EXERCISE #1

A. Very Short Answer Type Questions

- Q.1 Express the following in the form of p/q. (i) $.\overline{3}$ (ii) $.\overline{37}$
- Q.2 Write two irrational numbers between 0.2 and 0.21.
- Q.3 Write three irrational numbers between 0.202002000200002...and 0.203003000300003...
- Q.4 Write three irrational numbers between $\sqrt{3}$ and $\sqrt{5}$.
- **Q.5** Find two irrational numbers between 0.5 and 0.55.
- **Q.6** Find two irrational numbers lying between 0.1 and 0.12.
- Q.7 Given a rational approximation of $\sqrt{3}$ correct to two places of decimals.
- **Q.8** In the following express the result in the simplest form: $\sqrt[3]{108a^4b^3}$
- **Q.9** Express as a pure surd : $\frac{1}{3}\sqrt[3]{54}$
- **Q.10** Simplify: $2.\sqrt[3]{40} + 3.\sqrt[3]{625} + 4.\sqrt[3]{320}$
- **Q.11** Simplify: $(3\sqrt{5} 2\sqrt{3})(3\sqrt{5} + 2\sqrt{3})$
- **Q.12** Simplify: $\sqrt{m^2n^2} \times \sqrt[6]{m^2n^2} \times \sqrt[3]{m^2n^2}$
- **Q.13** Simplify: $\sqrt[5]{\sqrt[4]{(2^4)^3}} 5\sqrt[5]{8} + 2\sqrt[4]{\sqrt[5]{(2^3)^4}}$
- Q.14 If $\sqrt{3} = 1.732$, find the value of $\frac{2}{\sqrt{3}}$.

B. Short Answer Type Questions

- Q.15 Which of the following is
 - (i) rational (ii) irrational number
 - (A) $(2+\sqrt{3})^2$ (B) $(3+\sqrt{4})^2$
- **Q.16** Given that $\sqrt{3} = 1.732$, find the value of $\sqrt{75} + \frac{1}{2} \sqrt{48} \sqrt{192}$.
- **Q.17** Determine a and b if $\frac{5 + \sqrt{3}}{7 4\sqrt{3}} = 94 \text{ a} + 3\sqrt{3} \text{ b}$.
- Q.18 If $\sqrt{5} = 2.236$ and $\sqrt{6} = 2.449$, find the value of $\frac{1+\sqrt{2}}{\sqrt{5}+\sqrt{3}} + \frac{1-\sqrt{2}}{\sqrt{5}-\sqrt{3}}$.
- Q.19 If $x = 7 + 4\sqrt{3}$, find the value of $\sqrt{x} + \frac{1}{\sqrt{x}}$.
- **Q.20** If $p = 3 2\sqrt{2}$, determine $p^2 + \frac{1}{p^2}$.
- **Q.21** Find the simplest rationalising factor of $\sqrt{5} + \sqrt{3} + 2$.
- **Q.22** Simplify: $3\sqrt{2} + \sqrt[4]{64} + \sqrt[4]{2500} + \sqrt[6]{8}$.
- Q.23 Simplify and express the results in simplest form: $\frac{\sqrt{x^2 y^2} + x}{\sqrt{x^2 + y^2} + y} \div \frac{\sqrt{x^2 + y^2} y}{x \sqrt{x^2 y^2}}.$
- **Q.24** Evaluate: $\sqrt{5 + 2\sqrt{6}}$.

C. Fill in the Blanks

- Q.25 Every point on the number line corresponds to a number which may be either or
- Q.27 The decimal representation of the rational number $\frac{8}{27}$ is
- Q.28 0 is a/an number . (Rational /Irrational)
- **Q.29** The decimal equivalent to $\frac{7}{12}$ is
- **Q.30** The decimal equivalent to $\frac{49}{396}$ is
- Q.31 The common fraction equivalent to 0.09375 is
- **Q.32** The common fraction equivalent to $0.4\overline{312}$ is
- Q.33 Every real number is either number or number.

D. True/False Type Questions

- **Q.34** The sum of two rational numbers is rational.
- Q.35 The sum of two irrational numbers is irrational.

- **Q.36** The product of two rational numbers is rational.
- **Q.37** The product of two irrational numbers is irrational.
- **Q.38** The sum of a rational number and an irrational number is irrational.
- **Q.39** The product of a nonzero rational number and an irrational number is a rational number.
- **Q.40** Every real number is rational.
- **Q.41** π is irrational and $\frac{22}{7}$ is rational.
- **Q.42** Every rational number must be a whole number.
- **Q.43** The number zero is both positive and negative.
- **Q.44** The sum of the two prime numbers is always even.
- **Q.45** The product of two odd numbers is always odd.
- Q.46 A number of three digits has for its middle digit, the sum of the other two digits. Then the number must be a multiple of 11.
- Q.47 If $u = x^2 y^2$ is an even number, where x and y are whole numbers, then u must be a multiple of 4.
- Q.48 The distance between the points a and b on the number line is equal to |b a|.

ANSWER KEY

A. VERY SHORT ANSWER TYPE:

- 1. (i) $\frac{1}{3}$
- (ii) $\frac{37}{99}$
- **2.** 0.2010010001......, 0.2020020002......
- **3.** 0.20201001000100001....., 0.202020020002..., 0.202030030003......
- **4.** 1.8010010001......, 1.9010010001......, 2.010010001......
- **5.** 0.501001001...... and 0.5020020002......
- **6.** 0.10100100010000...... and 0.1020020002......
- **7**. 1.73
- **8.** 3ab $\sqrt[3]{4a}$
- 9. $\sqrt[3]{2}$
- 10. $35\sqrt[3]{5}$
- **11.** 33
- 12. m^2n^2
- 13. $-2.\sqrt[5]{8}$
- **14.** 1.154

B. SHORT ANSWER TYPE:

- 15. (a) irrational
- (b) rational
- **16.** 1.732
- 17. $a = \frac{1}{2}, b = 9$
- **18.** -0.213
- **19.** 4
- **20.** 34
- **21.** $(2+\sqrt{3}-\sqrt{5})$ $(1-2\sqrt{3})$
- **22.** $11\sqrt{2}$
- 23. $\frac{y^2}{x^2}$
- **24**. $\sqrt{3} + \sqrt{2}$

C. FILL IN THE BLANKS:

- 25. real, rational number, an irrational number
- 26. terminating, recurring
- **27.** 0.296
- 28. rational
- **29.** 0.583
- **30.** 0.12 $\overline{37}$
- 31. $\frac{3}{32}$
- 32. $\frac{718}{1665}$
- **33.** rational, irrational

D. TRUE/FALSE TYPE:

- **34.** True
- **35.** False
- **36.** True
- **37.** False
- **38.** True
- **39.** False
- **40.** False
- **41.** True
- 42. False
- 43. False
- 44. False
- **45.** True
- **46.** True
- **47.** True
- **48.** True

EXERCISE # 2

Which of the following statements are True/False. (Q. 1 to 13)

- Q.1 Every natural number is a whole number.
- 0.2 Every whole number is an integer.
- Q.3 Every whole number is a natural number.
- **Q.4** Collection of whole numbers is denoted by W.
- Q.5 Collection of integers is denoted by N.
- **Q.6** A real number is a rational number.
- **Q.7** Every point on the number line is a real number.
- Reciprocal of an irrational number is an **Q.8** irrational number.
- **Q.9** Every real number can be expressed in the form $\frac{p}{q}$ where p and q are integers and $q \neq 0$.
- Square root of every natural number is an Q.10 irrational number.
- 0.11 Every rational number can be expressed in the form of terminating decimal expansion.
- Decimal expansion of $\frac{2}{7}$ is of recurring form. Q.12
- Q.13 The number 0.21211211121111......is an irrational number.
- Express the rational number $\frac{1}{27}$ in recurring Q.14 decimal form by using the recurring decimal expression of $\frac{1}{3}$. Hence write $\frac{59}{27}$ in recurring decimal form.

- Express in $\frac{p}{q}$ form Q.15
 - (i) $2.\overline{124}$, (ii) $0.\overline{237}$
- Q.16 Express $\frac{1}{37}$ in decimal form and hence write the decimal expansion of $\frac{79}{37}$.
- Q.17 Visualize the position of 5.665 on the number line, through successive magnification.
- Visualize the representation of $1.\overline{3}$ on the Q.18 number line upto 4 decimal places, that is, upto 1.3333. Further locate 1.33333.
- Express $\sqrt{3.5}$ geometrically. Q.19
- Express $\sqrt{5.42}$ geometrically and represent it Q.20 on the number line.
- By taking $\pi = 3.141$ and $\sqrt{2} = 1.414$, Q.21 evaluate $\frac{2\pi + 3\sqrt{2}}{5}$ upto three places of decimals.
- Q.22 Simplify the following expressions:

(i)
$$(2\sqrt{2} + 5\sqrt{3}) + (\sqrt{2} - 3\sqrt{3})$$

(ii)
$$(3+\sqrt{3})(2+\sqrt{2})$$

(iii)
$$(3+\sqrt{5})(3-\sqrt{5})$$

- If $a = 2 + \sqrt{3} + \sqrt{5}$ and $b = 3 + \sqrt{3} \sqrt{5}$. Q.23 prove that $a^2 + b^2 - 4a - 6b - 3 = 0$.
- **Q.24** If $x = \sqrt{3} + 2\sqrt{2}$ and $y = \sqrt{3} 2\sqrt{2}$, evaluate $x^4 + v^4 + 6x^2v^2$.

Q.25 If $x = 1 - \sqrt{2}$, find the value of

(i)
$$x + \frac{1}{x}$$
 (ii) $x - \frac{1}{x}$

(ii)
$$x - \frac{1}{x}$$

(iii)
$$x^2 + \frac{1}{x^2}$$
 (iv) $x^2 - \frac{1}{x^2}$

(iv)
$$x^2 - \frac{1}{x^2}$$

(v)
$$x^4 + \frac{1}{x^4}$$

(v)
$$x^4 + \frac{1}{x^4}$$
 (vi) $x^4 - \frac{1}{x^4}$

For the identity $\frac{7+\sqrt{5}}{7-\sqrt{5}} - \frac{7-\sqrt{5}}{7+\sqrt{5}} = a + 7\sqrt{5}b$, Q.26 determine the rational numbers a and b.

Q.27 Simplify the following expressions:

(i)
$$\frac{1}{\sqrt{2}+1} + \frac{1}{\sqrt{3}+\sqrt{2}} + \frac{1}{\sqrt{4}+\sqrt{3}} + \frac{1}{\sqrt{5}+\sqrt{4}}$$

(ii)
$$\frac{1}{\sqrt{2}+1} + \frac{1}{\sqrt{3}+2} + \frac{2}{\sqrt{5}+3} + \frac{2}{\sqrt{5}-3}$$

Q.28 Simplify:

(i)
$$(9)^{\frac{9}{2}}$$

(ii)
$$(9)^{-\frac{3}{2}}$$

(i)
$$(9)^{\frac{9}{2}}$$
 (ii) $(9)^{-\frac{3}{2}}$ (iii) $(25)^{\frac{3}{2}}$

(iv)
$$(36)^{\frac{3}{2}}$$
 (v) $(49)^{-\frac{3}{2}}$ (vi) $(.0001)^{-\frac{3}{4}}$

(vi)
$$(.0001)^{-\frac{3}{4}}$$

Q.29 Simplify:

(i)
$$\left(\frac{243}{32}\right)^{-\frac{4}{5}}$$
 (ii) $\sqrt[3]{(343)^{-2}}$

(ii)
$$\sqrt[3]{(343)^{-2}}$$

If $a^x = b$, $b^y = c$ and $c^z = a$, then prove that Q.30 xyz = 1. Here a, b, c are positive real numbers and x, y, z are rational numbers.

ANSWER KEY

1. True

2. True

6. False

5. False 9. False

10. False

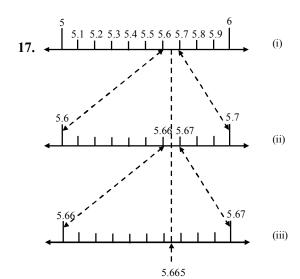
13. True

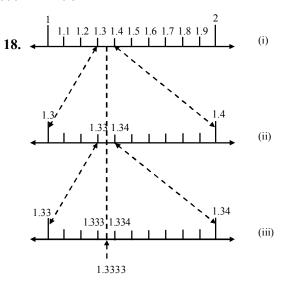
14. 0.037, 2.185

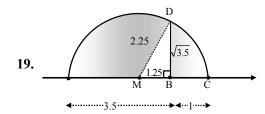
3. False

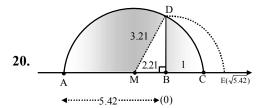
7. True

11. False


15. (i) $\frac{2122}{999}$ (ii) $\frac{47}{198}$


4. True


8. True


12. True

16. 0.\overline{0}27, 2.\overline{1}35,

21. 2.105 (approx)

22. (i)
$$3\sqrt{2} + 2\sqrt{3}$$

22. (i)
$$3\sqrt{2} + 2\sqrt{3}$$
 (ii) $6 + 3\sqrt{2} + 2\sqrt{3} + \sqrt{6}$ (iii) 4

24. 585

25. (i)
$$-2\sqrt{2}$$
, (ii) 2, (iii) 6, (iv) $-4\sqrt{2}$, (v) 34, (vi) $-24\sqrt{2}$

26.
$$a = 0, b = \frac{1}{11}$$

27. (i)
$$\sqrt{5} - 1$$
, (ii) $1 + \sqrt{2} - \sqrt{3} - \sqrt{5}$

28. (i) 27, (ii)
$$\frac{1}{27}$$
, (iii) 125, (iv) 216, (v) $\frac{1}{343}$, (vi) 1000

29. (i)
$$\frac{16}{81}$$
, (ii) $\frac{1}{49}$