EXERCISE-I

Atomic, Molecular and Equivalent masses

- 1. In the reaction $2Na_2S_2O_3 + I_2 \rightarrow Na_2S_4O_6$ +2NaI, the equivalent weight of $Na_2S_2O_3$ (mol. wt. = *M*) is equal to (A)*M* (B) M/2 (C) M/3 (D) M/4
- 2. When potassium permanganate is titrated against ferrous ammonium sulphate, the equivalent weight of potassium permanganate is
 - (A)Molecular weight /10
 - (B) Molecular weight /5
 - (C) Molecular weight /2
 - (D)Molecular weight
- 3. Boron has two stable isotopes, ${}^{10}B(19\%)$ and ${}^{11}B(81\%)$. The atomic mass that should appear for boron in the periodic table is (A)10.8 (B)10.2

· · /	
(C)11.2	(D)10.0

4. What is the concentration of nitrate ions if equal volumes of 0.1 MAgNO_3 and 0.1 MNaCl are mixed together

(A)0.1 <i>M</i>	(B)0.2 <i>M</i>
(C) 0.05 <i>M</i>	(D)0.25 <i>M</i>

5. Total number of atoms represented by the compound $CuSO_4.5H_2O$ is (A)27 (B)21

(C)5	(D)8

6. 74.5 g of a metallic chloride contain 35.5 g of chlorine. The equivalent weight of the metal is

(A)19.5		(B)35.5
(C)39.0		(D)78.0
- -	C	-

7. 7.5 grams of a gas occupy 5.8 litres of volume at STP the gas is

(A) NO	$(B) N_2O$
--------	------------

(C) CO (D) CO_2

8. The number of atoms in 4.25 g of NH₃ is approximately

(A) 1×10^{23}	(B) 2×10^{23}
(C) 4×10^{23}	(D) 6×10^{23}

9. One litre of a gas at STP weight 1.16 g it can possible be

$(A) C_2 H_2$	(B) CO
(C) O ₂	$(D) CH_4$

10. The vapour density of a gas is 11.2. The volume occupied by 11.2 g of the gas at ATP will be
(A)11.2 L
(B)22.4 L

$(11)^{11.2}$ L	(D)22.1D
(C) 1 <i>L</i>	(D)44.8 <i>L</i>

- 11. What should be the equivalent weight of phosphorous acid, if *P*=31; *O*=16; *H*=1 (A)82 (B)41
 (C) 20.5 (D) Name of these
 - (C)20.5 (D)None of these
- **12.** The number of molecule at NTP in 1 *ml* of an ideal gas will be

(A) 6×10^{23}	(B) 2.69×10^{19}
(C) 2.69×10^{23}	(D)None of these

- **13.** The specific heat of a metal is 0.16 its approximate atomic weight would be
 - (A)32 (B)16 (C)40 (D)64
- 14. The weight of a molecule of the compound $C_{60}H_{122}$ is

(A) 1.4×10^{-21} g	(B) 1.09×10^{-21} g
(C) 5.025×10^{23} g	(D) 16.023×10^{23} g

15. What is the weight of oxygen required for the complete combustion of 2.8 *kg* of ethylene

(A)2.8 <i>kg</i>	(B)6.4 <i>kg</i>
(C)9.6 <i>kg</i>	(D)96 kg

16. The number of gram atoms of oxygen present in 0.3 gram mole of $(COOH)_2.2H_2O$ is

(A)0.6	(B) 1.8
(C)1.2	(D)3.6

17. A gaseous mixture contains CH_4 and C_2H_6 in equimolecular proportion. The weight of 2.24 litres of this mixture at NTP is

(A)4.6 g	(B)1.6 g

(C) 2.3 g (D) 23 g

18. Vapour density of a z`metal chloride is 66. Its oxide contains 53% metal. The atomic weight of the metal is

(A)21	(B)54		
(C)27.06	(D)2.086		

19. One gram of hydrogen is found to combine with 80g of bromine one gram of calcium valency=2 combines with 4g of bromine the equivalent weight of calcium is

(A)10	(B)20
(C)40	(D)80

20. The equivalent weight of $MnSO_4$ is half its molecular weight when it is converted to

 $(A) Mn_2O_3 \qquad (B) MnO_2$

- (C) MnO_4 (D) MnO_4^{2-}
- **21.** 100 mL of PH_3 on decomposition produced phosphorus and hydrogen. The change in volume is
 - (A) 50 mL increase(B) 500 mL decrease(C) 900 mL decrease(D)Nil.
- **22.** 12g of Mg (at. mass 24) on reacting completely with acid gives hydrogen gas, the volume of which at STP would be
 - (A) 22.4 L (B) 11.2 L
 - (C) 44.8 L (D) 6.1 L

- 23. Which of the following has least mass
 (A) 2 g atom of nitrogen
 (B) 3×10²³ atoms of C
 (C) 1 mole of S
 (D) 7.0 g of Ag
- 24. How many mole of helium gas occupy22.4 L at 0°C at 1 atm. pressure

(A)0.11	(B) 0.90
(C)1.0	(D)1.11

25. Volume of a gas at STP is 1.12×10^{-7} cc. Calculate the number of molecules in it

(A) 3.01×10^{20}	(B) 3.01×10^{12}	
(C) 3.01×10^{23}	(D) 3.01×10^{24}	

The mole concept

26. The volume occupied by 4.4 g of CO₂ at STP is

(A)22.4 <i>L</i>	(B)2.24 <i>L</i>
(C)0.224 <i>L</i>	(D)0.1 <i>L</i>

27. The number of water molecules present in a drop of water (volume 0.0018 *ml*) at room temperature is

(A) 6.023×10^{19}	(B) 1.084×10^{18}
(C) 4.84×10^{17}	(D) 6.023×10^{23}

- **28.** One mole of calcium phosphide on reaction with excess of water gives
 - (A)One mole of phosphine
 - (B) Two moles of phosphoric acid
 - (C) Two moles of phosphine
 - (D)One mole of phosphorus pentoxide

27

Some Basic Concepts of Chemistry

- **29.** 19.7 kg of gold was recovered from a smuggler. How many atoms of gold were recovered (Au = 197) (A)100 (B) 6.02×10^{23}
 - (C) 6.02×10^{24} (D) 6.02×10^{25}
- **30.** The total number of protons in 10 g of calcium carbonate is ($N_0 = 6.023 \times 10^{23}$)
 - (A) 1.5057×10^{24} (B) 2.0478×10^{24} (C) 3.0115×10^{24} (D) 4.0956×10^{24}
- **31.** The number of molecules in 16 g of methane is
 - (A) 3.0×10^{23} (B) 6.02×10^{23} (C) $\frac{16}{6.02} \times 10^{23}$ (D) $\frac{16}{3.0} \times 10^{23}$
- **32.** Number of molecules in 100 *ml* of each of O_2 , NH₃ *and* CO₂ at STP are
 - (A)In the order $CO_2 < O_2 < NH_3$
 - (B) In the order $NH_3 < O_2 < CO_2$
 - (C) The same
 - (D) $NH_3 = CO_2 < O_2$
- **33.** The molecular weight of hydrogen peroxide is 34. What is the unit of molecular weight
 - (A) g (B) mol
 - (C) $g mol^{-1}$ (D) $mol g^{-1}$
- **34.** The number of water molecules in 1 litre of water is
 - (A)18 (B) 18×1000 (C) N_A (D) $55.55 N_A$
- **35.** The number of electrons in a mole of hydrogen molecule is
 - (A) 6.02×10^{23} (B) 12.046×10^{23} (C) 3.0115×10^{23} (D) Indefinite

36.	The number of moles of sodium oxide in				
	620g of it is				
	(A)1 mol	(B) 10 moles			
	(C)18 moles	(D)100 moles			
37.	2g of oxygen conta	ins number of atoms			
	equal to that in				
	(A) 0.5g of hydrogen	(B) 4g of sulphur			
	(C) 7g of nitrogen	(D) 2.3g of sodium			
38.	Molarity of liquid HC	with density equal to			
	1.17g/cc is				
	(A)36.5	(B)18.25			
	(C) 32.05	(D)4.65			
39.	. How many atoms are contained in one mole				
	of sucrose $(C_{12}H_{22}O_{11})$				
	(A) $45 \times 6.02 \times 10^{23}$ atoms/mole				
	(B) $5 \times 6.62 \times 10^{23}$ atoms/mole				
	(C) $5 \times 6.02 \times 10^{23}$ atoms/mole				
	(D)None of these				
40.	2 1				
	$44g$ of CO_2 is				
	(A) 6.0×10^{23} (B) 3×10^{23}				
	(C) 12×10^{23}	(D) 3×10^{10}			
_					
Pe	rcentage composition &	& Molecular formula			
41.	The percentage of oxyg	gen in NaOH is			
	(A)40	(B)60			
	(C)8	(D)10			
42.	The percentage of nitro	ogen in urea is about			
	(A)46	(B)85			
	(C)18	(D)28			

43. If two compounds have the same empirical 50. How many g of a dibasic acid (Mol. wt. = 200) should be present in 100 ml of its formula but different molecular formula, they aqueous solution to give decinormal strength must have (A)1 g (B)2g(A)Different percentage composition (C)10 g (D)20 g (B) Different molecular weights 51. The solution of sulphuric acid contains 80% (C) Same viscosity by weight H_2SO_4 . Specific gravity of this (D)Same vapour density solution is 1.71. Its normality is about 44. A compound (80 g) on analysis gave C = 24(A)18.0 (B) 27.9 g, H = 4 g, O = 32 g. Its empirical formula is (C)1.0 (D)10.0 (B) C₂H₂O $(A) C_{2}H_{2}O_{2}$ of distilled water to (C) CH₂O₂ $(D) CH_2O$ 45. The empirical formula of a compound is CH₂O. 0.0835 moles of the compound contains 1.0 g of hydrogen. Molecular formula of the compound is $(A) C_{2}H_{12}O_{6}$ (B) $C_5 H_{10} O_5$ decolourised by (C) $C_4 H_8 O_8$ $(D) C_3 H_6 O_3$ (C) Mohr's salt **Chemical stoichiometry 46.** What is the % of H_2O in Fe(CNS)₃.3H₂O (A)45 (B)30 (A)26.89 (C)19 (D)25 (C)17.8 47. What weight of SO_2 can be made by burning sulphur in 5.0 moles of oxygen molecular mass (A)640 grams (B) 160 grams (A)33 (C) 80 grams (D)320 grams (C)44 **48.** What is the normality of a 1 *M* solution of H₃PO₄ (A)0.5 N (B) 1.0 *N* (C) 2.0 N (D)3.0 N **49.** Normality of 2*M* sulphuric acid is required. The amount of NaOH present in (A)2N(B)4*N* solution is (NaOH = 40 Na CO = 106) $(C)\frac{N}{2}$ $(D)\frac{N}{4}$ (C) I.S g

52. Mohr's salt is dissolved in dil. H_2SO_4 instead (A)Enhance the rate of dissolution (B) Prevent cationic hydrolysis (C) Increase the rate of ionisation (D)Increase its reducing strength **53.** Acidified potassium permanganate solution is (A)Bleaching powder (B)White vitriol (D)Microcosmic salt 54. Approximate atomic weight of an element is 26.89. If its equivalent weight is 8.9, the exact atomic weight of element would be (B)8.9 (D)26.7 55. Vapour density of a gas is 22. What is its (B)22 (D)11 56. A solution containing Na₂CO₃ and NaOH requires 300 ml of 0.1 N HCl using phenolphalein as an indicator. Methyl orange is then added to the above titrated solution when a further 25 ml of 0.2 N HCl is

solution is (NaOn	$1 = 40, \text{Na}_2 \text{CO}_3 = 10$
(A)0.6 g	(B) 1.0 g
(C)1.5 g	(D)2.0 g

		Some Basic Concepts of Chemistry			
57.	In the preceeding qu	estion, the amount of	63.	3. The amount of water that should be added to 500 <i>ml</i> of 0.5 <i>N</i> solution of NaOH to give a	
	Na ₂ CO ₃ present in the	e solution is			
	(A)2.650 g	(B) 1.060 g		concentration of 10	mg per ml is
	(C)0.530 g	(D)0.265 g		(A)100	(B)200
58.	How many <i>ml</i> of 1 (<i>M</i>	() H_2SO_4 is required to		(C)250	(D)500
	neutralise 10 ml of 1 (.	M) NaOH solution	64.	Number of moles of KMnO ₄ required to	
	(A)2.5	(B)5.0		oxidize one mole of	f $Fe(C_2O_4)$ in acidic
	(C) 10.0	(D)20.0		medium is	
59.	Which of the for	lowing cannot give		(A)0.6	(B) 0.167
	iodometric titrations			(C)0.2	(D)0.4
	(A) ${\rm Fe}^{3+}$	(B) Cu^{2+}	65.	•	tains 86% carbon, 488ml
	(C) Pb^{2+}	$(D) Ag^+$			weight 1.68 g at STP.
60.	KMnO ₄ reacts with fe	errous ammonium		Then the hydrocarb (A) Allyana	
	sulphate according to	the equation		(A)Alkane (C)Alkyne	(B) Alkene (D) Arene
	$MnO_4^- + 5Fe^{2+} + 8H^+ -$	$\rightarrow Mn^{2+} + 5Fe^{3+} + 4H_2O$	66.		is produced at STP by the
	, here 10 <i>ml</i> of 0.1 <i>M</i>	KMnO ₄ is equivalent	00.	-	of alcohol, with methyl
	to				. The molecular mass of
	(A)20 ml of 0.1 M Fe	SO_4		alcohol is	
	(B) 30 ml of 0.1 M Fe	SO_4		(A)16.0	(B)41.2
	(C)40 ml of 0.1 M Fe	SO_4	(C)82.4	(D)156.0	
	(D)50 ml of 0.1 M Fes	SO_4	67.	67. The simplest formula of containing 50% of element 2	-
61.	$Ca(OH)_2 + H_3PO_4 \rightarrow$	$CaHPO_4 + 2H_2O$ the		-	ement Y (atomic mass 20)
	equivalent weight of	H_3PO_4 in the above	is		
	reaction is			(A) XY	$(B) X_2 Y$
	(A)21	(B)27		(C) XY_3	$(D) X_2 Y_3$
	(C)38	(D)49	68.	A compound co	
62.	The mass of BaCO ₃	produced when excess			and <i>C</i> . If the oxidation B is +5 and that of <i>C</i> is –
	CO_2 is bubbled through	gh a solution of 0.205			ula of the compound is
	mol Ba(OH) ₂ is			$(A) A_3 (BC_4)_2$	
	(A)81 g	(B)40.5 g		(B) $A_3(B_4C)_2$	
	(C)20.25 g	(D)162 g		(C) ABC ₂	
				-	

(D) $A_2(BC_3)_2$

69. What will be the volume of CO_2 at NTP 70. The ratio of the molar amounts of H_2S obtained on heating 10 grams of (90% pure) needed to precipitate the metal ions from limestone 20mL each of $1M Cd(NO_3)_2$ and (A)22.4 *litre* $0.5M CuSO_4$ is (B)2.016 *litre* (A)1:1 (C)2.24 *litre* (B)2:1 (D)20.16 *litre* (C)1:2 (D)Indefinite