SOLVED EXAMPLES

- **Ex.1** A parallel-plate capacitor with plate area A and separation between the plates d, is charged by a constant current i. Consider a plane surface of are A/2 parallel to the plates and drawn symmetrically between the plates. Find the displacement current through this area.
- Sol. Suppose the charge on the capacitor at time t is Q. The electric field between the plates of the capacitor is $E = \frac{Q}{\varepsilon_0 A}$.

The flux through the area considered is

$$\Phi_{\!_E} = \! \frac{Q}{\epsilon_{_0} A} \! \cdot \! \frac{A}{2} \! = \! \frac{Q}{2\epsilon_{_0}}$$

The displacement current is

$$\dot{\mathbf{i}}_{d} = \varepsilon_{0} \frac{d\Phi_{E}}{dt} = \varepsilon_{0} \left(\frac{1}{2\varepsilon_{0}}\right) \frac{dQ}{dt} = \frac{i}{2}$$

- **Ex.2** A plane electromagnetic wave propagating in the x-direction hass a wavelength of 5.0 mm. The electric field is in the y-direction and its maximum magnitude is 30 V m⁻¹. Write suitable equations for the electric and magnetic fields as a function of x and t.
- Sol. The equation for the electric and the magnetic fields in the wave may be written as

$$E = E_0 \sin \omega \left(t - \frac{x}{c} \right)$$
$$B = B_0 \sin \omega \left(t - \frac{x}{c} \right)$$

We have,

$$\omega = 2\pi \mathbf{v} = \frac{2\pi}{\lambda} \mathbf{c}$$

Thus,
$$E = E_0 \sin\left[\frac{2\pi}{\lambda}(ct - x)\right]$$

=
$$(30 \text{ V m}^{-1}) \sin \left[\frac{2\pi}{5.0 \text{ mm}} (\text{ct} - \text{x}) \right]$$

The maximum magnetic field is

$$B_0 = \frac{E_0}{c} = \frac{30 \,\mathrm{V} \,\mathrm{m}^{-1}}{3 \times 10^8 \,\mathrm{ms}^{-1}} = 10^{-7} \,\mathrm{T}$$

So,
$$B = B_0 \sin\left[\frac{2\pi}{\lambda}(ct - x)\right]$$
$$= (10^{-7} \text{ T}) \sin\left[\frac{2\pi}{5.0 \text{ mm}}(ct - x)\right]$$

The magnetic field is along the z-axis.

- **Ex.3** A light beam travelling in the x-direction is described by the electric field $E_y = (300 \text{ V m}^{-1}) \sin \omega (t x/c)$. An electron is constrained to move along the y-direction with a speed of $2.0 \times 10^7 \text{ m s}^{-1}$. Find the maximum electric force and the maximum magnetic force on the electron.
- **Sol.** The maximum electric field is $E_0 = 300 \text{ V m}^{-1}$. The maximum magnetic field is

$$B_0 = \frac{E_0}{c} = \frac{300 V m^{-1}}{3 \times 10^8 m s^{-1}} = 10^{-6} T$$

along the z-direction.

The maximum electric force on the electron is

$$\begin{split} F_{e} &= q E_{0} = (1.6 \times 10^{-19} \, \text{C}) \times (300 \, \text{V} \, \text{m}^{-1}) \\ &= 4.8 \times 10^{-17} \, \text{N}. \end{split}$$

The maximum magnetic force on the electron is

$$F_{b} = \left| \mathbf{q}_{V}^{T} \times \mathbf{B} \right|_{max} = \mathbf{q}_{V} \mathbf{B}_{0}$$
$$= (1.6 \times 10^{-19} \text{ C}) \times (2.0 \times 10^{7} \text{ ms}^{-1}) \times (10^{-6} \text{ T})$$
$$= 3.2 \times 10^{-18} \text{ N}.$$

Ex.4 Find the energy stored in a 60 cm length of a laser beam operating at 4mW. **Sol. :**

$$() \longrightarrow c \qquad () \\ 60 \text{ cm}$$

The time taken by the electromagnetic wave to move through a distance of 60 cm is $t = \frac{60 \text{ cm}}{\text{c}} = 2 \times 10^{-9} \text{ s}$. The

energy contained in the 60 cm length passes through a cross-section of the beam in 2×10^{-9} s. But the energy passing through any cross section in 2×10^{-9} s is

$$U = (4 \text{ mW}) \times (2 \times 10^{-9} \text{ s})$$

= (4 × 10⁻³ Js⁻¹) × (2 × 10⁻⁹ s)
= 8 × 10₋₁₂ J.

- **Ex.5** Find the amplitude of the electric field in a parallel beam of light of intensity 2.0 Wm⁻².
- Sol. The intensity of a plane electromagnetic wave is

$$I = u_{av}c = \frac{1}{2}\varepsilon_0 E_0^2 c$$

$$= \sqrt{\frac{2 \times (2.0 \,\mathrm{W \,m^{-2}})}{(8.85 \times 10^{-12} \,\mathrm{C}^2 \mathrm{N}^{-1} \mathrm{m}^{-2}) \times (3 \times 10^8 \,\mathrm{m s^{-1}})}}$$

= 38.8 N C⁻¹

-	Exercise # 1	[Single Correct Choice Type Questions]
1.	The fundamental source of e. m. waves (A) is varying magnetic field (C) are continous oscillations of electric ch	(B) constant magnetic and electric fields(D) is planets
2.	The displacement current was first postulat (A) Ampere (B) Maxwell	ted by (C) Hertz (D) Marconi
3.	An accelerated electric charge emits (A) β – rays (B) γ – rays	(C) e.m. waves (D) none of the above
4.	The speed of e. m. waves is given by the re	lation
	(A) $\mu_0 \varepsilon_0$ (B) $\sqrt{\mu_0 \varepsilon_0}$	(C) $1/\mu_0 \varepsilon_0$ (D) $1/\sqrt{(\mu_0 \varepsilon_0)}$
5.	Electromagnetic waves in nature are (A) longitudinal (B) longitudinal	stationary (C) transverse (D) transverse – stationary
6.	An accelerated charge(A) emits an electromagnetic wave(C) produces a gravitational field	(B) does not emits electromagnetic wave(D) none of the above
7.	 Electromagnetic waves (A) are longitudinal waves (B) travel in free space at the speed of light (C) are produced by charges moving with u (D) travel with the same speed in all media 	niform velocity
8.	Choose the only wrong statement from the	following about electromagnetic waves
	(A) are transverse(C) are produced by accelerating charges	(B) travels free space at the speed of light(D) travel with the same speed in all media
9.	In an electromagnetic wave, electric field E (A) mutually perpendicular to each other (C) at 30° to each other	and magnetic field B are (B) all parallel (D) at 60° to each other
10.	Electromagnetic wave obey the principle of (A) superposition (B) interference	(C) 1 and 2 both (D) none of the above
11.	If E and B be the electric and magnetic field wave is along the direction of	Is of electromagnetic waves, then the direction of propagation of e. m
	(A)E (B)B	(C) $E \times B$ (D) None of the above
12.	Which of the following pairs of space and the travelling in the Z- direction (A) E_x, B_y (B) E_y, B_y	ne varying E and B fields would generate a plane electromagnetic wave (C) E_x , B_z (D) E_z , B_x
13.	Choose the correct statement about electro (A) they are supersonic waves (C) they travel with the speed of light	magnetic waves (B) they are the electric charged particles (D) they can only be produced in laboratory.

14.	Hertz produced electroma (A) L C R circuit	gnetic wave by using (B) C R circuit	(C) L C circuit	(D) None of the above
15	The shortest wavelength	is for		
13.	(A) γ – rays	(B) $x - rays$	(C) ultraviolet rays	(D) microwaves
16.	Visible range of waveleng (A) 3 x 10 ⁻⁶ to 10 ⁻¹⁰ (C) 4 x 10 ⁻⁵ to 3 x 10 ⁻⁶	th in cm is	(B) $7 \ge 10^{-5}$ to $4 \ge 10^{-5}$ (D) $6 \ge 10^4$ to $1.5 \ge 10^3$	
17.	Which has the longest wa (A) infrared light	avelength ` (B) ultraviolet light	(C) radio–waves	(D) X–rays
18.	The earth's atmosphere is (A) infra - red radiation	richer in (B) ultraviolet radiations	(C) visible radiations	(D) blue colour radiations
19.	Microwaves are used for (A) television	(B) radio transmission	(C) radar system	(D) all the above
20.	Ionosphere is mainly com (A) electrons and positive (C) nitrogen and oxygen	posed of e ions	(B) ozone gas(D) b and c both	
21.	The upper atmosphere lay (A) troposphere	ver is known as (B) mesosphere	(C) ionospere	(D) chromosphere
22.	Greenhouse effect keeps (A) cold in night	the earth surface (B) dusty and cold	(C) warm in night	(D) moist in night
23.	Greenhouse effect is due (A) visible radiations	to (B) red colour radiation	(C) violet colour radiation	(D) infra - red radiation
24.	Ozone layer in atmospher (A) 20 km	e exist at the height of (B) 50 km	(C) 120 km	(D) 150 km
25.	Ozone layer exist in (A) ionosphere	(B) mesosphere	(C) troposphere	(D) stratosphere
26.	Ozone layer protectes the (A) ultraviolet radiations (C) X-rays	living cells from	(B) unfra –red radiations(D) all the radiations	
27.	The ionosphere does not a (A) microwaves (C) 1 and 2 both	allow to pass the waves wh	 ich are termed as (B) visible light waves (D) amplitude modulated v 	waves
28.	Practically ozone layer ab (A) less than $3 \ge 10^{-7}$ m (C) equal to $3 \ge 10^{-7}$ m	sorbs the radiation of wave	length (B) greater than 3 x 10 ⁻⁷ m (D) all the above	

E	xercise # 2	Part # I [Mult	tiple Correct Choice 7	Type Questions]
1.	The waves which can trav (A) ground waves (C) α-rays	vel directly along surface of	 f the earth are known as (B) X-rays (D) sky waves 	
2.	The ionosphere bends the (A) less than 40 MHz (C) nothing is certain	e e.m. waves having the fro	equencies (B) beyond 40 MHz (D) depends on the moist	ture present
3.	The S.I unit of displacem (A) H	ent current is (B) A	(C) Fm ⁻¹	(D) C
4.	Transmission of T. V. sign from Delhi can not be rec (A) there is no atmosphen (B) strong gravitational e (C) T. V. signals travel alo (D) there is atmosphere a	hals from the surface of the eived beyond 110 km distan- re on the moon ffect on T. V. signals ong a straight line, they do n round the earth	moon can be received on e nce. The reason is not follow the curvature of e	arth. But transmitted T. V. Signals earth
5.	The number of radio freq (A) three	uency carrier waves transm (B) two	itted by a television transm (C) one	itter is (D) four
6.	The speed of electromage (A) wavelength	netic waves is independent (B) frequency	of (C) intensity	(D) medium, in which it travels
7.	An electromagnetic radiation of frequency v, wavelength λ , travelling with velocity c in air, enters a glass slab of refractive index μ . The frequency, wavelength and velocity of light in the glass slab will be respectively :			
	(A) $\frac{\nu}{\mu}$, $\frac{\lambda}{\mu}$ and $\frac{c}{\mu}$		(B) v, $\frac{\lambda}{\mu}$ and $\frac{c}{\mu}$	
	(C) v, 2λ and $\frac{c}{\mu}$		(D) $\frac{2\nu}{\mu}$, $\frac{\lambda}{\mu}$ and c	
8.	If ε_0 and μ_0 are the electron quantities in a medium, the	ic permittivity and magnet en index of refraction of the	ic permeability in free space e medium is	ce, ϵ and μ are the corresponding
	(A) $\sqrt{\frac{\varepsilon_0\mu}{\varepsilon\mu_0}}$	(B) $\sqrt{\frac{\varepsilon}{\varepsilon_0}}$	(C) $\sqrt{\frac{\varepsilon_0\mu_0}{\varepsilon\mu}}$	(D) $\sqrt{\frac{\varepsilon\mu}{\varepsilon_0\mu_0}}$
9.	Dimension of $\epsilon_0 \mu_0$ is : (A) LT ⁻¹	(B) L ⁻¹ T	(C) $L^2 T^{-2}$	(D) $L^{-2} T^2$
10.	For television transmissio (A) 30–300 MHz	on, the frequency employed (B) 30–300 GHz	is normally in the range (C) 300–300 kHz	(D) 30–300 Hz

11.	Red light differs from blue (A) speed.	e light in its (B) frequency	(C) intensity	(D) amplitude	
12.	If an electromagnetic wave propagating through vacuum is described by $E = E_0 \sin (kx - \omega t); B = B_0 \sin (kx - \omega t),$				
	$(\mathbf{A}) \mathbf{E}_{0} \mathbf{k} = \mathbf{B}_{0} \boldsymbol{\omega}$	(B) $E_0 B_0 = \omega k$	(C) $E_0 \omega = B_0 k$	$(\mathbf{D}) \mathbf{E}_0 \mathbf{B}_0 = \omega / \mathbf{k}$	
13.	The electromagnetic wave	es used in the telecommunic	cation are		
	(A) ultraviolet	(B) infra-red	(C) visible	(D) microwaves.	
14.	A magnetic field can be p	roduced by			
	(A) A charge at rest only		(B) A moving charge only		
	(B) a changing electric fie	ld	(D) both by (B) and (C)		
15.	Which of the following is	independent of wavelength	1?		
	(A) k	(B) ω	(C) ωk	(D) k / ω	
16.	Finger prints on a piece of it into	f paper may be detected by	sprinkling flourescent powe	der on the paper and then looking	
	(A) dark-light	(B) sun-light	(C) Infra-red-light	(D) ultraviolet light	
17. A uniform but time varying magnetic field B (t) exists in a circular				× × × × ×	
	The magnitude of the induced electric field at point P at a distance $x + x + x + x + x + x + x + x + x + x $				
	r from the centre of the cir	cular region.			
	<i></i>			\times \times \times \times \times \times \times $B(t)$	
	(A) is zero		(B) decreases as 1/r	× × × × ×	
	(U) increases as r		(D) decreases as $1/r^2$	× × ×	
18 If \in and μ represent the permittivity and permeability of vacuum and \in and μ represent the permittivity				μ represent the permittivity and	
	permeability of medium, t	hen refractive index of the n	nedium is given by	[CBSE PMT 1997, 2000]	

(A)
$$\sqrt{\frac{\mu_0 \in_0}{\mu \in}}$$
 (B) $\sqrt{\frac{\mu \in}{\mu_0 \in_0}}$ (C) $\sqrt{\frac{\epsilon}{\mu_0 \in_0}}$ (D) $\sqrt{\frac{\mu_0 \in_0}{\mu}}$

μ

	Part # II	Assertion & Reason Type Questions]
	In each of the for of Reason (R) (A) Statement-1 (B) Statement-1 (C) Statement-1 (D) Statement-1	bllowing questions, a statement of Assertion (A) is given followed by a corresponding statement just below it . Of the statements mark the correct answer as is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1 is True, Statement-2 is False is False, Statement-2 is True
1.	Statement-1:	Sound waves are not electromagnetic waves.
	Statement-2:	Sound waves require a material medium for propagation.
2.	Statement-1 :	Displacement current arises on account of change in electric flux.
	Statement-2 :	$I_{d} = \in_{0} \left(\frac{d\Phi_{E}}{dt} \right)$
3.	Statement-1: Statement-2:	A changing electric field produces a magnetic field A changing magnetic field produces an electric field.
4.	Statement-1:	In an e.m. wave magnitude of magnetic field vector $\stackrel{\text{\tiny uu}}{\text{B}}$ is much smaller than the magnitude of vector $\stackrel{\text{\tiny uu}}{\text{E}}$.
	Statement-2:	This is because in an e.m. wave $E/B = c = 3 \times 10^8 \text{ m/s}$.
5.	Statement-1:	Electromagnetic waves exert pressure called radiation pressure.
	Statement-2:	This is because they carry energy.
6.	Statement-1:	Electromagnetic waves are transverse in nature
	Statement-2:	The electric and magnetic fields of an e.m. wave are perpendicular to each other and also perpendicular to the direction of wave propagation.

Exercise # 3

[Subjective Type Questions]

- 1. Show that the dimensions of the displacement current $\varepsilon_0 \frac{d\phi_E}{dt}$ are that of an electric current.
- 2. A point charge is moving along a straight line with a constant velocity v. Consider a small area A perpendicular to the direction of motion of the charge (figure). Calculate the displacement current through the area when its distance from the charge is x. The value of x is not large so that the electric field at any instant is essentially given by Coulomb's law.

- 3. A parallel-plate capacitor having plate-area A and plate separation d is joined to a battery of $emf \in and$ internal resistance R at t = 0. Consider a plane surface of area A/2, parallel to the plates and situated symmetrically between them. Find the displacement current through this surface as a function of time.
- 4. Consider the situation of the previous problem. Define displacement resistance $R_d = V/i_d$ of the space between the the plates where V is the potential difference between the plates and i_d is the displacement current. Show that R_d varies with time as

$$\mathbf{R}_{\mathrm{d}} = \mathbf{R}(\mathbf{e}^{\mathrm{t}/\tau} - 1).$$

- 5. Using $B = \mu_0 H$ find the ratio E_0/H_0 for a plane electromagnetic wave propagating through vacuum. Show that it has the dimension of electric resistance. This ratio is a universal constant called the impedance of free space.
- 6. The sunlight reaching the earth has maximum electric field of 810 V m^{-1} . What is the maximum magnetic field in this light?
- 7. The magnetic field in a plane electromagnetic wave is given by

B =
$$(200 \,\mu\text{T}) \sin [(4.0 \times 10^{15} \,\text{s}^{-1}) \,(t - x/c)].$$

Find the maximum electric field and the average energy density corresponding to the electric field.

- 8. A laser beam has intensity 2.5×10^{14} W m⁻². Find the amplitudes of electric and magnetic fields in the beam.
- 9. The intensity of the sunlight reaching the earth is 1380 W m⁻². Assume this light to be a plane, monochromatic wave. Find the amplitudes of electric and magnetic fields in this wave.

E	xercise # 4	Part # I	Previous Year Question	s] [AIEEE/JEE-M	AIN]
1.	Infrared radiation is do (1) spectrometer	etected by (2) pyrometer	(3) nanometer	(4) photometer	[AIEEE 2002]
2.	Dimensions of $\frac{1}{\mu_0 \in 0}$, where symbols have t	heir usual meanings, are		[AIEEE 2003]
	(1) [L ⁻¹ T]	(2) $[L^{-2}T^2]$	(3) $[L^2 T^{-2}]$	(4) [L T ⁻¹]	
3.	Which of the followin (1) γ-rays	g radiations has the leas (2) β-rays	st wavelength ? (3) α-rays	(4) X-rays	[AIEEE 2003]
4.	An electromagnetic wa then (1) wavelength is dou (2) wavelength is dou (3) wavelength is halv (4) wavelength and fre An electromagnetic wa	we of frequency $n = 3.0$ f bled and the frequency bled and frequency become red and frequency rema equency both remain ur ave in vacuum has the el	MHz passes vacuum into a die remains unchanged omes half ins unchanged nchanged lectric and magnetic field $\stackrel{r}{E}$ a	lectric medium with per and $\stackrel{f}{B}$, which are alway	mittivity $\varepsilon = 4.0$, [AIEEE 2004] ys perpendicular
6	to each other. The direct of each other. The direct of $X \parallel B$ and $k \parallel B \times A$ (1) $X \parallel B$ and $k \parallel B \times A$ (3) $X \parallel B$ and $k \parallel E \times A$ The magnetic field in A	ection of polarization is $\stackrel{1}{E}$ $\stackrel{1}{B}$	given by X and that of wave (2) $\stackrel{1}{X} \parallel \stackrel{1}{E}$ and $\stackrel{1}{k} \parallel \stackrel{1}{E}$ (4) $\stackrel{1}{X} \parallel \stackrel{1}{E}$ and $\stackrel{1}{k} \parallel \stackrel{1}{B}$	propagation by K . 1 $\times \overset{I}{B}$ $\times \overset{I}{E}$	hen [AIEEE 2012]
0.	strength is :	a travening electromagn	enc wave has a peak value of	JI	E of electric field EE-MAIN 2013]
	(1) 3V/m	(2) 6V/m	(3) 9V/m	(4) 12 V/m	
7	Match List-I (Electron from the choices given List (a) Infrared wav (b) Radio waves (c) X-rays (d) Ultraviolet ra (a) (b) (1) (iii) (ii) (2) (i) (ii) (3) (iv) (iii) (4) (i) (ii)	magnetic wave type) wi n below the lists: I es vys (c) (d) (i) (iv) (ii) (iv) (ii) (i) (iv) (iii)	th List-II (Its association / ap List – II (i) To treat muscular strain (ii) For broadcasting (iii) To detect fracture of bor (iv) Absorbed by the ozone la	plication) and select th	e correct option CE-Main 2014]
8.	During the propagatio	n of electromagnetic wa	aves in a medium:	[J	EE-Main 2014]

- (1) Electric energy density is equal to the magnetic energy density.
- (2) Both electric and magnetic energy densities are zero.
- (3) Electric energy density is double of the magnetic energy density.
- (4) Electric energy density is half of the magnetic energy density.

9.	Arrange the followin A : Blue light (1)A,B,D,C	g electromagnetic radiations B : Yellow light (2) C,A,B,D	per quantum in the order o C : X-ray (3) B,A,D,C	f increasing energy : [JEE-Main 2016] D : Radiowave. (4) D,B,A,C
	Part # II	Previous Year Qu	estions][IIT-JEE AI	OVANCED]
	1			
1.	The dimensions of $\frac{1}{2}$	$\frac{1}{2} \varepsilon_0 E^2(\varepsilon_0: \text{ permittivity of fr})$	ee space; E : electric field)	is [IIT - JEE 2000]
	(A) M L T ⁻¹	(B) M $L^2 T^{-2}$	(C) M $L^{-1} T^{-2}$	(D) M $L^2 T^{-1}$
		-47 A Ashab Park Ma	in New Rohtak Roa	d New Delhi-110035

• ANSWER KEY

EXERCISE - 1

 1. C
 2. B
 3. C
 4. D
 5. C
 6. A
 7. B
 8. D
 9. A
 10. C
 11. C
 12. A
 13. C

 14. C
 15. A
 16. B
 17. C
 18. A
 19. C
 20. A
 21. C
 22. C
 23. D
 24. B
 25. D
 26. A

 27. D
 28. A

EXERCISE - 2 : PART # I

1. A 2. B 3. B 4. C 5. B 6. C 7. B 8. D 9. D 10. A 11. B 12. A 13. D 14. D 15. D 16. D 17. B 18. B

PART # II

1. A 2. A 3. B 4. A 5. B 6. A

EXERCISE - 3 : PART # I

2.	$\frac{q A v}{2 \pi x^3} 3. \qquad \frac{\varepsilon}{2 R} e^{-\frac{t d}{\varepsilon A R}}$	5.	377 Ω 6. 2.7 μT 7.	$6 \times 10^4 \text{ N C}^{-1}, \ 0.016 \text{ J m}^{-3}$
8.	$4.3 \times 10^8 \text{ N C}^{-1}, 1.44 \text{ T}$	9.	$1.02 \times 10^3 \mathrm{N}\mathrm{C}^{-1}, 3.40 \times 10^{-6} \mathrm{T}$	

EXERCISE - 4 : PART # I

1. 2 **2.** 3 **3.** 1 **4.** 3 **5.** 2 **6.** 2 **7.** 1 **8.** 1 **9.** 4

PART # II

1. C