EXERCISE # 1

A. Very Short Answer Type Questions

Factorize each of the following expression

Q.1
$$x^2 - x - 42$$

- **Q.2** $6 5y y^2$
- **Q.3** $a^2 + 46a + 205$
- $\mathbf{Q.4} \qquad \mathbf{ab} + \mathbf{ac} \mathbf{b}^2 \mathbf{bc}$
- **Q.5** $p^4 81q^4$

Use remainder theorem to find remainder, when p(x) is divided by q(x) in following questions.

Q.6 $p(x) = 2x^2 - 5x + 7, q(x) = x - 1$

Q.7
$$p(x) = x^9 - 5x^4 + 1$$
, $q(x) = x + 1$

Q.8 $p(x) = 2x^3 - 3x^2 + 4x - 1$, q(x) = x + 2

B. Short Answer Type Questions

- **Q.9** Find positive square root of $36x^2 + 60x + 25$
- **Q.10** Simplify: $\sqrt{2a^2 + 2\sqrt{6}ab + 3b^2}$

Q.11
$$(x^2 + 4y)^2 + 21(x^2 + 4y) + 98$$

- Q.12 Find the value of k if (x 2) is a factor of $2x^3 6x^2 + 5x + k$.
- Q.13 Find the value of k if (x + 3) is a factor of $3x^2 + kx + 6$.
- **Q.14** $p(x) = 3x^6 7x^5 + 7x^4 3x^3 + 2x^2 2, q(x) = x 1$
- Q.15 For what value of k is $y^3 + ky + 2k 2$ exactly divisible by (y + 1)?

C. Long Answer Type Questions

- Q.16 If x + 1 and x 1 are factors of $mx^3 + x^2 - 2x + n$, find the value of m and n.
- Q.17 Find the zeros of the polynomial $f(x) = 2x^2 + 5x - 12$ and verify the relation between its zeroes and coefficients.

```
Power by: VISIONet Info Solution Pvt. Ltd

Website : www.edubull.com
Mob no. : +91-9350679141
```

Q.18 Find the zeroes of the polynomial $f(x) = x^2 - 2$ and verify the relation between its zeroes and coefficients.

- Q.19 Obtain the zeroes of the quadratic polynomial $\sqrt{3} x^2 8x + 4\sqrt{3}$ and verify the relation between its zeroes and coefficients.
- Q.20 Find a cubic polynomial with the sum of its zeroes, sum of the products of its zeroes taken two at a time and the product of its zeroes as 2, -7 and -14 respectively.
- Q.21 Find a cubic polynomial whose zeroes are 3, 5 and – 2.
- **Q.22** Divide $5x^3 13x^2 + 21x 14$ by $(3 2x + x^2)$ and verify the division algorithm.

Q.23 What real number should be subtracted from the polynomial $(3x^3 + 10x^2 - 14x + 9)$ so that (3x - 2) divides it exactly?

Q.24 Find all the zeroes of $(2x^4 - 3x^3 - 5x^2 + 9x - 3)$, it being given that two of its zeroes are $\sqrt{3}$ and $-\sqrt{3}$.

ANSWER KEY

11. $(x^2 + 4y + 7) (x^2 + 4y + 14)$

12. –2

A. VERTY SHORT ANSWER TYPE :

1. $(x + 6) (x - 7)$	2. (6 + y) (1 – y)	3. (a + 41) (a + 5)	4. $(a - b) (b + c)$
5. $(p + 3q) (p - $	$(p^2 + 9q^2)$	6. 4 7. – 5	8. –37
D CHODT ANOW	ED TVDE .		

B. SHORT ANSWER TYPE :

13. 11 **15.** 3

<u>C. LONG ANSWER TYPE :</u>

16. m = 2, n = -1	17. $-4, \frac{3}{2}$	18. $-\sqrt{2}, \sqrt{2}$	19. $2\sqrt{3}, \frac{2}{\sqrt{3}}$
20. $x^3 - 2x^2 - 7x + 14$	21. $x^3 - 6x^2 - x + 30$	22. quotient = $5x - 3$, Remainder	r = -5
	23. 5	24. $\sqrt{3}, -\sqrt{3}, 1, \frac{1}{2}$	

EXERCISE # 2

Q.1 If
$$\left(x + \frac{1}{x}\right) = 3$$
, then find value of $\left(x^2 + \frac{1}{x^2}\right)$.

Q.2 If
$$\left(x-\frac{1}{x}\right)=\frac{1}{2}$$
, then find $\left(4x^2+\frac{4}{x^2}\right)$.

Q.3 If $\left(x + \frac{1}{x}\right) = 4$, then find $\left(x^4 + \frac{1}{x^4}\right)$.

- Q.4 If (x 2) is a factor of $(x^2 + 3qx 2q)$, then find the value of q.
- Q.5 If $x^3 + 6x^2 + 4x + k$ is exactly divisible by (x + 2), then find the value of k.
- **Q.6** Let $f(x) = x^3 6x^2 + 11x 6$. Then, which one of the following is not factor of f(x)?

(A) x - 1 (B) x - 2

(C)
$$x + 3$$
 (D) $x - 3$

- Q.7 If $x^{100} + 2x^{99} + k$ is divisible by (x + 1), then find the value of k.
- **Q.8** On dividing $(x^3 6x + 7)$ by (x + 1), find the remainder.
- Q.9 Find the value of expression $(16x^2 + 24x + 9)$ for $x = -\frac{3}{4}$.
- Q.10 If $2x^3 + 5x^2 4x 6$ is divided by 2x + 1, then find remainder.
- Q.11 If $p(x) = x^2 2x 3$, then find (i) p(3); (ii) p(-1)
- Q.12 Find the zeros of the quadratic polynomial $(6x^2 7x 3)$ and verify the relation between its zeros and coefficients.
- Q.13 Find the zeros of the quadratic polynomial $(5u^2 + 10u)$ and verify the relation between the zeros and the coefficients.

- Q.14 Find the quadratic polynomial whose zeros are $\frac{2}{3}$ and $\frac{-1}{4}$. Verify the relation between the coefficients and the zeros of the polynomial.
- **Q.15** Find the quadratic polynomial, sum of whose zeros is 8 and their product is 12. Hence, find the zeros of the polynomial.
- Q.16 Find the quadratic polynomial, the sum of whose zeros is -5 and their product is 6. Hence, find the zeros of the polynomial.
- Q.17 Find the quadratic polynomial, the sum of whose zeros is 0 and their product is -1. Hence, find the zeros of the polynomial.
- Q.18 Find a quadratic polynomial whose one zero is $5 + \sqrt{7}$.
- Q.19 On dividing $(x^3 3x^2 + x + 2)$ by a polynomial g(x), the quotient and remainder are (x 2) and (-2x + 4) respectively. Find g(x).
- **Q.20** If the polynomial $(x^4 + 2x^3 + 8x^2 + 12x + 18)$ is divided by another polynomial $(x^2 + 5)$, the remainder comes out to be (px + q). Find the value of p and q.
- Q.21 Obtain all zeros of the polynomial $(2x^3 4x x^2 + 2)$, if two of its zeros are $\sqrt{2}$ and $-\sqrt{2}$.
- Q.22 If 1 and -2 are two zeros of the polynomial $(x^3 4x^2 7x + 10)$, find its third zero.
- Q.23 Find all the zeros of the polynomial $(2x^4 11x^3 + 7x^2 + 13x 7)$, it being given that two if its zeros are $(3 + \sqrt{2})$ and $(3 \sqrt{2})$.
- **Q.24** If α , β are the zeros of the polynomial $f(x) = x^2 5x + k$ such that $\alpha \beta = 1$, find the value of k.
- **Q.25** Show that the polynomial $f(x) = x^4 + 4x^2 + 6$ has no zero.

Power by: VISIONet Info Solution Pvt. Ltd	
Website : www.edubull.com	Mob no. : +91-9350679141

Q.26 Use remainder theorem to find the value of k, it being given that when $x^3 + 2x^2 + kx + 3$ is divided by (x - 3), then the remainder is 21.

ANSWER KEY					
1.7	2.9	4. – 1 5. – 8	6. (C)		
7. 1	8. 12	9. 0	10. – 3		
11. (i) 0 , (ii) 0	12. $\frac{3}{2}, -\frac{1}{3}$	13. – 2, 0	14. $12x^2 - 5x - 2$		
15. $(x^2 - 8x + 12), \{6, 2\}$		16. $(x^2 + 5x + 6), \{-3, -2\}$			
17. $(x^2 - 1), \{1, -1\}$	18. $x^2 - 10x + 18$	19. $x^2 - x + 1$	20. $p = 2, q = 3$		
21. $\sqrt{2}, -\sqrt{2}, \frac{1}{2}$	22. 5	23. $(3+\sqrt{2}), (3-\sqrt{2})$	$, \frac{1}{2}, -1$		
24. k = 6	26. k = -9				