EXERCISE-I

Type of solid and their properties

- **1.** Which one of the following is a good conductor of electricity
 - (A) Diamond
 - (B) Graphite
 - (C) Silicon
 - (D) Amorphous carbon
- 2. A crystalline solid
 - (A) Changes abruptly from solid to liquid when heated
 - (B) Has no definite melting point
 - (C) Undergoes deformation of its geometry easily
 - (D) Has an irregular 3-dimensional arrangements
- 3. Diamond is an example of
 - (A) Solid with hydrogen bonding
 - (B) Electrovalent solid
 - (C) Covalent solid
 - (D) Glass
- **4.** The solid NaCl is a bad conductor of electricity since
 - (A) In solid NaCl there are no ions
 - (B) Solid NaCl is covalent
 - (C) In solid NaCl there is no velocity of ions
 - (D) In solid NaCl there are no electrons
- **5.** The existence of a substance in more than one solid modifications is known as **or** Any compound having more than two crystal structures is called
 - (A) Polymorphism
 - (B) Isomorphism
 - (C) Allotropy
 - (D) Enantiomorphism

6.	Which is not a property	of solids
	(A) Solids are always cry	stalline in nature
	(B) Solids have high compressibility	density and low
	(C) The diffusion of solid	ds is very slow
	(D) Solids have definite	volume
7.	Which solid will	have the weakest
	intermolecular forces	
	(A) Ice	(B) Phosphorus
	(C) Naphthalene	(D) Sodium fluoride
8.	Dulong and Petit's law is	s valid only for
	(A) Metals	(B) Non-metals
	(C) Gaseous elements	
9.	Which of the following	ng is an example of
	metallic crystal solid	
	(A) C	(B) Si
	(C) W	(D) AgCl
10.	Under which category	•
	placed among the follow	-
	(A) Ionic crystal	(B) Metallic crystal
	(C) Molecular crystal	(D)Covalent crystal
11.	Crystalline solids are	
	(A)Glass	(B) Rubber
	(C) Plastic	(D) Sugar
12.	Davy and Faraday prove	ed that
	(A) Diamond is a form o	f carbon
	(B) The bond lengths compounds are alway	•
	(C) The strength of g	
	compared to platinur	· •
	(D) Graphite is very hard	
13	Which one of the follo	
13.	antiferromagnetic in natu	-
	(A) MnO_2	(B) TiO_2
	(14) 14110 ₂	(2) 10_2

(C) VO_2 (D) CrO_2

					Solid State
14.	In graphite, carbon ator	ns are joined together		Crystallography	and Lattice
	due to		21.	For cubic coordination	the value of radius
	(A) Ionic bonding			ratio is	
	(B) Vander Waal's force	S		(A) 0.732 – 1.000	(B) 0.225 – 0.414
	(C) Metallic bonding			(C) 0.000 – 0.225	(D) 0.414 – 0.732
	(D) Covalent bonding		22.	How many space lattice	
15.	Which of the following	is not correct for ionic		the different crystal syste	
	crystals			(A)7	(B) 14 (D) 220
	(A) They possess high	melting point and	22	(C) 32	(D) 230
	boiling point		23.	Example of unit cell dimensions $a \neq b \neq c$, α	
	(B) All are electrolyte				$= \gamma = 90$, $\beta \neq 90$ is
	(C) Exhibit the property	of isomorphism		(A)Calcite(B)Graphite	
	(D) Exhibit directional p	roperties of the bond		(C) Rhombic sulphur	
16.	Which of the following i	s a molecular crystal		(D) Monoclinic sulphur	
	(A) SiC	(B) NaCl	24.	In a face-centered cubic	c lattice, a unit cell is
	(C) Graphite	(D) Ice		shared equally by how n	nany unit cells
17.	Quartz is a crystalline va	riety of		(A)8	(B) 4
	(A)Silica			(C) 2	(D) 6
	(B) Sodium silicate		25.	The maximum radius of	-
	(C) Silicon carbide			fitted in the octahedral	
	(D) Silicon			packing of sphere of rad	
10		atala will and wat haat		(A)0.732 r	(B) 0.414 r
19.	Which type of solid crys and electricity	stais will conduct neat	A <	(C) 0.225 r	(D)0.155 r
	(A) Ionic	(B) Covalent	26.	The unit cell of a NaCl	
	(C) Metallic	(D)Molecular		(A) Is body centred cube)
10				(B) Has $3Na^+$ ions	
19.	Which of the followir covalent crystal solid	ig is an example of		(C) Has 4NaCl units	.1
	(A) Si	(B) NaF	27	(D) Is electrically charge	
	(C) Al	(D) Ar	21.	For tetrahedral coord	mation number, the
20				radius ratio $\frac{r_{c^+}}{r}$ is	
20.	Which of the following crystal solid	is an example of ionic		r _a _	
	•	(B) I j E		(A) 0.732 – 1.000	(B) 0.414 – 0.732
	(A) Diamond	(B) LiF		(C) $0.225 - 0.414$	(D) 0.155 – 0.225
	(C) Li	(D) Silicon			

28.	What type of lattice is chloride crystal	s found in potassium	
	•		36
	(A) Face centred cubic		
	(B) Body centred cubic		
	(C) Simple cubic		
20	(D) Simple tetragonal	1 61	
29.	The three dimensional ; which sets the pattern f called		
	(A) Space lattice		37
	(B) Simple lattice		01
	(C) Unit cell		
	(D) Crystal lattice		
30	Crystals can be class	ified into basic	38
50.	crystal habits	ined into basic	
	(A)3	(B)7	
	(C) 14	(D)4	
31.	Bravais lattices are of		
	(A) 8 types	(B) 12 types	20
	(C) 14 types	(D)9 types	39
32.	The structure of TlCl	is similar to CsCl.	
	What would be the radiu	s ratio in TlCl	
	(A) 0.155 – 0.225		
	(B) 0.225 – 0.414		
	(C) 0.414 – 0.732		
	(D) 0.732 – 1.000		40
33.	Structure similar to zinc	blende is found in	
	(A) AgCl	(B) NaCl	
	(C) CuCl	(D) TlCl	
34.	The structure of Na_2O	crystal is	
	(A) CsCl type	(B) NaCl type	
	(C) ZnS type	(D) Antifluorite	
35.	Structure of <i>ZnS</i> is		
	(A) Body centred cubic		41
	(B) Face centred cubic		
	(C) Simple cube		
	(D) Fluorite structure		

Crystal packing

36. Na and Mg crystallize in *BCC* and *FCC* type crystals respectively, then the number of atoms of Na and Mg present in the unit cell of their respective crystal is

(A)	4 and 2	(B)
9 and 14		
(C) 14 and 9	(D) 2 and 4	

37. An AB_2 type structure is found in

(A) NaCl	(B) Al_2O_3	
(C) CaF_2	(D) N_2O	

- 38. Potassium crystallizes with a (A)Face-centred cubic lattice (B) Body-centred cubic lattice (C) Simple cubic lattice
 - (D)Orthorhombic lattice
- **39.** If the number of atoms per unit in a crystal is 2, the structure of crystal is
 - (A)Octahedral
 - (B) Body centred cubic *bcc*
 - (C) Face centred cubic fcc
 - (D) simple cubic
- **40.** The intermetallic compound LiAg crystallizes in cubic lattice in which both lithium and silver have coordination number of eight. The crystal class is
 - (A) Simple cube
 - (B) Body-centred cube
 - (C) Face-centred cube
 - (D) None of these
- **41.** The number of octahedral sites per sphere in a *fcc* structure is

(A)8	(B) 4
------	-------

(C) 2	(D)	1
-------	-----	---

42. Hexagonal close packed arrangement of ions is described as

(A) ABC ABA	(B) ABC ABC
(C) ABABA	(D) ABBAB

43. An example of a body cube is

(A) Sodium	(B) Magnesium	
(C) Zinc	(D)Copper	

44. An example of fluorite structure is

- (C) $AlCl_3$ (D) SiF_4
- **45.** In which of the following crystals alternate tetrahedral voids are occupied?
 - (A) NaCl (B) ZnS

$(D)Na_2O$	(C) CaF_2
$(D)Na_2O$	(C) CaF_2

- 46. The vacant space in the *bcc* unit cell is
 (A) 32%
 (B) 23%
 (C) 26%
 (D) None of these
- **47.** The number of octahedral voids in a unit cell of a cubical closest packed structure is

(A) 1	(B) 2
(C) 4	(D)8

48. In the closest packed structure of a metallic lattice, the number of nearest neighbours of a metallic atom is

(A) Twelve	(B) Four
(C) Eight	(D) Six

49. In the rock salt structure, the number of formula units per unit cell is equal to

(A) 1	(B) 2
(C) 3	(D)4

- **50.** Hexagonal close packing is found in crystal lattice of
 - (A) Na (B) Mg

Mathematical analysis of cubic system and Bragg's equation

- 51. The number of spheres contained (i) in one body centred cubic unit cell and (ii) in one face centred cubic unit cell, is(A) In (i) 2 and in (ii) 4
 - (B) In (i) 3 and in (ii) 2
 - (C) In (i) 4 and in (ii) 2
 - (D) In (i) 2 and in (ii) 3 $\,$
- **52.** CsBr crystal has bcc structure. It has an edge length of 4.3 Å. The shortest interionic distance between Cs^+ and Br^- ions is

(A) 1.86 Å	(B) 3.72 Å
------------	------------

- (C) 4.3 Å (D) 7.44 Å
- 53. In octahedral holes (voids)
 - (A)A simple triangular void surrounded by four spheres
 - (B) A bi-triangular void surrounded by four spheres
 - (C) A bi-triangular void surrounded by six spheres
 - (D)A bi-triangular void surrounded by eight spheres
- 54. Bragg's law is given by the equation

(A) $n\lambda = 2\theta \sin \theta$	(B) $n\lambda = 2d\sin\theta$
(C) $2n\lambda = d\sin\theta$	(D) $n\frac{\theta}{2} = \frac{d}{2}\sin\theta$

55. The number of atoms in 100 g of an fcc crystal with density $d = 10 \text{ g}/\text{cm}^3$ and cell edge equal to 100 pm, is equal to

(B) 3×10^{25}

(C) 2×10^{25} (D) 1×10^{25}

56. In the crystals of which of the following ionic compounds would you expect maximum distance between centres of cations and anions

(A) LiF	(B) CsF
(C) CsI	(D) LiI

- **57.** The number of unit cells in 58.5g of NaCl is nearly
 - (A) 6×10^{20} (B) 3×10^{22}
 - (C) 1.5×10^{23} (D) 0.5×10^{24}
- **58.** How many unit cells are present in a cubeshaped ideal crystal of NaCl of mass 1.00 g[Atomic masses: Na = 23, Cl = 35.5]
 - (A) 2.57×10^{21} unit cells
 - (B) 5.14×10^{21} unit cells
 - (C) 1.28×10^{21} unit cells
 - (D) 1.71×10^{21} unit cells
- **59.** In the Bragg's equation for diffraction of *X*-rays, *n* represents for
 - (A) Quantum number (B) An integer
 - (C) Avogadro's numbers (D) Moles
- **60.** In a face centred cubic cell, an atom at the face contributes to the unit cell

(A) 1/4 part	(B) 1/8 part
--------------	--------------

- (C) 1 part (D) 1/2 part
- **61.** The number of atoms/molecules contained in one face centred cubic unit cell of a monoatomic substance is

(A) 1	(B) 2
(C) 4	(D)6

- **62.** The number of atoms/molecules contained in one body centered cubic unit cell is
 - (A)1 (B)2
 - (C) 4 (D) 6

- 63. It the distance between Na⁺ and Cl⁻ ions in sodium chloride crystal is X pm, the length of the edge of the unit cell is
 - (A) 4X pm (B) X/4 pm (C) X/2 pm (D) 2X pm
- 64. The edge of unit cell of FCC Xe crystal is 620 pm. The radius of Xe atom is
 (A) 219.25 Pm
 (B) 235.16 Pm
 (C) 189.37 Pm
 (D) 209.87 Pm
- 65. In orthorhombic, the value of a, b and c are respectively 4.2Å, 8.6Å and 8.3Å. given the molecular mass of the solute is 155 gm mol⁻¹ and that of density is 3.3 gm / cc, the number of formula units per unit cell is

(A)2	(B) 3
(C)4	(D)6

Crystal structure and Coordination number

66. In a solid 'AB' having the NaCl structure, 'A' atoms occupy the corners of the cubic unit cell. If all the face-centered atoms along one of the axes are removed, then the resultant stoichiometry of the solid is

(A) AB_2	(B) A_2B
(C) $A_4 B_3$	(D) A_3B_4

67. In solid CsCl each Cl is closely packed with how many Cs

(A)8	(B) 6
(C) 10	(D)2

- 68. In A⁺B⁻ionic compound, radii of A⁺ and B⁻ions are 180 pm and 187 pm respectively. The crystal structure of this compound will be
 - (A) NaCl type
 - (B) CsCl type
 - (C) ZnS type
 - (D) Similar to diamond

					Solid State	
69.	In which of the follo	wing substances the	76.	In NaCl lattic	ce the coordination number of	
	carbon atom is arranged in a regular			Cl^{-} ion is		
	tetrahedral structure	rahedral structure		(A)2	(B)4	
	(A) Diamond	(B) Benzene		(C) 6	(D) 8	
	(C) Graphite	(D) Carbon black	77.	In zinc blend	de structure the coordination	
0.	The coordination number of a metal			number of Zn^{2+} ion is		
	rystallizing in a hexagonal close packed		(A)2	(B) 4		
	structure is			(C) 6	(D) 8	
	(A)4	(B) 12	78.	Coordination r	number of Na ⁺ ion in rock salt	
	(C) 8	(D)6	101	is		
1.	e	structure of MgO is similar to NaCl.		(A)12	(B) 4	
	What would be the coordination number of			(C) 8	(D) 6	
	magnesium (A)2	(B)4	79.	. ,	f Cl^- ions around one Na^+ in	
	(A) 2 (C) 6	(D)8	120	NaCl crystal lattice is		
2	How many chloride ions are there around sodium ion in sodium chloride crystal			(A)12	(B) 4	
4.				(C) 8	(D) 6	
	(A) 3 (B) 8		80.		f atoms present in unit cell of a	
	(C) 4			monoatomic substance of simple cubic lattice		
3.	Most crystals show good cleavage because			is		
	their atoms, ions or molecules are (A) Weakly bonded together			(A)6	(B) 3	
				(C) 2	(D) 1	
	(B) Strongly bonded together					
	(C) Spherically symmetrical			Defects in crystal		
	(D) Arranged in planes		01	T (1 1 1)		
4.	An example of a non-stoichiometric compound is		81.	81. In the laboratory, sodium chloride is made by burning the sodium in the atmosphere of chlorine which is yellow in colour. The cause		
	(A) Al_2O_3	(B) Fe_3O_4		of yellow cold		
	(C) NiO ₂	(D) PbO		(A)Presence of	f <i>Na</i> ⁺ ions in the crystal lattice	
75.	If the radius ratio is in the range of $0.731 - 1$,				f Cl^{-} ions in the crystal lattice	
	then the coordination number will be				f electron in the crystal lattice	
	(A)2	(B)4			of face centered cubic crystal	
				(=)		

(C) 6

(D)8

(D)Presence of face centered cubic crystal lattice

- 82. Frenkel defect is caused due to
 - (A) An ion missing from the normal lattice site creating a vacancy
 - (B) An extra positive ion occupying an interstitial position in the lattice
 - (C) An extra negative ion occupying an interstitial position in the lattice
 - (D) The shift of a positive ion from its normal lattice site to an interstitial site
- **83.** Which one of the following has Frenkel defect (A)Sodium chloride (B)Graphite
 - (C) Silver bromide (D) Diamond
- 84. Schottky defect generally appears in
 - (A) NaCl (B) KCl
 - (C) CsCl (D) All of these
- **85.** Schottky defect in crystals is observed when
 - (A) Density of crystal is increased
 - (B) Unequal number of cations and anions are missing from the lattice
 - (C) An ion leaves its normal site and occupies an interstitial site
 - (D) Equal number of cations and anions are missing from the lattice
- 86. In AgBr crystal, the ion size lies in the order Ag⁺ << Br⁻. The AgBr crystal should have the following characteristics
 - (A) Defectless (perfect) crystal
 - (B) Schottky defect only
 - (C) Frenkel defect only
 - (D) Both Schottky and Frenkel defects

- 87. Frenkel and Schottky defects are (A)Nucleus defects(B)Non-crystal defects
 - (C) Crystal defects
 - (D) None of these
- **88.** Which one of the following is the most correct statement
 - (A)Brass is an interstitial alloy, while steel is a substitutional alloy
 - (B) Brass is a substitutional alloy, while steel is an interstitial alloy
 - (C) Brass and steel are both substitutional alloys
 - (D) Brass and steel are both interstitial alloys
- 89. The flame colours of metal ions are due to(A)Frenkel defect
 - (B) Schottky defect
 - (C) Metal deficiency defect
 - (D) Metal excess defect
- **90.** Which one of the following crystals does not exhibit Frenkel defect

(A)AgBr	$(\mathbf{B})AgCl$
(C) KBr	(D)ZnS