical speed is 60 kmph.

$$f(x) = x^{3} - 3x + k, k = [a]$$

f'(x) = 3(x - 1) (x + 1)
- 1 is maxima is 1 is minima

for three roots f(-1) f(1) < 0 $\Rightarrow (k+2) (k-2) < 0$ $k \in (-2, 2)$ $\Rightarrow -2 < [a] < 2$ $\Rightarrow -1 \le a < 2$ 10. (A) $S_1: f(x) = x e^{x(1-x)}$ $f'(x) = e^{x-x^2} + x e^{x-x^2} (1-2x) = e^{x-x^2} (1+x-2x^2)$

$$= -e^{x-x^{2}}(2x+1) (x-1) \ge 0 \text{ (for increasing function)}$$

$$x \in \left[-\frac{1}{2}, 1\right]$$

$$S_{2}: f(x) = (x-2)^{2/3} (2x+1)$$

$$f'(x) = \frac{2}{3} (x-2)^{-1/3} (2x+1) + 2(x-2)^{2/3} = \frac{2}{3(x-2)^{1/3}}$$

$$(2x+1) + 2(x-2)^{2/3}$$

Add. 41-42A, Ashok Park Main, New Rohtak Road, New Delhi-110035 +91-9350679141

$$= \frac{2}{(x-2)^{1/3}} \left[\frac{2x+1}{3} + x-2 \right]$$

= $\frac{2}{(x-2)^{1/3}} \frac{(5x-5)}{3}$
x=2 and x=1 are critical points
S₃: f'(x) = $2 - \frac{1}{1+x^2} + \frac{1}{(\sqrt{1+x^2}-x)} \left\{ \frac{x}{\sqrt{1+x^2}} - 1 \right\}$
= $2 - \frac{1}{1+x^2} - \frac{1}{\sqrt{1+x^2}}$
= $2 - \left(\frac{1}{1+x^2} + \frac{1}{\sqrt{1+x^2}} \right)$
f'(x) > 0 $\forall x \in \mathbb{R}$
S₄: $\frac{d}{dx} f^2(x) = 2 f(x) f'(x) < 0$
so f²(x) is decreasing function

11. (**B**, **C**)

→ g(x) is increasing & f(x) is decreasing.
 ⇒ g(x+1) > g(x-1) & f(x+1) < f(x-1)
 ⇒ f{g(x+1)} < f{g(x-1)} & g{f(x+1)} < g{f(x-1)}

12.
$$f(x) = \begin{vmatrix} x + p^{2} & pq & pr \\ pq & x + q^{2} & qr \\ pr & qr & x + r^{2} \end{vmatrix} = x^{3} + (p^{2} + r^{2} + q^{2})x^{2}$$
$$f'(x) = 3x^{2} + 2x(p^{2} + q^{2} + r^{2}) = x \{3x + 2(p^{2} + q^{2} + r^{2})\}$$

$$-\frac{2}{3}(p^2+q^2+r^2)$$
 0

Here f(x) is increasing if $x < -\frac{2}{3}(p^2 + q^2 + r^2)$ and x > 0

decreasing is if
$$-\frac{2}{3}(p^2 + q^2 + r^2) < x < 0$$

13. (B, C)

 $f(x) = x^3 - x^2 + 100x + 1001$ f'(x) = 3x² - 2x + 100 > 0 ∀ x ∈ R ∴ f(x) is increasing (strictly)

- $\therefore f\left(\frac{1}{1999}\right) > f\left(\frac{1}{2000}\right)$ f(x+1) > f(x-1)
- 14. (A) Let $x \Rightarrow x + h \text{ and } y \rightarrow x$ $|\tan^{-1}x - \tan^{-1}y| \le |x - y|$ $|\tan^{-1}(x + h) - \tan^{-1}x| \le |h|$ $\left| \frac{d}{dx}(\tan^{-1}x) \right| \le 1$

$$\Rightarrow \left|\frac{1}{1+x^2}\right| \le 1 \text{ hence true}$$

(C)
$$|\sin x - \sin y| \le |x - y|$$

 $x \to x + h$ $y \to x$
 $\left| \frac{\sin(x + h) - \sin x}{h} \right| \le 1$

 $\Rightarrow |\cos x| \le 1 \quad \text{hence true}$ Alternative solutions
For x = y this is true

... Let x, y
$$\in$$
 R and x < y
consider f(t) = tan⁻¹t, t \in [x, y]

Using LMVT,
$$\frac{\tan^{-1} y - \tan^{-1} x}{y - x} = \frac{1}{1 + c^2}, c \in (x, y)$$

$$\Rightarrow \tan^{-1} y - \tan^{-1} x = \frac{y - x}{1 + c^2} \le y - x \qquad \dots \dots \dots (i)$$

similarly $x > y$, $\tan^{-1} x - \tan^{-1} y \le x - y \qquad \dots \dots \dots (ii)$
From (i) and (ii) we get $|\tan^{-1} x - \tan^{-1} y| \le |x - y|$
Similarly considering $g(t) = \sin t \ln [x, y]$
we get $\frac{\sin y - \sin x}{y - x} = \cos c$

$$\Rightarrow \sin y - \sin x = (\cos c) (y - x) \le y - x \qquad \dots \dots (iii)$$

and $\sin x - \sin y \le x - y \qquad \dots \dots (iv)$

15. (A,C,D)

f(x) = (x-1)⁴ (x-2)ⁿ, n ∈ N(1) ∴ f'(x) = 4 (x-1)³ (x-2)ⁿ + (x-1)⁴ n (x-2)ⁿ⁻¹ = (x-1)³ (x-2)ⁿ⁻¹ (4x-8+nx-n) = (x-1)³ (x-2)ⁿ⁻¹ [(n+4) x - (n+8)]

If n is odd, then f'(x) > 0 if x < 1 and sufficiently close to 1 and f'(x) < 0 if x > 1 and sufficiently close to 1

 \therefore x = 1 is point of local maximum

Similary if n is even, then x = 1 is a point of local minimum Further if n is even, then f'(x) < 0 for x < 2 and sufficiently close to 2 and f'(x) > 0 for x > 2 and sufficiently close to 2.

 \therefore x = 2 is a point of local minimum.

16. **(D**)

Let the slope of the tangent be denoted by $\tan \psi$ length of tangent = y cosec ψ

length of normal = y sec ψ

- $\therefore \quad \frac{\text{length of tangent}}{\text{length of normal}} = \cot \psi \propto y$
- :. Statement-1 is false

length of normal = y sec
$$\psi = \int y \sqrt{1 + y} \sqrt{1 + y}$$

length of tangent = y cosec $\psi = \left| \frac{y \sqrt{1 + m^2}}{m} \right|$

:. Statement-1 is False, Statement-2 is True

17. (A)

Statement-II is obviously true.

Statement-I: Consider the function $f(x) = e^x \cdot P(x_1, e^{x_1})$ and $Q(x_2, e^{x_2})$ are two points on the curve y = f(x) and a point R divides the line joining P and Q internally in the ratio 1 : 2, then coordinates of R are

$$\left(\frac{2x_1 + x_2}{3}, \frac{2e^{x_1} + e^{x_2}}{3}\right).$$

$$\therefore \quad \frac{2e^{x_1} + e^{x_2}}{3} > e^{\left(\frac{2x_1 + x_2}{3}\right)}.$$

Statement-I is true.

Statement-II is true and it explains Statement - 1.

18. (D)

Let g(x) be the inverse function of f(x). Then f(g(x)) = x.

:.
$$f'(g(x)).g'(x) = 1$$

i.e. $g'(x) = \frac{1}{f'(g(x))}$

$$g''(x) = -\frac{1}{(f'(g(x))^2} \cdot f''(g(x)) \cdot g'(x))$$

In statement-1 f''(g(x)) > 0 and g'(x) > 0

 \Rightarrow g''(x) < 0

 \Rightarrow concavity of $f^{-1}(x)$ is downwards

: statement is false

In statement-2 f''(g(x)) > 0 and g'(x) < 0

- \Rightarrow g''(x)>0
- \Rightarrow concavity of $f^{-1}(x)$ is upwards
- :. statement is true
- **19. (D)**
 - Statement-I: $5 4 (x 2)^{2/3}$ attains greatest

value at
$$x = 2$$

Statement-II: obviously true

20. (D)

Statement-2
$$f(x) = \frac{x^2}{x^3 + 200}$$

$$f'(x) = \frac{(x^3 + 200)2x - 3x^2x^2}{(x^3 + 200)^2} = \frac{-x^4 + 400x}{(x^3 + 200)^2}$$

As
$$x \to 0^+$$
, $f(x) \otimes 0^+$

At
$$x = 400^{1/3}$$
, $f(x) = \frac{400^{2/3}}{600}$

As $x \to \infty$, $f(x) \to 0$

So statement : 2 is true

but statement : 1 is false as $400^{1/3} \notin N$

21. (A) \rightarrow (r), (B) \rightarrow (q), (C) \rightarrow (t), (D) \rightarrow (s) (A) $\frac{dy}{dt} = \frac{4t}{2}$

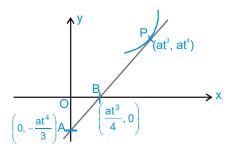
(A)
$$\frac{1}{dx} = \frac{1}{3}$$

Tangent is $y - at^4 = \frac{4t}{3} (x - at^3)$ x-intercept = $\frac{at^3}{4}$ y-intercept = $-\frac{at^4}{3}$ If P divides AB in ratio λ : 1

$$\Rightarrow \quad \text{at}^3 = \frac{\lambda \cdot 0 + \frac{\text{at}^3}{4}}{\lambda + 1}$$
$$\Rightarrow \quad \lambda = \frac{-3}{4}$$

$$\therefore \quad \frac{\mathrm{m}}{\mathrm{n}} = -\frac{3}{4}$$

$$m = 3, n = 4$$



 $\dots m+n=7$

(B)
$$\frac{dx}{dy} = e^{\sin y} \cos y$$
: slope of normal = -1

equation of normal is x + y = 1

Area
$$=\frac{1}{2}$$

(C)
$$y = \frac{1}{x^2}$$
 : $\frac{dy}{dx} = -\frac{2}{x^3}$: slope of tangent = -2
 $y = e^{2-2x}$: $\frac{dy}{dx} = e^{2-2x}$. (-2) : slope of tangent = -2
 \therefore tan $\theta = 0$

(D) Length of subtangent =
$$\left| \frac{y}{y'} \right| = \left| \frac{be^{x/3}}{b\frac{1}{3}e^{x/3}} \right| = 3$$

22. (A) \rightarrow (q), (B) \rightarrow (r), (C) \rightarrow (r), (D) \rightarrow (t)

(A) By graph it is clear that at x = -1 is local max. and x = 0 is local min.

А

(B)
$$a + b = 1$$

$$\sqrt{\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)} = \sqrt{1+\frac{1}{a}+\frac{1}{b}+\frac{1}{ab}} = \sqrt{1+\frac{2}{ab}}$$
$$\sqrt{ab} < \frac{a+b}{2} = \frac{1}{2}$$
$$\therefore ab < \frac{1}{4} \implies \frac{1}{ab} > 4$$

$$\therefore \sqrt{\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)} \ge \sqrt{1+8} = 3$$

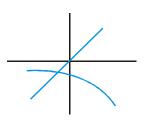
(C) \therefore y=10-(10-x)=x \therefore maximum value of y=3

- (D) Equation of tangent at P is ty = x + t² it intersects the line x = 0 at Q
- \therefore coordinates of Q are (0, t)

∴ area of
$$\triangle PQS = \frac{1}{2} \begin{vmatrix} 0 & t & 1 \\ 1 & 0 & 1 \\ t^2 & 2t & 1 \end{vmatrix}$$

= $\frac{1}{2} [-t(1-t^2)+2t] = \frac{1}{2} (t+t^3)$
 $\frac{dA}{dt} = \frac{1}{2} (3t^2+1) > 0 \quad \forall t \in [0,2]$
∴ Area is maximum for t = 2

max area =
$$\frac{1}{2}[2+8]=5$$
.

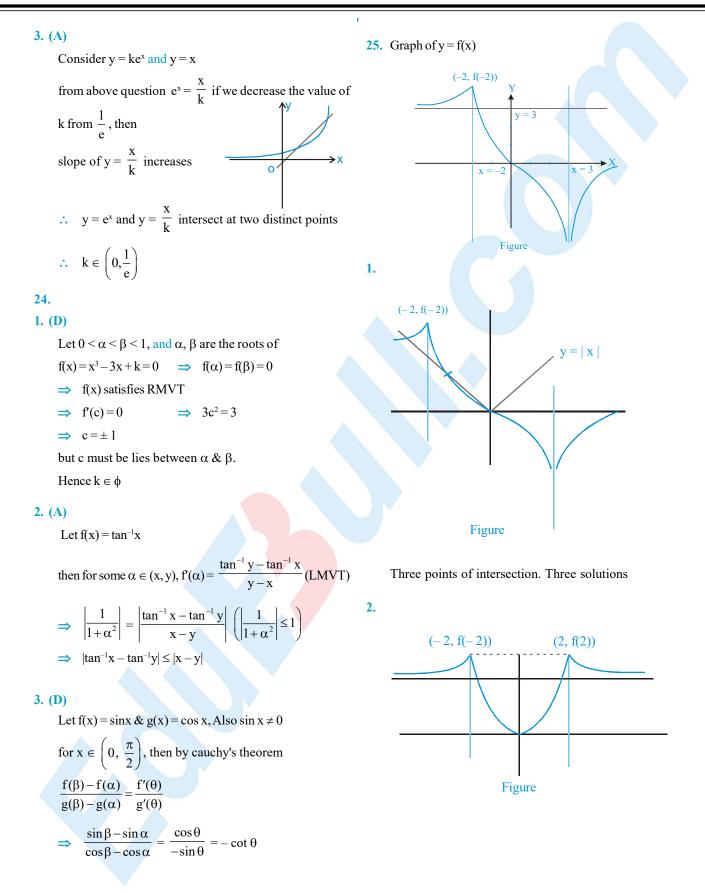


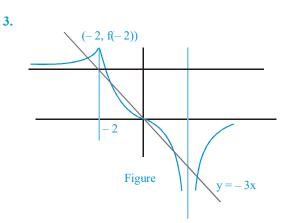
2. (A)

23. 1.

> Consider $y = ke^{x}$ and y = xLet (α, ke^{α}) be a point on $y = ke^{x}$ if it lies on y = x also then $\alpha = ke^{\alpha}$ $\frac{dy}{dx} = ke^{x}$ $\therefore \quad \frac{dy}{dx} = ke^{\alpha} = \alpha = 1$

{→ y = x is tangent to $y = ke^{x}$ at one point} ∴ 1 = ke i.e. k = 1/e





26. $y = \frac{1}{1-x}, x = 2 \implies y = -1$. Let P(2, -1). Tangent at P is x - y = 3.(i) Chord of parabola with P as mid-point is $(4a^2 - 5a)x + y = 8a^2 - 10a - 1$(ii) Comparing (i) and (ii) $\frac{4a^2-5a}{1} = \frac{1}{-1} = \frac{8a^2-10a-1}{3}$ $4a^2 - 5a + 1 = 0 \implies a = 1, \frac{1}{4}$ If a = 1 then parabola is $y = -x^2 + 5x - 4$ and P(2, -1) lies inside. If $a = \frac{1}{4}$ then parabola is. $y = -\frac{-x^2}{16} + \frac{5}{4}x - 4$ and P lies outside 27. (16) For the points of intersection, we have $\frac{12 - y^2}{36} + \frac{y^2}{4} = 1$ \Rightarrow y= $\pm \sqrt{3}$ and x= ± 3 Consider the point P (3, $\sqrt{3}$) Equation of the tangent at P to the circle is $3x + \sqrt{3} y = 12$ \therefore slope of this tangent is $-\sqrt{3}$

Equation of the tangent at P to the ellipse is $\frac{x}{12} + \frac{\sqrt{3}}{4} y = 1$ \therefore slope of this tangent is $-\frac{1}{3\sqrt{3}}$ if α is angle between these tangents, then

 $\tan \alpha = \frac{2}{\sqrt{3}}$ $\therefore \quad \alpha = \tan^{-1} \frac{2}{\sqrt{3}} \qquad \therefore \quad k = 4 \text{ and hence } k^2 = 16$

29. (2)

$$x = -1 \text{ and } x = \frac{1}{3} \text{ are roots of } f'(x) = 0$$

$$\Rightarrow f'(x) = a(3x-1)(x+1) = a(3x^{2}+2x-3x^{2}+3$$

f(x) =
$$x^3 + x^2 - x + 2$$

30. Let
$$f(x) = \frac{\sin x}{x}$$

 $f'(x) = \frac{x \cos x - \sin x}{x^2} = \frac{\cos x (x - \tan x)}{x^2} < 0 \quad \forall$
 $x \in \left(0, \frac{\pi}{2}\right);$ ($\therefore \tan > x$)
 $f''(x) = \frac{-x^2 \sin x - 2x \cos x + 2 \sin x}{x^3}$
Let $g(x) = -x^2 \sin x - 2x \cos x + 2 \sin x$
 $\Rightarrow g'(x) = -x^2 \cos x - 0 \quad \forall x \in (0, \pi/2)$
for $x > 0$, we have $g(x) < g(0)$ i.e. $g(x) < 0$
 \therefore $f'(x) < 0$ and $f''(x) < 0 \quad \forall x \in \left(0, \frac{\pi}{2}\right)$
 $\Rightarrow f\left(\frac{A + B + C}{3}\right) > \left(\frac{f(A) + f(B) + f(C)}{3}\right)$
 $\Rightarrow \frac{\sin\left(\frac{A + B + C}{3}\right)}{\frac{A + B + C}{3}} \ge \left(\frac{\frac{\sin A}{A} + \frac{\sin B}{B} + \frac{\sin C}{C}}{3}\right)$
 $\Rightarrow \frac{\sin A}{A} + \frac{\sin B}{B} + \frac{\sin C}{C} \le \frac{9\sqrt{3}}{2\pi}$

B

Add. 41-42A, Ashok Park Main, New Rohtak Road, New Delhi-110035 +91-9350679141