AREA UNDER THE CURVE

EXERCISE #1

Sol.

Questic based o		Ç
Q.1	Area bounded by $y = \sec^2 x$, $x = \frac{\pi}{6}$, $x = \frac{\pi}{3}$ and	
	x- axis is-	
	(A) $\frac{2}{\sqrt{3}}$ (B) $\frac{\sqrt{3}}{2}$ (C) $\frac{\sqrt{2}}{3}$ (D) $\sqrt{\frac{2}{3}}$	S
Sol.	[A]	
	$A = \int_{\pi/6}^{\pi/3} \sec^2 x dx = [\tan x]_{\pi/6}^{\pi/3}$	
	$=\sqrt{3}-\frac{1}{\sqrt{3}}=\frac{2}{\sqrt{3}}$	
Q.2	Area bounded by the curve $y = xe^{x^2}$, x- axis and	
	the ordinates $x = 0$, $x = \alpha$ is-	
	(A) $\frac{e^{\alpha^2} + 1}{2}$ sq. units (B) $\frac{e^{\alpha^2} - 1}{2}$ sq. units	C
	(C) $e^{\alpha^2} + 1$ sq. units (D) $e^{\alpha^2} - 1$ sq. units	
Sol.	[B]	
	$A = \int_{-\infty}^{\infty} x e^{x^2} dx$	S
	0	
	Put $x^2 = t$	
	$A = \frac{1}{2} \int_{0}^{\alpha^{2}} e^{t} dt = \frac{e^{\alpha^{2}} - 1}{2}$	
		(b
Q.3	The area bounded by the curve $y = f(x)$, x-axis and the ordinates $x = 1$ and $x = b$ is	li C
	and the ordinates $x = 1$ and $x = b$ is $(b-1) \sin (3b+4)$, then $f(x)$ equals-	
	(A) $(x-1) \cos (3x+4)$	
	(B) $\sin(3x + 4)$	
	(C) $\sin(3x+4) + 3(x-1)\cos(3x+4)$	S
Sol.	(D) None of these [C]	
501.	Given that $\int_{a}^{b} f(x) dx = (b-1) \sin (3b+4)$	
	1	
	diff. with respect. to b, we have $f(h) = ain (2h + 4) + 2(h - 1) and (2h + 4)$	ſ
	$f(b) = \sin (3b + 4) + 3(b - 1) \cos (3b + 4)$ $\Rightarrow f(x) = \sin (2x + 4) + 2(x - 1) \cos (2x + 4)$	(
Power 1	$\Rightarrow f(x) = \sin (3x+4) + 3(x-1) \cos (3x+4)$ by: VISIONet Info Solution Pvt. Ltd	
	e : www.edubull.com Mob no. : +91-9350679)141

Q.4	The area	bounded	by the	x-axis	and	the	curve
	y = 4x - x	x ² – 3 is-					
	(Λ) ¹	$(\mathbf{P})^{2}$		4		8	

(A)
$$\frac{1}{3}$$
 (B) $\frac{1}{3}$ (C) $\frac{1}{3}$ (D) $\frac{1}{3}$
[C]
 $y = 4x - x^2 - 3$
 $\Rightarrow x^2 - 4x + 3 = 0$
 $\Rightarrow (x - 3) (x - 1) = 0 \Rightarrow x = 1, 3$
 $A = \int_{1}^{3} (4x - x^2 - 3) dx$
 $= \left[2x^2 - \frac{x^3}{3} - 3x \right]_{1}^{3} = 18 - 9 - 9 - 2 + \frac{1}{3} + 3$
 $= 1 + \frac{1}{3} = \frac{4}{3}$

Q.5 The area of the region bounded by the curve $y = \sin x$ and the x- axis in $[-\pi, \pi]$ is-(A) 4 (B) 8 (C) 12 (D) 2 Sol. [A] Area = $2\int_{0}^{\pi} \sin x \, dx$ $= 2[-\cos x]_{0}^{\pi} = 2[1 + 1] = 4$

Questions based on Area bounded by curve and y-axis

Q.6 Area in 1st quadrant bounded by $y = 4x^2$, x = 0, y = 1 and y = 4 is-(A) $\frac{3}{7}$ (B) $\frac{5}{7}$ (C) $\frac{7}{3}$ (D) $\frac{7}{5}$ **Sol.** [C] $A = \frac{1}{2} \int_{1}^{4} \sqrt{y} \, dy$ $= \frac{1}{3} \left[y^{3/2} \right]_{1}^{4} = \frac{7}{3}$

Q.7 The area between the curves $x = 2 - y - y^2$ and y-axis, is-

(A) 9 (B)
$$\frac{9}{2}$$
 (C) $\frac{9}{4}$ (D) 3
[B]
 $y^2 + y - 2 = 0$
 $(y + 2) (y - 1) = 0 \Rightarrow y = 1, -2$
required area $= \int_{-2}^{1} x \, dy$
 $= \int_{-2}^{1} (2 - y - y^2) \, dy$
 $= \left[2y - \frac{y^2}{2} - \frac{y^3}{3} \right]_{-2}^{1}$
 $= 2 - \frac{1}{2} - \frac{1}{3} + 4 + \frac{4}{2} - \frac{8}{3} = \frac{9}{2}$

Sol.

Area bounded by two curves

Q.8 Area of figure bounded by straight lines x = 0, x = 2 and the curves $y = 2^x$, $y = 2x - x^2$ is-(A) $3\log_2 e - \frac{3}{4}$ (B) $\frac{3}{\lambda n 2} - \frac{4}{3}$ (C) $\frac{3}{\lambda n 2} + \frac{3}{4}$ (D) $\frac{3}{\lambda n 2} + \frac{4}{3}$ Sol. [B]

$$A = \int_{0}^{1} (2^{x} - 2x + x^{2}) dx$$
$$= \left[\frac{2^{x}}{\lambda n 2}\right]_{0}^{2} - (x^{2})_{0}^{2} + \frac{1}{3} [x^{3}]_{0}^{2}$$
$$= \frac{3}{\lambda n 2} - 4 + \frac{8}{3}$$
$$= \frac{3}{\lambda n 2} - \frac{4}{3}$$

Q.9 Area bounded by $y = x^2 + 1$ and the tangents to it drawn from the origin, is-

(A)
$$\frac{8}{3}$$
 (B) $\frac{1}{3}$ (C) $\frac{2}{3}$ (D) $\frac{10}{3}$

Sol.

[C] Parabola is $x^2 = y - 1$ Tangent to it from origin is y = 2x and y = -2xIntersection point of $x^2 = y - 1$ and y = 2x is (1, 2) Area = $2 \int_{-1}^{1} (x^2 + 1 - 2x) dx$

$$= 2 \int_{0}^{1} (x-1)^{2} dx = 2 \left[\frac{(x-1)^{3}}{3} \right]_{0}^{1} = \frac{2}{3}$$

Q.10 The value of a for which the area between the curves $y^2 = 4ax$ and $x^2 = 4ay$ is 1 sq. unit, is-

(A)
$$\sqrt{3}$$
 (B) 4 (C) $4\sqrt{3}$ (D) $\frac{\sqrt{3}}{4}$

Sol. [D]

Curve is $y^2 = 4ax$ and $x^2 = 4ay$ intersection point is (0, 0) and (4a, 4a)

So Area =
$$\int_{0}^{4a} \left(\sqrt{4ax} - \frac{x^2}{4a} \right) dx$$

Given that Area = 1

$$\Rightarrow \int_{0}^{4a} \left(\sqrt{4ax} - \frac{x^2}{4a} \right) dx = 1$$
$$\Rightarrow \left[\sqrt{4a} \cdot \frac{2}{3} x^{3/2} - \frac{x^3}{12a} \right]_{0}^{4a} = 1$$
$$\Rightarrow \frac{2}{3} (4a)^2 - \frac{(4a)^3}{12a} = 1$$
$$\Rightarrow a = \frac{\sqrt{3}}{4}$$

Q.11 The area bounded by the curve $y^2 = 4x$ and the line 2x - 3y + 4 = 0, is-

(A)
$$\frac{1}{3}$$
 (B) $\frac{2}{3}$ (C) $\frac{4}{3}$ (D) $\frac{5}{3}$
[A]

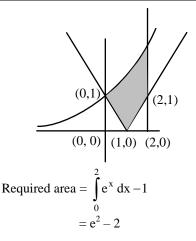
Sol.

From curve $y^2 = 4x$ and line 2x - 3y + 4 = 0we get x coordinate of intersection point which is x = 1, x = 4

Area =
$$\int_{1}^{4} \left[\sqrt{4x} - \left(\frac{2x+4}{3}\right) \right] dx$$
$$= \left[2 \cdot \frac{2}{3} x^{3/2} - \frac{1}{3} (x^2 + 4x) \right]_{1}^{4}$$
$$= \frac{32}{3} - \frac{32}{3} - \frac{4}{3} + \frac{5}{3} = \frac{1}{3}$$

Q.12 The area bounded by the curve $y = e^x$ & the lines y = |x - 1|, x = 2 is given by-(A) $e^2 + 1$ (B) $e^2 - 1$ (C) $e^2 - 2$ (D) None of these Sol. [C] $y = e^x$, y = |x - 1|, x = 2

Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com



Q.13 The average value of $f(x) = \sec^2 x$ from x = 0 to $x = \frac{\pi}{2}$, is-

(A)
$$\frac{\pi}{4}$$
 (B) $\frac{\pi}{2}$ (C) $\frac{2}{\pi}$ (D) $\frac{4}{\pi}$

Sol. [D]

$$\frac{1}{\frac{\pi}{4} - 0} \int_{0}^{\pi/4} \sec^2 x \, dx$$
$$\Rightarrow \frac{4}{\pi} \left[\tan x \right]_{0}^{\pi/4} \Rightarrow \frac{4}{\pi}$$

Q.14 The area of the region(s) enclosed by the curves $y = x^2$ and $y = \sqrt{|x|}$ is-(A) 1/3 (B) 2/3 (C) 1/6 (D) 1 Sol. [B]

$$y = x^2$$
 and $y^2 = |x|$

Area =
$$2 \int_{0}^{1} (\sqrt{x} - x^{2}) dx = 2 \left[\frac{2}{3} x^{3/2} - \frac{x^{3}}{3} \right]_{0}^{1}$$

$$= 2\left[\frac{2}{3} - \frac{1}{3}\right] = \frac{2}{3}$$

Q.15 Let 'a' be a positive constant number. Consider two curves $C_1 : y = e^x$, $C_2 : y = e^{a \cdot x}$. Let S be the

area of the part surrounding by C_1 , C_2 and the y-

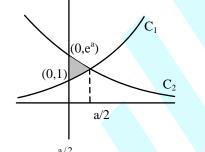
axis, then
$$\lim_{a \to 0} \frac{S}{a^2}$$
 equals-

(A) 4 (B)
$$\frac{1}{2}$$
 (C) 0 (D) $\frac{1}{4}$

Sol.

[D]

 $C_1 : y = e^x$ and $C_2 : y = e^{a-x}$



Area =
$$\int_{0}^{a/2} (e^{a-x} - e^{x}) dx = (-e^{a-x} - e^{x})_{0}^{a/2}$$

S = $e^{a} - 2e^{a/2} + 1$

$$\lim_{a \to 0} \frac{S}{a^2} = \lim_{a \to 0} \frac{e^{-2e^2} + 1}{a^2} = \frac{1}{4}$$

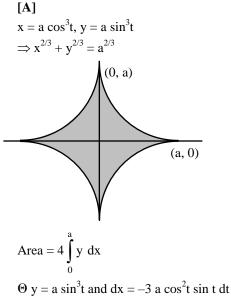
Questions based on Parametric Curves

(C) $\frac{3\pi a^2}{16}$

Q.16 The area bounded by the curve $x = a \cos^3 t$, y = a sin³t is-

(A)
$$\frac{3\pi a^2}{32}$$
 (B) $\frac{\pi a^2}{32}$

Sol.



 Power by: VISIONet Info Solution Pvt. Ltd

 Website : www.edubull.com
 Mob no. : +91-9350679141

Area =
$$\int_{\pi/2}^{0} (a \sin^3 t) (-3a \cos^2 t \sin t) dt$$

= $3a^2 \int_{0}^{\pi/2} \sin^4 t \cos^2 t dt$
 $3a^2 \cdot \frac{(3.1) \cdot 1}{6.4.2} \cdot \frac{\pi}{2} = \frac{3\pi a^2}{32}$

Q.17 The area bounded by the curves $x = a (\theta - \sin\theta)$, $y = a(1 - \cos \theta), 0 \le \theta \le 2\pi$, is-(A) πa^2 sq. units (B) $2\pi a^2$ sq. units (C) $3\pi a^2$ sq. units (D) $4\pi a^2$ sq. units

$$A = a \int_{0}^{2\pi} (1 - \cos \theta) \cdot a(1 - \cos \theta) d\theta$$

= $a^{2} \int_{0}^{2\pi} (1 + \cos^{2} \theta + 2\cos \theta) d\theta$
= $a^{2} \left[[x]_{0}^{2\pi} + \frac{1}{2} \left[x + \frac{1}{2} \sin 2\theta \right]_{0}^{2\pi} + 0 \right]$
= $a^{2} (2\pi + \pi)$
= $3\pi a^{2}$

Questions based on Miscellaneous

- Q.18 The area enclosed between the curve $y = \log_e (x + e)$ and the coordinate axes is-(A) 4 (B) 3 (C) 2 (D) 1
- Sol. [D]

$$Area = \int_{1-e}^{0} \log (x+e) dx$$
$$= [x \log (x+e)]_{1-e}^{0} - \int_{1-e}^{0} \frac{x}{x+e} dx$$
$$= -\int_{1-e}^{0} \frac{x+e-e}{x+e} dx$$

$$= - [x - e \log(x + e)]_{1-e}^{0}$$
$$= e + 1 - e = 1$$

Q.19 The area of the figure bounded by the curves $y = \lambda nx \& y = (\lambda nx)^2$ is-

(A)
$$e + 1$$
 (B) $e -1$
(C) $3 - e$ (D) 1
[C]

Sol.

 $y = \lambda n x$ and $y = (\lambda n x)^2$ Intersection at x = 1, and x = e

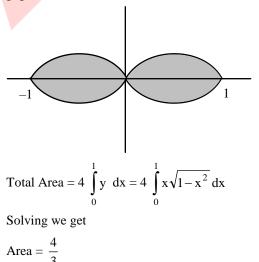
Area =
$$\int_{1}^{e} \left[(\lambda n x) - (\lambda n x)^{2} \right] dx$$
$$= \left[x \lambda n x - x \right]_{1}^{e} - \left[x (\lambda n x)^{2} \right]_{1}^{e} + 2 \int_{1}^{e} \lambda n x dx$$
$$= 1 - e + 2 \left[x \lambda n x - x \right]_{1}^{e}$$

$$= 1 - e + 2 (e - e + 1) = 3 - e$$

Q.20 The area enclosed by the curve $y^2 + x^4 = x^2$, is-

(A) $\frac{2}{3}$ (B) $\frac{4}{3}$ (C) $\frac{8}{3}$ (D) $\frac{10}{3}$

Sol. [B]



- Alca $-\frac{1}{3}$
- **Q.21** Let z be a complex number such that $\operatorname{Re}(z) = \sqrt{x^2 + 4}$, and $\operatorname{Im}(z) = \sqrt{y - 4}$ satisfying $|z| = \sqrt{10}$. Area enclosed by the set

satisfying $|z| = \sqrt{10}$. Area enclosed by the set of points (x, y) on the complex plane, is-(A) $8\sqrt{6}$ (B) $4\sqrt{6}$

Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com

(C)
$$\frac{20\sqrt{10}}{3}$$
 (D) $\frac{40\sqrt{10}}{3}$

Sol.

[A]

$$x^{2} + 4 + y - 4 = 10$$

 $x^{2} = -(y - 10)$
(0,10)
 $-\sqrt{10} - \sqrt{6}$
 $y \ge 4$
 $A = 2 \left[\int_{0}^{\sqrt{6}} y \, dx - 4 \times \sqrt{6} \right] = 2 \int_{0}^{\sqrt{6}} (10 - x^{2}) dx = 8\sqrt{6}$

- Q.22 Area of the curve $y^2 = (7 x) (5 + x)$ above x-axis and between the ordinates x = -5 and x = 1, is-
 - (A) 9π (B) 18π
 - (C) 15π (D) None of these

Sol. [A]

$$y^{2} = -(x - 7) (x + 5)$$

$$\frac{-}{-5} + \frac{-}{7}$$
Area = $\int_{-5}^{1} \sqrt{35 + 2x - x^{2}} dx$

$$= \int_{-5}^{1} \sqrt{36 - (x - 1)^{2}} dx$$

$$= \left[\frac{36}{2} \sin^{-1} \frac{x - 1}{6} + \frac{x - 1}{2} \sqrt{36 - (x - 1)^{2}}\right]_{-5}^{1}$$

$$= 9\pi$$

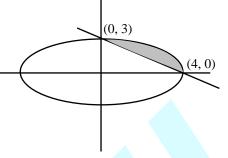
Q.23 The area bounded in the first quadrant between the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$ and the line 3x + 4y = 12, is-(A) $6(\pi - 1)$ (B) $3(\pi - 2)$ (C) $3(\pi - 1)$ (D) None of these Sol. [B] Ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$

line
$$\frac{x}{x} + \frac{y}{y} = 1$$

$$\frac{1}{4} + \frac{1}{3} = \frac{1}{3}$$

Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com

Mob no. : +91-9350679141



Area in first quadrant

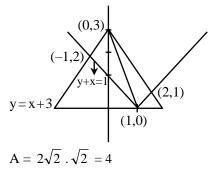
$$= \frac{\pi ab}{4} - \frac{1}{2} ab$$
$$= \frac{12}{4}\pi - \frac{1}{2} \cdot 12 = 3(\pi - 2)$$

Q.24 The area bounded by y = 2 - |2 - x| and $y = \frac{3}{|x|}$,

is-(A) $\frac{4+3\lambda n \ 3}{2}$ (B) $\frac{4-3\lambda n \ 3}{2}$ (C) $\frac{3}{2}+\lambda n \ 3$ (D) $\frac{1}{2}+\lambda n \ 3$ Sol. [B]

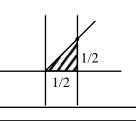
True / False type questions

Q.25 The area of the figure bounded by the curves y = |x - 1| and y = 3 - |x| is 4 sq. unit. Sol.



Q.26 Area of the region bounded by $y = \{x\}$ and 2x - 1 = 0, y = 0 is $\frac{1}{4}$, ($\{ \}$ stands for fraction part)

Sol.



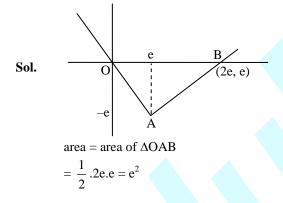
$$A = \frac{1}{8}$$

Q.27 The positive value of 'a' for which area covered by figure y = sin ax, y = 0, x = $\frac{\pi}{3a}$ and x = $\frac{\pi}{a}$ is equal to 3, is $\frac{1}{2}$.

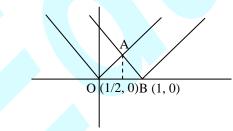
Sol. $A = -\frac{1}{a} \left[\cos a x \right]_{\pi/3a}^{\pi/a}$ $A = -\frac{1}{a} \left[-1 - \frac{1}{2} \right] = \frac{3}{2a}$ $a = \frac{3}{2A} = \frac{1}{2}$ when A = 3

Fill in the blanks type questions

Q.28 The area bounded by x-axis, x = 0, x = 2e and f(x) = ||x - e| - e| is.....



Q.29 The area bounded by $f(x) = \min(|x|, |x-1|)$ and x-axis is.....



Sol.

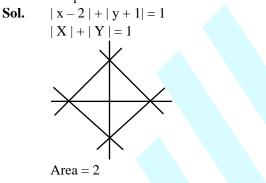
Area = Area of $\triangle OAB$

$$=\frac{1}{2}\left(1\times\frac{1}{2}\right)=\frac{1}{4}$$

Q.30 The area bounded by x-axis,
$$x = \frac{\pi}{2}$$
 and $f(x) = \{\sin x\}$ is....

Sol.
$$A = \int_{0}^{\pi/2} \sin x \, dx = \left[-\cos x\right]_{0}^{\pi/2} = 1$$

Q.31 Area enclosed by the curve |x - 2| + |y + 1| = 1 is equal to



Q.32 Area bounded by the curve $y = \sin^{-1} x$, $y = \cos^{-1} x$ and x = 0 is equal to

$$A = 2 \int_{0}^{\pi/4} \sin y \, dy = -2 \left[\cos y\right]_{0}^{\pi/4}$$
$$= -2 \left[\frac{1}{\sqrt{2}} - 1\right] = 2 \left[1 - \frac{1}{\sqrt{2}}\right]$$
$$= 2 - \sqrt{2}$$

 Power by: VISIONet Info Solution Pvt. Ltd

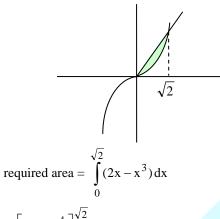
 Website : www.edubull.com
 Mob no. : +91-9350679141

Sol.

EXERCISE # 2

- The area between the curve $y = x^3$ and Q.1 y = x + |x| is-(A) 0 (B) 2 (C) 1 (D) 3
- Sol.

[C]



$$= \left[x^2 - \frac{x^4}{4} \right]_0^{\sqrt{2}} = 2 - 1 = 1$$

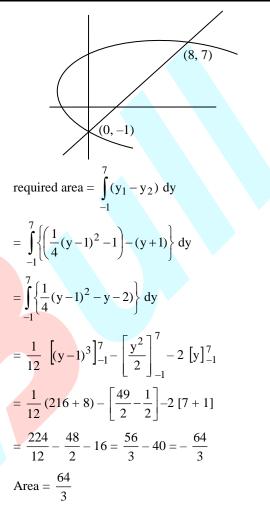
The area bounded by $y = x^2$ and y = [x + 1], Q.2 $x \le 1$ and the y-axis is-(where [] stands for greatest integer function) (A) 1 (B) 2/3 (D) None of these (C) 1/3 [B]

required area

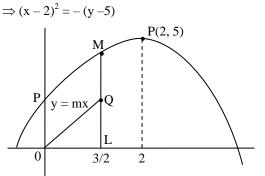
$$= \int_{0}^{1} x \, dy = \int_{0}^{1} y^{1/2} \, dy = \frac{2}{3} \left[y^{3/2} \right]_{0}^{1} = \frac{2}{3}$$

Q.3 Area bounded by the curves y = x - 1 and $(y-1)^2 = 4(x+1)$ is -(A) 8/3 (B) 16/3 (C) 32/3 (D) 64/3 a

Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com Mob no.: +91-9350679141



If y = mx divides the area bounded by lines Q.4 x = 0, y = 0, x = 3/2 & the curve $y = 1 + 4x - x^2$ in two equal parts, then m is equal to-(A) 13/8 (B) 13/4 (C) 13/6 (D) None of these Sol. [C] $y = 1 + 4x - x^2$



Given that
area of OLMP = 2 area of OQL
$$\Rightarrow \text{Area of OLMP} = \int_{0}^{3/2} (1+4x-x^{2}) dx$$
$$= \left[x+x^{2}-\frac{x^{3}}{3}\right]_{0}^{3/2} = \frac{39}{8}$$
and area of OQL = $\frac{1}{2} \cdot \frac{3}{2} \cdot \text{QL}$
$$= \frac{1}{2} \cdot \frac{3}{2} \cdot \frac{3}{2} \text{m} = \frac{9}{8} \text{m}$$
$$\Rightarrow \frac{39}{8} = 2\left(\frac{9}{8}\text{m}\right)$$
$$\Rightarrow \text{m} = \frac{13}{6}$$

Q.5 The area bounded by the curve $y = \left\lfloor \frac{x^2}{64} + 2 \right\rfloor$, y = x - 1 and x = 0 above the x axis will be-(Where [] represents greatest integer function.)

(B) 3

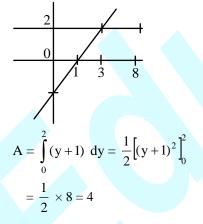
(D) None of these

(A) 2 (C) 4

[C]

Sol.

Sol.



Q.6 If A_1 is the area enclosed by the curve xy = 1, x-axis and the ordinates x = 1, x = 2; and A_2 is the enclosed by the curve xy = 1, x-axis and the coordinates x = 2, x = 4; then-

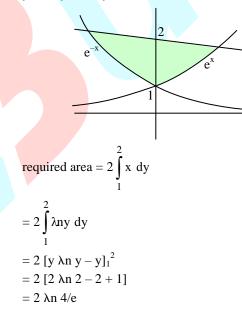
(A)
$$A_2 = 2A_1$$
 (B) $A_1 = 2A_2$
(C) $A_2 = 3A_1$ (D) $A_1 = A_2$
[D]

Area for
$$A_1 = \int_1^2 \frac{1}{x} dx$$

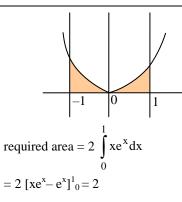
 $= [\lambda n \ x]_1^2 = \lambda n \ 2$
Area for $A_2 = \int_2^4 \frac{1}{x} dx$
 $= [\lambda n \ x]_2^4 = \lambda n \ 4 - \lambda n \ 2 = \lambda n \ 2$
Clearly $A_1 = A_2$

Q.7Area of the region bounded by the curves
 $y = e^x$, $y = e^{-x}$ and the straight line y = 2 is-
(A) log (4/e)
(C) 4 log (4/e)(B) 2 log (4/e)
(D) None of theseSol.[B]

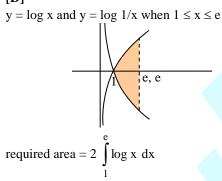
$$y = e^x, y = e^{-x}, y = 2$$



Q.8 Area bounded by curve $y = xe^{|x|}$ and lines |x| = 1, y = 0 will be-(A) 4 (B) 6 (C) 1 (D) 2 Sol. [D] $y = xe^{|x|}$ and lines |x| = 1, y = 0 $y = \begin{cases} xe^{x} & x > 0 \\ xe^{-x} & x < 0 \end{cases}$



- Q.9 The area between the curves $y = \log x$ and $y = \log 1/x$ when $1 \le x \le e$ is-(A) $\log (4/e)$ (B) 1 (C) 3 (D) $2 \int_{1}^{e} \log x \, dx$
- Sol. [D]



Q.10 If A is the area between the curve $y = \sin x$ and x-axis in the interval $[0, \pi/2]$, then the area between $y = \sin 2x$ and x-axis in this interval will be -

(B) 2A

(D) None of these

Sol.

(A) A

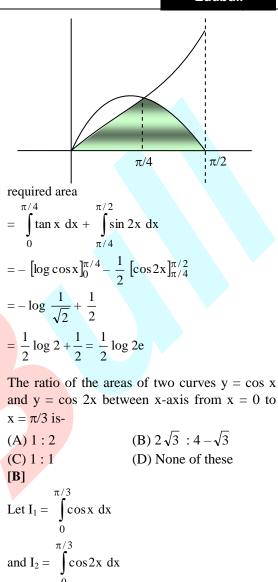
[A]

(C) A/2

$$A = \int_{0}^{\pi/2} \sin x \, dx = -[\cos x]_{0}^{\pi/2} = 1$$

Again area = 2 $\int_{0}^{\pi/4} \sin 2x \, dx$
= - $[\cos 2x]_{0}^{\pi/4} = 1 = A$

Q.11 The common area bounded by the curves $y = \sin 2x$, $y = \tan x$ and y = 0 in $[0, \pi/2]$, is-(A) 1/2 log (2/e) (B) 1/2 log 2e (C) log 2e (D) log $\sqrt{2}$ -1 Sol. [B] $y = \sin 2x$, $y = \tan x$, y = 0 in $[0, \pi/2]$



Q.12

Sol.

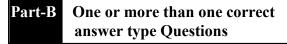
$$I_{1} = [\sin x]_{0}^{\pi/3} = \frac{\sqrt{3}}{2}$$

$$I_{2} = \int_{0}^{\pi/4} \cos 2x \, dx - \int_{\pi/4}^{\pi/3} \cos 2x \, dx$$

$$= \frac{1}{2} [(\sin 2x)_{0}^{\pi/4} - (\sin 2x)_{\pi/4}^{\pi/3}]$$

$$= \frac{1}{2} \left[1 - \frac{\sqrt{3}}{2} + 1 \right] = \frac{4 - \sqrt{3}}{4}$$

$$\frac{I_{1}}{I_{2}} = \frac{2\sqrt{3}}{4 - \sqrt{3}}$$

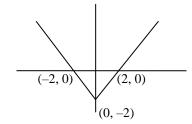


 Power by: VISIONet Info Solution Pvt. Ltd

 Website : www.edubull.com
 Mob no. : +91-9350679141

- Sol.

[B, C, D] f(x) = |x| - 2, g(x) = |f(x)|f(x) = |x| - 2,



and

$$g(x) = |f(x)| = \frac{(0, 2)}{(-2, 0)}$$

$$A_{1} = f(x) = \left|2\int_{0}^{2} (x - 2) dx\right| = \left|2\left[\frac{x^{2}}{2} - 2x\right]_{0}^{2}\right|$$

$$= |2[2-4]| = 4$$

 A_2 = clearly same as A_1 = 4 option B, C and D are correct.

Q.14 Let L : x - y - 1 = 0 be a line & $C : y^2 = 2x + 1$ be a parabola then -

(A) area bounded by L and C lying in the upper $\frac{32}{32}$

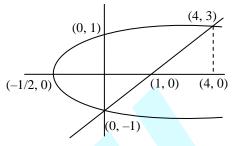
half plane is $\frac{32}{3}$

- (B) area bounded by L and C lying in the plane is $\frac{16}{3}$
- (C) area bounded by L and C in the upper half plane is $\frac{9}{2}$
- (D) area bounded by L and C in the lower half $\frac{5}{5}$

L : x –

Sol.

D]
$$y = 1$$
 $C: y^2 = 2(x + 1/2)$



Area bounded by L and C in upper half plan is

$$= \int_{-\frac{1}{2}}^{4} \sqrt{2x+1} \, dx - \frac{1}{2} \, x \times 3 \times 3$$
$$= \int_{0}^{3} t^2 \, dt - \frac{9}{2} \qquad \text{where } 2x + 1 = t^2$$
$$= 9 - \frac{9}{2} = \frac{9}{2} \text{ option C is correct.}$$

2 2 Area in lower half plane is

$$= \int_{-\frac{1}{2}}^{0} \sqrt{2x+1} \, dx + \frac{1}{2} \times 1 \times 1$$

$$= \int_{0}^{1} t^{2} dt + \frac{1}{2} = \frac{1}{3} + \frac{1}{2} = \frac{5}{6}$$

option D is correct. Area bounded by L and C lying in the plane is $= \frac{9}{2} + \frac{5}{6} = \frac{32}{6} = \frac{16}{3}$

Option B is correct. So option B, C, and D are correct.

Q.15 If $C_1 \equiv y = \frac{1}{1+x^2}$ and $C_2 \equiv y = \frac{x^2}{2}$ be two

curve lying in XY plane. Then -

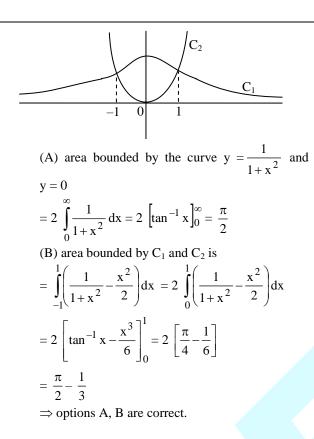
- (A) area bounded by curve $y = \frac{1}{1 + x^2}$ & y = 0 is π (B) area bounded by C and C is $\frac{\pi}{1 + x^2}$
- (B) area bounded by C₁ and C₂ is $\frac{\pi}{2} \frac{1}{3}$

(C) area bounded by C₁ and C₂ is
$$1 - \frac{\pi}{2}$$

(D) area bounded by curve
$$y = \frac{1}{1+x^2}$$
 & x-axis is $\frac{\pi}{2}$

$$C_1 \equiv y = \frac{1}{1 + x^2}$$
 and $C_2 \equiv y = \frac{x^2}{2}$

Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com



Part-C Assertion-Reason type Questions

The following questions consist of two statements each, printed as Statement-1 and Statement-2. While answering these questions you are to choose any one of the following four responses.

- (A) If both Statement-1 and Statement-2 are true and the Statement-2 is correct explanation of the Statement-1.
- (B) If both Statement-1 and Statement-2 are true but Statement-2 is not correct explanation of the Statement-1.
- (C) If Statement-1 is true but the Statement-2 is false.
- (D) If Statement-1 is false but Statement-2 is true.
- **Q.16** Statement-1 : The area of the curve $y = \sin^2 x$ from 0 to π will be more than that of curve $y = \sin x$ from 0 to π .

Statement-2: $t^2 > t$ if t > 1.

Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com Sol. [D]

Q.17 Statement-1 : Area formed by curve $y = \cos x$ with y = 0, x = 0 and $x = \frac{3\pi}{4}$ is $2 - \frac{1}{\sqrt{2}}$.

Statement-2 : Area of curve y = f(x) with x-axis between ordinates x = a and x = b is

Sol. [A]

f(x)dx.

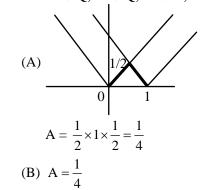
$$A = (\sin x)_{0}^{\pi/2} + |(\sin x)_{\pi/2}^{3\pi/4}|$$
$$= 1 + \left(1 - \frac{1}{\sqrt{2}}\right) = 2 - \frac{1}{\sqrt{2}}$$

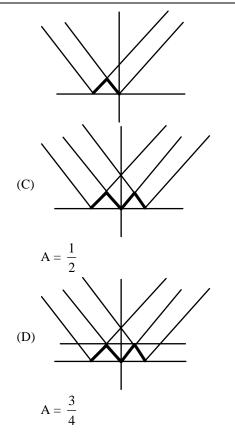
Part-D Column Matching type Questions

- Q.18 Let f(x) = |x|, g(x) = |x 1| and h(x) = |x + 1|. Column I Column II (A) Area bounded by (P) $\frac{1}{8}$ sq. unit min (f(x), g(x)) and x-axis is
 - (B) Area bounded by (Q) $\frac{1}{4}$ sq. unit min (f(x), h(x)) and x-axis is
 - (C) Area bounded by (R) $\frac{1}{2}$ sq. unit min (f(x), g(x), h(x)) and x-axis is
 - (D) Area bounded by min (f(x), g(x), h(x)), and $y = \frac{1}{2}$ is

(S) 3/4 sq. unit

Sol. $A \rightarrow Q, B \rightarrow Q, C \rightarrow R, D \rightarrow S$





Q.19 Column I Column II (A)Let area of the figure bounded by (P) 1/3 $y = -3x^2 - |x| + 2$, x = 0 and y = 0is $\frac{22}{a^3}$ sq. units then a is

(B) Let
$$I_{n, m} = \int \frac{\sin^{n} x}{\cos^{m} x} dx, m \neq 1$$
, if (Q) 3

$$I_{n,m} = \frac{\sin^{n-1} x}{(m-1)\cos^{m-1} x} + \frac{a(n-1)}{2(m-1)} I_{n-2, m-2}$$

then a is

(C) The common area of the curves (R) -2y = \sqrt{x} and x = \sqrt{y} is

(D) Let
$$f_n(x) = \int \cot^n x \, dx$$
, then (S) 1

$$3(f_2(3\pi/4) + f_4(3\pi/4))$$
 is
 $\mathbf{A} \rightarrow \mathbf{Q}; \mathbf{B} \rightarrow \mathbf{R}; \mathbf{C} \rightarrow \mathbf{P}, \mathbf{R}; \mathbf{D} \rightarrow \mathbf{S}$

Sol.
$$A \rightarrow Q; B \rightarrow R; C \rightarrow P, I$$

(A) $y = -(3|x|^2 + |x| - 2)$

$$A = 2 \int_{0}^{2/3} (-3x^{2} - x + 2) dx$$

$$= 2 \left[-\left[x^{3} \right]_{0}^{2/3} - \frac{1}{2} \left[x^{2} \right]_{0}^{2/3} + 2 \left[x \right]_{0}^{2/3} \right]$$

$$= 2 \left[-\frac{8}{27} - \frac{2}{9} + \frac{4}{3} \right]$$

$$= 2 \times \frac{22}{27}$$

$$a = 3$$
(B) $I_{m,n} = \int \frac{\sin^{n-1}x \sin x \, dx}{\cos^{m} x}$

$$I_{m,n} = \frac{\sin^{n-1}x}{(m-1)\cos^{m-1}x} - \frac{(n-1)}{(m-1)} \int \frac{\sin^{n-2}x}{\cos^{m-1}x}$$

$$\frac{a}{2} = -1 \Rightarrow a = -2$$

$$y = x^{2}$$
(C)
(0,0)
(1,1)
$$y^{2} = x$$
(C)
(0,0)
(1,1)
$$y^{2} = x$$
(D) $I_{n} = \int \cot^{n-2}x (\csc^{2}x - 1) \, dx$

$$I_{n} = \frac{-\cot^{n-1}x}{(n-1)} - I_{n-2}$$

$$I_{n} + I_{n-2} = \frac{\cot^{n-1}x}{1-n}$$

$$n = 4$$

$$x = \frac{3\pi}{4}$$

$$I_{4} + I_{2} = \frac{1}{3}$$

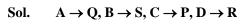
$$3(I_{4} + I_{2}) = 1$$
Q.20 Match the column
Column I
(A) Area bounded by $y = x^{3}$ (P) 1/3
(P) 1/3

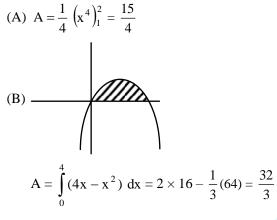
x = 1 and x = 2, is (B) Area bounded by (Q)15/4

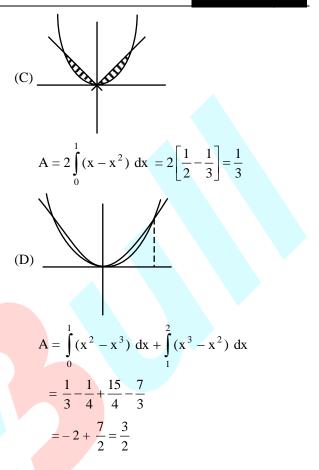
 $y \le 4x - x^2$ in I quadrant is

Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com

x = 0, x = 2, is





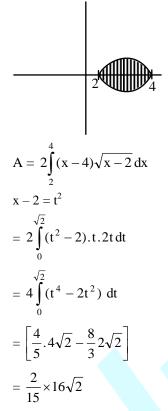


EXERCISE # 3

Part-A Subjective Type Questions

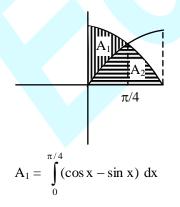
Q.1 Find area of the loop of the curve $y^2 = (x - 2)(x - 4)^2$.

Sol.



Q.2 Find the ratio in which the area enclosed by the curve $y = \cos x$ ($0 \le x \le \pi/2$) in the first quadrant is divided by the curve $y = \sin x$.

Sol.



$$= \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} - 1 = \sqrt{2} - 1$$

$$A_2 = \int_0^{\pi/4} \sin x \, dx + \int_{\pi/4}^{\pi/2} \cos x \, dx$$

$$= -\left(\frac{1}{\sqrt{2}} - 1\right) + \left(1 - \frac{1}{\sqrt{2}}\right) = 2 - \sqrt{2}$$

$$\frac{A_1}{A_2} = \frac{\sqrt{2} - 1}{2 - \sqrt{2}} = \frac{(\sqrt{2} - 1)(2 + \sqrt{2})}{2}$$

$$= \frac{2\sqrt{2} + 2 - 2 - \sqrt{2}}{2}$$

$$= \frac{1}{\sqrt{2}}$$

Q.3 Find the area of the figure bounded by $y = -3x^2 - |x| + 2$ and y = 0.

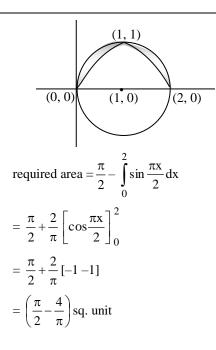
Sol.

$$A = 2 \int_{0}^{2/3} (-3x^{2} - x + 2) dx$$
$$= -2 [x^{3}]_{0}^{2/3} - [x^{2}]_{0}^{2/3} + 4[x]_{0}^{2/3}$$
$$= \frac{-16}{27} - \frac{4}{9} + \frac{8}{3} = \frac{44}{27}$$

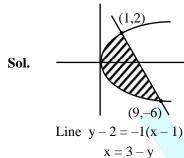
Q.4 Find the area bounded by $x^2 + y^2 - 2x = 0$ and $y = \sin(\pi x/2)$ in the upper half of the circle.

Sol.
$$x^2 + y^2 - 2x = 0$$
 and $y = \sin\left(\frac{\pi x}{2}\right)$
 $\Rightarrow (x - 1)^2 + y^2 = 1$ and $y = \sin\left(\frac{\pi x}{2}\right)$

Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com

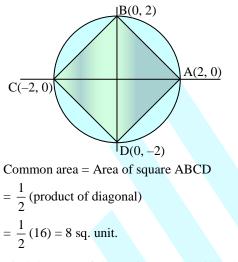


Q.5 Find the area of the region bounded by the parabola $y^2 = 4x$ and the normal to it at one of the ends of its latus rectum



$$A = \int_{-6}^{2} (3 - y) \, dy - \int_{-6}^{2} \frac{y^2}{4} \, dy$$
$$= 24 + 16 - \frac{56}{3} = \frac{64}{3}$$

Q.6 Calculate the area enclosed by the curve $4 \le x^2 + y^2 \le 2 (|x| + |y|).$ Sol. Given $x^2 + y^2 \ge 4$ and $2 (|x| + |y|) \ge 4$ $\Rightarrow x^2 + y^2 \ge 4$ and $|x| + |y| \ge 2$



Q.7 Find the area of the region bounded by the axis of x, $0 \le x \le 1$, $y = \operatorname{arc} (\cos x)$ and $y = \operatorname{arc} (\sin x)$. Sol. $y = \cos^{-1} x$, $y = \sin^{-1} x$, x-axis, $0 \le x \le 1$

required area =
$$\int_{0}^{1/\sqrt{2}} \sin^{-1} x \, dx + \int_{1/\sqrt{2}}^{1} \cos^{-1} x \, dx$$
$$= \left[x \sin^{-1} x\right]_{0}^{1/\sqrt{2}} - \int_{0}^{1/\sqrt{2}} \frac{x}{\sqrt{1 - x^{2}}} \, dx$$
$$+ \left[x \cos^{-1} x\right]_{1/\sqrt{2}}^{1} + \int_{1/\sqrt{2}}^{1} \frac{x}{\sqrt{1 - x^{2}}} \, dx$$
$$= \left(\frac{\pi}{4\sqrt{2}} - \frac{\pi}{4\sqrt{2}}\right) - \int_{0}^{1/\sqrt{2}} \frac{x}{\sqrt{1 - x^{2}}} \, dx$$
$$+ \int_{1/\sqrt{2}}^{1} \frac{x}{\sqrt{1 - x^{2}}} \, dx$$
$$+ \int_{1/\sqrt{2}}^{1} \frac{x}{\sqrt{1 - x^{2}}} \, dx$$
$$= -\int_{1}^{1/\sqrt{2}} \frac{x}{\sqrt{1 - x^{2}}} \, dx + \int_{1/\sqrt{2}}^{1} \frac{x}{\sqrt{1 - x^{2}}} \, dx$$
Put 1 - x² = t² and solving, we get

Put $1 - x^2 = t^2$ and solving, we get area = $(\sqrt{2} - 1)$ sq. unit.

Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com Mob m

Q.8 Find the area enclosed by the curve $y = \frac{d}{dx}(x \mid n x)$ and the coordinate axes.

Sol.
$$y = 1 + \lambda n x$$

$$A = \left[x \lambda nx\right]_{0}^{1/e}$$

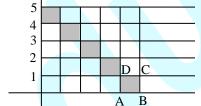
$$A = \left[x \lambda nx\right]_{0}^{1/e}$$

$$A = \left[\frac{1}{e} - \lim_{x \to 0} x \lambda n x\right]$$

$$|A| = \frac{1}{e}$$

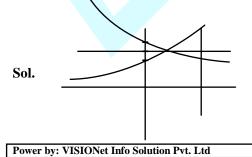
- **Q.9** Find the area of curve enclosed by [x] + [y] = 4 in the Ist quadrant.
 - [x] + [y] = 4 [x] = 4 - [y]when y = 0, [x] = 4 \Rightarrow 4 \leq x < 5 y = 1, [x] = 3 \Rightarrow 3 \leq x < 4 y = 2, [x] = 2 \Rightarrow 2 \leq x < 3 y = 3, [x] = 1 \Rightarrow 1 \leq x < 2 y = 4, [x] = 0 \Rightarrow 0 \leq x < 1

Sol.



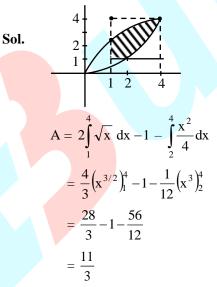
required area = 5 (area of square ABCD) = $5 \times 1 = 5$

Q.10 Let $f(x) = minimum \{e^x, 3/2, 1 + e^{-x} | 0 \le x \le 1\}$ Find the area bounded by y = f(x), x-axis, y-axis and the line x = 1.



 $e^{x} = 1 + e^{-x}$ $t - \frac{1}{t} - 1 = 0$ $t^{2} - t - 1 = 0$ $t = \frac{1 \pm \sqrt{5}}{2}$

Q.11 Let $y^2 = 4[\sqrt{y}]x$ and $x^2 = 4[\sqrt{x}]y$ be two curves, where [] represents greatest integer function. Find area bounded by these two curves within the square formed by the lines x = 1, y = 1, x = 4, y = 4.

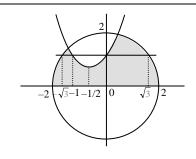


Q.12 Find out the area enclosed by circle |z| = 2, parabola $y = x^2 + x + 1$, the curve $y = \left[\sin^2 \frac{x}{4} + \cos \frac{x}{4}\right]$ and x-axis, where [.]

denotes the greatest integer function.

Sol.
$$\Theta y = \left\lfloor \sin^2 \frac{x}{4} + \cos \frac{x}{4} \right\rfloor$$
$$1 < \sin^2 \frac{x}{4} + \cos \frac{x}{4} < 2 \quad \Rightarrow y = 1$$
so area enclose by the curves
$$\Theta |z| = 2 \Rightarrow x^2 + y^2 = 4$$
and $y = x^2 + x + 1 \Rightarrow \left(y - \frac{3}{4}\right) = \left(x + \frac{1}{2}\right)^2$ and $y = 1$

Website : www.edubull.com Mob no. : +91-9350679141



required area

$$= \sqrt{3} \times 1 + (\sqrt{3} - 1) \times 1 + \int_{-1}^{0} (x^{2} + x + 1) dx$$
$$+ \int_{\sqrt{3}}^{2} \sqrt{4 - x^{2}} dx$$
$$= (2 \sqrt{3} - 1) + \left[\frac{x^{3}}{3} + \frac{x^{2}}{2} + x \right]_{-1}^{0}$$
$$+ 2 \left[\frac{x}{2} \sqrt{4 - x^{2}} + 2 \sin^{-1} \frac{x}{2} \right]_{\sqrt{3}}^{2}$$

solving we get

area =
$$\left(\frac{2\pi}{3} + \sqrt{3} - \frac{1}{6}\right)$$
 sq. unit

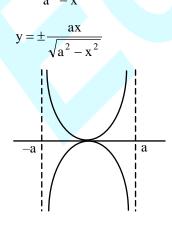
Compute the area of the loop of the curve 0.13 $y^2 = x^2[(1 + x)/(1 - x)].$

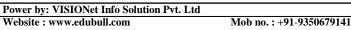
 $(2 - \pi/2)$ units² Sol.

Website : www.edubull.com

Q.14 Find the area included between the curve $x^2y^2 = a^2(y^2 - x^2)$ and its asymptotes.

 $y^2 = \frac{a^2 x^2}{a^2 - x^2}$ Sol.





$$A = 4 \int_{0}^{a} \frac{ax}{\sqrt{a^{2} - x^{2}}} dx = -2a \int_{0}^{a} \frac{-2x}{\sqrt{a^{2} - x^{2}}} dx$$
$$= -2a \times 2 \left(\sqrt{a^{2} - x^{2}}\right)_{0}^{a}$$
$$= -4a (-a) = 4a^{2}$$

Part-B Passage based Question

Passage I (Q. 15 to 17)

Let there are three functions described here : $f(x) = {\sin x}, g(x) = {\cos x}, h(x) = [x/\pi].$ Where [x] is greatest integral part of x & $\{x\}$ is the fractional part of x.

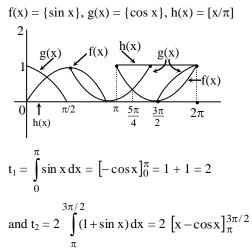
On the basis of above information, answer the following questions-

Q.15 If the area bounded by x-axis, x = 0, $x = \pi$ and f(x) is t_1 and the area bounded by x-axis, $x = \pi$, $x = 2\pi$ and f(x) is t_2 then-

A)
$$\frac{t_2}{t_1} > \frac{1}{2}$$
 (B) $0 < \frac{t_2}{t_1} < \frac{1}{2}$

(C)
$$\frac{t_2}{t_1} > 1$$
 (D) None of these

Sol. [A]



$$= 2 \left[\frac{3\pi}{2} - 0 - \pi - 1 \right] = \pi - 2$$

$$\frac{t_2}{t_1} = \frac{\pi - 2}{2} = \frac{\pi}{2} - 1 = \frac{3.14}{2} - 1 = 1.57 - 1$$

$$\frac{t_2}{t_1} = 0.57 \text{ (approx.)}$$
Clearly $\frac{t_2}{t_1} > \frac{1}{2}$

Q.16 The area bounded by f(x), h(x), $x = \pi$ and $x = 2\pi$ is

(A) 2 (B)
$$\pi - 2$$
 (C) $\frac{\pi - 2}{2}$ (D) None

Sol. [A]

> Area bounded by f(x), h(x), $x = \pi$ and $x = 2\pi$ from Q.1, we have Area bounded by x-axis, $x = \pi$, $x = 2\pi$ and and area of rectangle made by f(x) is $= \pi - 2$ $x = \pi$, $x = 2\pi$ and x-axis is $\pi \times 1 = \pi$ required area = $\pi - (\pi - 2) = 2$

$$=\frac{\pi}{2}-\sqrt{2}$$

Passage II (Q. 18 to 20)

Five curves defined as follows :

 C_1 : $|x + y| \le 1$ $C_2 : |x-y| \le 1$ $C_3 : |x| \le \frac{1}{2}$ $\mathbf{C}_4 : |\mathbf{y}| \le \frac{1}{2}$ C_5 : $3x^2 + 3y^2 = 1$

The ratio of region bounded by C_1 , C_2 and C_3 , Q.18 C_4 is -

> (B) 2 (C) $\frac{1}{2}$ (A) 1.5 (D) None

Sol. [B]

A₁ = area bounded by C₁, C₂
= area of square ABCD = 2
A₂ = Area bounded by C₃, C₄
= Area of square EFGH = 1
⇒
$$\frac{A_1}{A_2} = \frac{2}{1} = 2$$

Q.19 The area bounded by \mathbf{C}_1 and \mathbf{C}_2 which does not contain the area of C_5 is

(A)
$$2 - \frac{\pi}{4}$$
 (B) $2 - \frac{\pi}{6}$
(C) $2 - \frac{\pi}{3}$ (D) None of these

Sol. [C]

 Θ area bounded by C₁ and C₂ = 2

$$\therefore$$
 area bounded by C₅ = $\frac{\pi}{3}$

 \Rightarrow area bounded by C_1 and C_2 which does not contain the area of C5

$$=2-\frac{\pi}{3}$$

Q.20 That part of area which is bounded by C_1 and C_2 but not bounded by C_3 and C_4 is-

Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com Mob no.: +91-9350679141

Q.17 The area bounded by f(x), g(x), x-axis, $x = \pi$

and
$$x = \frac{3\pi}{2}$$
 is-
(A) $\frac{\pi}{2} - \frac{1}{\sqrt{2}}$ (B) $\frac{\pi}{2} - \sqrt{2}$

(D) None of these

Sol. **[B]**

(C) $\frac{\pi}{2}$

 $-\frac{1}{2}$

Required area

$$= \int_{\pi}^{5\pi/4} (1 + \cos x) \, dx + \int_{5\pi/4}^{3\pi/2} (1 + \sin x) \, dx$$

$$= [x + \sin x]_{\pi}^{5\pi/4} + [1 - \cos x]_{5\pi/4}^{3\pi/2}$$

$$= \frac{5\pi}{4} - \frac{1}{\sqrt{2}} - \pi + \frac{3\pi}{2} - \frac{5\pi}{4} - \frac{1}{\sqrt{2}}$$

(A) 1 (B)
$$\frac{1}{2}$$
 (C) $\frac{1}{3}$ (D) None

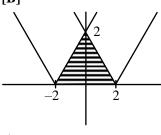
Sol. [A]

 Θ Area bounded by C_1 and $C_2 = 2$ \therefore area bounded by C_3 and $C_4 = 1$ \Rightarrow area bounded by C_1 and C_2 but not bounded by C_3 and $C_4 = 2 - 1 = 1$

Passage III (Q. 21 to 23)

Let there are two function defined here: $f(x) = \min (|x - 2|, |x + 2|) \text{ and } g(x) = \min (e^x, e^{-x}).$ Now the root of the equation $e^{-x} + x - 2 = 0$ is α , where $\alpha \in \mathbb{R}$.

- Q.21 The area bounded by f(x) and x-axis is (A) 1 sq. unit (B) 4 sq. unit
 - (C) 6 sq. unit (D) None of these
- Sol. [B]

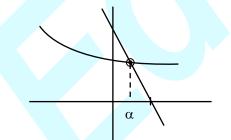


$$\frac{1}{2} \times 4 \times 2 = 4$$

- **Q.22** Which statement is correct -(A) $\alpha \in (2, 3)$ (B) $\alpha \in$
- Sol.

(B) $\alpha \in (-1, 0)$ (D) None of these

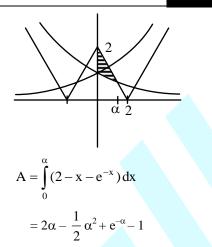
(C) $\alpha \in (0, 2)$



Q.23 The area bounded by f(x), g(x) and x = 0 in first quadrant is

(A)
$$e^{-\alpha} - 1$$
 (B) $2 - e^{-\alpha}$
(C) $1 + e^{-\alpha}$ (D) None of these

Sol. [D]



Passage IV (Q. 24 to 26)

In the adjacent figure, the graphs of two functions y = f(x) and $y = \sin x$ are given. They intersect at origin, A(a , f(a)), B(π , 0) and C(2 π , 0). A_i (i =1, 2, 3) is the area bounded by the curves as shown in the figure respectively for $x \in (0, a), x \in (a, \pi), x \in (\pi, 2\pi)$. If A₁ = 1+ (a - 1) cos a - sin a.

$$A_{2}$$

$$y = f(x)$$

$$y = sinx$$

$$B$$

$$C$$

$$A_{1}$$

$$y = f(x)$$

$$A_{3}$$

Q.24The function f(x) is-
(A) $x^2 sin x$ (B) x sin x
(D) $x^3 sin x$ (C) 2x sin x(D) $x^3 sin x$ Sol.[B]

[B] From fig. we have

$$\int_{0}^{a} (\sin x - f(x)) dx = A_{1}$$

$$\Rightarrow \int_{0}^{a} (\sin x - f(x)) dx = 1 + (a - 1) \cos a - \sin a$$

diff. with respect to a, we get $\sin a - f(a) = \cos a - (a - 1) \sin a - \cos a$ $\Rightarrow f(a) = a \sin a$ $\Rightarrow f(x) = x \sin x$

Q.25 Value of A_2 is-

 Power by: VISIONet Info Solution Pvt. Ltd

 Website : www.edubull.com
 Mob no. : +91-9350679141

8

(A) $(\pi - 1)$ units² (B) $(\pi/2 - 1)$ units² (C) $(\pi - \sin 1 - 1)$ units² (D) $\pi / 2$ units² Sol. [C] Θ f(x) = x sin x and y = sin x \Rightarrow (a, f(a)) = (1, a sin a) $A_2 = \int (x \sin x - \sin x) \, dx$ $= [-x\cos x]_{1}^{\pi} + [\sin x]_{1}^{\pi} + [\cos x]_{1}^{\pi}$ $=\pi + \cos 1 - \sin 1 - 1 - \cos 1$ $= (\pi - \sin 1 - 1) \operatorname{unit}^2$

Q.26 Value of A₃ is-(A) $(2\pi - 1)$ units² (B) $(3\pi - \sin 2)$ units² (C) $(3\pi - 2)$ units² (D) $(\pi - 2)$ units² [C]

$$A_{3} = \left| \int_{\pi}^{2\pi} (\sin x - x \sin x) dx \right|$$
$$= \left| \left[-\cos x \right]_{\pi}^{2\pi} + \left[\cos x \right]_{\pi}^{2\pi} - \int_{\pi}^{2\pi} \cos x dx \right|$$
$$= \left| -1 - 1 + 2\pi + \pi - \left[\sin x \right]_{\pi}^{2\pi} \right|$$
$$= (3\pi - 2) \text{ unit}^{2}$$

Passage V (Q. 27 to 29)

Area enclosed by curve y = f(x) and $y = x^2 + 2$ between the abscissa x = 2 and $x = \alpha$ is given as $(\alpha^3 - 4\alpha^2 + 8)$ sq. unit. It is known that curve y = f(x) lies below the parabola $y = x^2 + 2$.

Area enclosed by curve y = f(x) with x-axis, Q.27 x = 0, x = 1 is

(A)
$$\frac{8}{3}$$
 (B) $\frac{16}{3}$ (C) $\frac{16}{7}$ (D) $\frac{4}{3}$

Sol. [**B**]

$$\alpha^{3} - 4\alpha^{2} + 8 = \int_{2}^{\alpha} (x^{2} + 2 - f(x)) dx$$

Diff. w.r.to α
$$3\alpha^{2} - 8\alpha = \alpha^{2} + 2 - f(\alpha)$$
$$f(\alpha) = -2\alpha^{2} + 8\alpha + 2$$
$$f(x) = -2x^{2} + 8x + 2$$
Now

Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com Mob no.: +91-9350679141

$$A = \int_{0}^{1} (-2x^{2} + 8x + 2) dx$$
$$= -\frac{2}{3} + 4 + 2 = \frac{16}{3}$$

1

Q.28 If f(x) lies above x-axis in $x \in (p, q)$, then (q + p) is equal to

Sol.

$$2x^{2} - 8x + 2 = 0$$

 $p + q = -\frac{(-8)}{2} = 4$

Q.29 Value of area bounded by line y = x + 2 and y = f(x), x = 2 and x = 4 is

(A)
$$\frac{36}{5}$$
 (B) $\frac{7}{5}$
(C) $\frac{123}{13}$ (D) None of these

 $(\neg) 11$

Sol. [D]

=

$$\left(\frac{7}{11}\right)\frac{11}{2}$$

$$-2x^{2} + 8x + 2 = x + 2$$

$$2x^{2} - 7x = 0$$

$$x(2x - 7) = 0$$

$$A = \frac{1}{2} \times \frac{3}{2} \times \frac{11}{2} + \left|\int_{\frac{7}{2}}^{4} (-2x^{2} + 8x + 2) dx\right|$$

$$\frac{33}{8} + \left|\left(-\frac{2}{3}\left(64 - \frac{343}{8}\right)\right) + 4\left(16 - \frac{49}{4}\right) + 2\left(4 - \frac{7}{2}\right)\right|$$

$$= \frac{33}{8} + \left[-\frac{338}{24} + 15 + 1\right] = \frac{33}{8} + \frac{46}{24}$$

$$= \frac{145}{24}$$

EXERCISE #4

Old IIT-JEE Questions

Q.1 The triangle formed by the tangent to the curve $f(x) = x^2 + bx - b$ at the point (1, 1) and the coordinates axes, lies in the first quadrant. If its area is 2, then the value of b is -

(C) - 3

[IIT Scr. 2001]

(D) 1

[C]
Let
$$y = f(x) = x^2 + bx - b$$

 $\frac{dy}{dx} = 2x + b$

(A) - 1

$$\Rightarrow \left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)_{(1,1)} = 2 + \mathbf{b}$$

equation of tangent at (1, 1) is \Rightarrow (y - 1) = (2 + b) (x - 1)

(B) 3

 $\Rightarrow (2+b) x - y + 1 - 2 - b = 0$ $\Rightarrow (2+b) x - y = 1 + b$ $\Rightarrow \frac{x}{\frac{1+b}{2+b}} - \frac{y}{1+b} = 1$

Intercept made by this line with coordinate axis

is
$$\frac{1+b}{2+b}$$
, $-(1+b)$
Area $= -\frac{1}{2} \cdot \left(\frac{1+b}{2+b}\right)(1+b) = 2$ given
 $\Rightarrow -8 - 4b = 1 + b^2 + 2b$
 $\Rightarrow (b+3)^2 = 0 \Rightarrow b = -3$

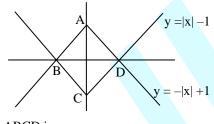
Q.2 Let $b \neq 0$ and for $j = 0, 1, 2 \dots n$, let S_j be the area of the region bounded by the y-axis and the curve $xe^{ay} = \sin by$, $\frac{j\pi}{b} \le y \le \frac{(j+1)\pi}{b}$. Show that $S_0, S_1, S_2, \dots \dots S_n$ are in geometric progression. Also, find their sum for a = -1 and $b = \pi$. [IIT-2001]

Sol.
$$\frac{(e+1)\pi(e^{ii+1}-1)}{(\pi^2+1)(e-1)}$$
 sq. units.

Q.3 The area bounded by the curves y = |x| - 1 and y = -|x| + 1 is [IIT Scr.2002] (A) 1 (B) 2 (C) $2\sqrt{2}$ (D) 4

Power by: VISIONet Info Solution Pvt. Ltd	
Website : www.edubull.com	Mob no. : +91-9350679141

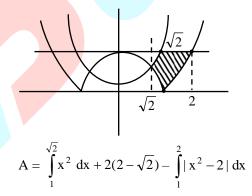
$$y = |x| - 1$$
 and $y = -|x| + 1$



ABCD is a square where AC = 2 Area = $\frac{1}{2}$ (AC)² = 2

Q.4 Find the area of the region bounded by the curves $y = x^2$, $y = |2 - x^2|$ and y = 2, which lies to the right of the line x = 1. [IIT-2002]

Sol.



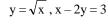
Q.5 Area of the region bounded by $y = \sqrt{x}$, x = 2y + 3 & x-axis lying in 1st quadrant is-[IIT Scr.2003]

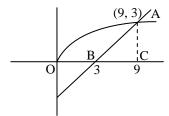
(C) 9

(D) 34/3

(B) 18

(A) $2\sqrt{3}$ Sol. [C]





required area =
$$\int_{0}^{9} \sqrt{x} \, dx - \frac{1}{2} \times 6 \times 3$$
$$= \frac{2}{3} [x^{3/2}]_{0}^{9} - 9$$
$$= 18 - 9 = 9$$

Q.6 If area bounded by the curve $x = ay^2 \& y = ax^2$ is 1, then a is equal to - [IIT Scr.2004]

(A)
$$\frac{1}{\sqrt{3}}$$
 (B) $\frac{1}{3}$ (C) $\frac{1}{2}$ (D) 3

Sol.

[A]

 $x = ay^2$ and $y = ax^2$

$$\Rightarrow y^{2} = \frac{x}{a} \text{ and } x^{2} = \frac{y}{a}$$

$$x^{2} = \frac{y}{a}$$

$$y^{2} = \frac{x}{a}$$

required area =
$$\int_{0}^{1/a} \left(\sqrt{\frac{x}{a}} - ax^{2} \right) dx = 1 \text{ given}$$
$$\Rightarrow \left[\frac{1}{\sqrt{a}} \frac{2}{3} x^{3/2} - \frac{ax^{3}}{3} \right]_{0}^{1/a} = 1$$

$$\Rightarrow \frac{2}{3a^2} - \frac{1}{3a^2} = 1$$
$$\Rightarrow a^2 = \frac{1}{3} \Rightarrow a = \pm \frac{1}{\sqrt{3}}$$

from option $a = \frac{1}{\sqrt{3}}$

Q.7 The area between the curves $y = (x - 1)^2$ y = (x + 1)² and y = 1/4 is [IIT Scr.2005] (A) 1/3 (B) 2/3 (C) 4/3 (D) 1/6 Sol. [A]

$$y = (x - 1)^2$$
; $y = (x + 1)^2$ and $y = 1/4$

$$y = (x + 1)^{2}$$

$$y = (x - 1)^{2}$$

$$y = (x - 1)^{2}$$

$$y = 1/4$$
required area = $2 \int_{0}^{1/2} \left((x - 1)^{2} - 1/4 \right) dx$

$$= 2 \left[\frac{(x - 1)^{3}}{3} - \frac{1}{4} x \right]_{0}^{1/2}$$

$$= 2 \left(-\frac{1}{24} - \frac{1}{8} + \frac{1}{3} \right) = \frac{1}{3}$$

Q.8 f(x) be a quadratic polynomial & a, b, c are three distinct real numbers, such that:

$4a^2$	4a	1	f(-1)	$\begin{bmatrix} 3a^2 + 3a \end{bmatrix}$
				$3b^2 + 3b$
$4c^2$	4c	1	f(2)	$3c^2 + 3c$

V is the point where f(x) attains maximum. A & B are the points on f(x) such that f(x) cuts x-axis at A in the first quadrant and chord AB subtends right angle at V. Find the area bounded by curve y = f(x) and chord AB.

[IIT-2005]

$$f(x) = \alpha x^{2} + \beta x + \gamma$$

$$4a^{2} f(-1) + 4a f(1) + f(2) = 3a^{2} + 3a$$

$$a^{2}[4 f(-1) - 3] + a[4f(1) - 3] + f(2) = 0 ...(1)$$
Similarly
$$b^{2} (4f(-1) - 3) + b(4f(1) - 3) + f(2) = 0(2)$$

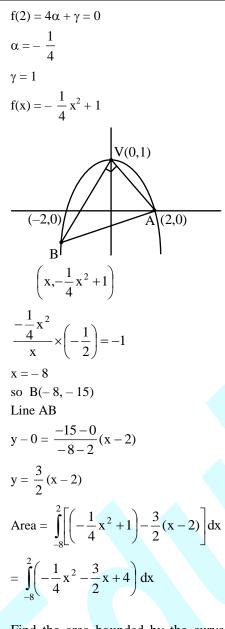
$$c^{2} [4f(-1) - 3] + c [4f(-1) - 3] + f(2) = 0(3)$$
here, a, b, c satisfy the equation
$$[4f(-1) - 3] x^{2} + [4f(1) - 3]x + f(2) = 0$$
hence it is an identity
$$f(-1) = \frac{3}{4}$$

$$f(1) = \frac{3}{4} \begin{cases} f(2) = 0 \\ f(1) = \frac{3}{4} \end{cases}$$
$$\Rightarrow \beta = 0$$
So, $f(1) = \alpha + \gamma = \frac{3}{4}$

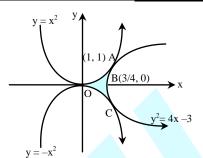
Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com

Mob no. : +91-9350679141

Sol.



Q.9 Find the area bounded by the curves $x^2 = y$, $x^2 = -y \& y^2 = 4x - 3$. [IIT-2005] Sol. The region bounded by the curves $y = x^2$, $y = -x^2$ and $y^2 = 4x - 3$ is symmetrical about x- axis. Where y = 4x - 3 meets at (1, 1)



Hence, area (OABCO)

$$= 2 \left\{ \int_{0}^{1} x^{2} dx - \int_{3/4}^{1} (\sqrt{4x - 3}) dx \right\}$$
$$= 2 \left\{ \left(\frac{x^{3}}{3} \right)_{0}^{1} - \left(\frac{(4x - 3)^{3/2}}{32/4} \right)_{3/4}^{1} \right\}$$
$$= 2 \left\{ \frac{1}{3} - \frac{1}{6} \right\} = 1. \frac{1}{6} = \frac{1}{3} \text{ square units}$$

Q.10 The area of the region between the curves

$y = \sqrt{\frac{1+\sin x}{\cos x}}$ and $y = \sqrt{\frac{1-\sin x}{\cos x}}$	$\frac{x}{x}$ bounded by
the lines $x = 0$ and $x = \frac{\pi}{4}$ is-	[IIT 2008]
(A) $\int_{0}^{\sqrt{2}-1} \frac{t}{(1+t^2)\sqrt{1-t^2}} dt$	
(B) $\int_{0}^{\sqrt{2}-1} \frac{4t}{(1+t^2)\sqrt{1-t^2}} dt$	
(C) $\int_{0}^{\sqrt{2}+1} \frac{4t}{(1+t^2)\sqrt{1-t^2}} dt$	
(D) $\int_{0}^{\sqrt{2}+1} \frac{t}{(1+t^2)\sqrt{1-t^2}} dt$	
[B]	
$\pi/4$ $\pi/4$	

$$A = \int_{0}^{\pi/4} \sqrt{\frac{1 + \sin x}{\cos x}} - \sqrt{\frac{1 - \sin x}{\cos x}} dx$$
$$= \int_{0}^{\pi/4} \frac{\left| \sin \frac{x}{2} + \cos \frac{x}{2} \right| - \left| \sin \frac{x}{2} - \cos \frac{x}{2} \right|}{\sqrt{\cos x}} dx$$

Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com

Mob no. : +91-9350679141

Sol.

$$= \int_{0}^{\pi/4} \frac{2\sin\frac{x}{2}}{\sqrt{\cos x}} dx$$

$$= \int_{0}^{\pi/4} \frac{2\tan\frac{x}{2}\cos\frac{x}{2}}{\sqrt{2\cos^{2}\frac{x}{2}-1}} dx$$

$$= \int_{0}^{\pi/4} \frac{2\tan\frac{x}{2}}{\sqrt{2-\sec^{2}\frac{x}{2}}} dx$$
Let $\tan\frac{x}{2} = t$

$$\frac{1}{2}\sec^{2}\frac{x}{2} dx = dt$$

$$I = \int_{0}^{\sqrt{2}-1} \frac{2 \cdot t (2 \, dt)}{(1+t^{2})\sqrt{2-(1+t^{2})}}$$

$$= \int_{0}^{\sqrt{2}-1} \frac{4t \, dt}{(1+t^{2})\sqrt{1-t^{2}}}$$

Passage I (Q.11 to 13)

Consider the functions defined implicitly by the equation $y^3 - 3y + x = 0$ on various intervals in the real line. If $x \in (-\infty, -2) \cup (2, \infty)$, the equation implicitly defines a unique real valued differentiable function y = f(x).

If $x \in (-2, 2)$, the equation im unique real valued different y = g(x) satisfying g(0) = 0.

Q.11 If
$$f(-10\sqrt{2}) = 2\sqrt{2}$$
, then $f''(-10\sqrt{2}) =$
(A) $\frac{4\sqrt{2}}{7^3 3^2}$ (B) $-\frac{4\sqrt{2}}{7^3 3^2}$
(C) $\frac{4\sqrt{2}}{7^3 3}$ (D) $-\frac{4\sqrt{2}}{7^3 3}$
Sol. [B]
 $3y^2y' - 3y' + 1 = 0$
 $y' = \frac{1}{3(1 - y^2)} = -\frac{1}{21}$
 $6y \cdot (y')^2 + 3y^2 y'' - 3y'' = 0$

nplicitly defines a	
entiable function	T
[IIT-2008]	

$$\Rightarrow \frac{12\sqrt{2}}{(21)^2} + 21y'' = 0$$
$$y'' = \frac{12\sqrt{2}}{-3^2 \cdot 7^3}$$

- Q.12 The area of the region bounded by the curve y = f(x), the x- axis, and the lines x = a and x = b, where $-\infty < a < b < -2$, is
 - (A) $\int_{a}^{b} \frac{x}{3((f(x))^{2}-1)} dx + bf(b) af(a)$ b

(B)
$$-\int_{a} \frac{x}{3((f(x))^{2}-1)} dx + bf(b) - af(a)$$

(C)
$$\int_{a}^{b} \frac{x}{3((f(x))^{2}-1)} dx - bf(b) + af(a)$$

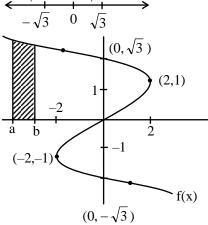
(D)
$$-\int_{a} \frac{x}{3((f(x))^2 - 1)} dx - bf(b) + af(a)$$

Sol. [A]

$$y^{3} - 3y + x = 0$$

x = 3y - y³ = y(3 - y²)
(0, 0), (0, $\sqrt{3}$), (0, $-\sqrt{3}$)
y'= $\frac{-1}{3(y^{2} - 1)}$

odd symmetric



$$y' = \infty$$
 at $y = \pm 1$
 $A = \int_{a}^{b} 1.y \, dx$

Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com

$$= \left[xf(x) \right]_{a}^{b} - \int_{a}^{b} xf'(x) dx$$

= b f(b) - a f(a) - $\int_{a}^{b} \frac{x(-1)}{3(y^{2} - 1)} dx$
= b f(b) - a f(a) + $\int_{a}^{b} \frac{x}{3(f^{2}(x) - 1)} dx$

Alternate :

$$f(a) = f(a) = f(b) = f(b) = f(a) =$$

Q.13
$$\int_{-1}^{1} g'(x) dx =$$

(A) 2g (-1) (B) 0
(C) -2g (1) (D) 2g(1)
Sol. [D]

1

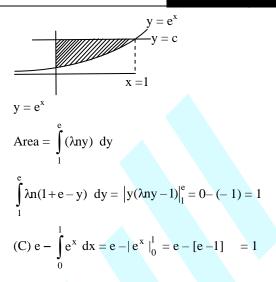
 $\int_{-1}^{1} g'(x) dx = (g(x))_{-1}^{1} = g(1) - g(-1)$

g(x) is odd function = g(1) + g(1) = 2g(1)

Q.14 Area of the region bounded by the curve $y = e^x$ and lines x = 0 and y = e is **[IIT 2009]**

(A)
$$e - 1$$
 (B) $\int_{1}^{e} \lambda n(e + 1 - y) dy$
(C) $e - \int_{0}^{1} e^{x} dx$ (D) $\int_{1}^{e} \lambda n y dy$

Sol. [B, C, D]



Passage II (Q.15 to 17)

Consider the polynomial $f(x) = 1 + 2x + 3x^2 + 4x^3$. Let s be the sum of all distinct real roots of f(x) and let t = |s|.

[IIT-2010]

```
Q.15 The real number s lies in the interval
```

(A)
$$\left(-\frac{1}{4},0\right)$$
 (B) $\left(-11,-\frac{3}{4}\right)$
(C) $\left(-\frac{3}{4},-\frac{1}{2}\right)$ (D) $\left(0,\frac{1}{4}\right)$
[C]

Sol.

 $f(x) = 4x^{3} + 3x^{2} + 2x + 1$ f'(x) = 12x² + 6x + 2 is always positive

$$f(0) = 1, f(-1/2) = 1/4, f(-3/4) = -\frac{1}{2}$$

so root $\in \left(\frac{-3}{4}, \frac{-1}{2}\right)$ Θ the equation have only

one real root so $s \in \left(\frac{-3}{4}, \frac{-1}{2}\right)$ and $t \in \left(\frac{1}{2}, \frac{3}{4}\right)$

Q.16 The area bounded by the curve y = f(x) and the lines x = 0, y = 0 and x = t, lies in the interval

(A)
$$\left(\frac{3}{4}, 3\right)$$
 (B) $\left(\frac{21}{64}, \frac{11}{16}\right)$
(C) (9, 10) (D) $\left(0, \frac{21}{64}\right)$

Sol. [A]

 Power by: VISIONet Info Solution Pvt. Ltd

 Website : www.edubull.com
 Mob no. : +91-9350679141

$$A(t) = \int_{0}^{t} f(x) d(x) = t^{4} + t^{3} + t^{2} + t$$
$$= t \left(\frac{1 - t^{4}}{1 - t} \right)$$
$$A(1/2) = 15/16 & A(3/4) = 3 \left(\frac{175}{256} \right)$$
$$So A(t) \in \left(\frac{3}{4}, 3 \right)$$

Q.17 The function f'(x) is

> (A) increasing in $\left(-t, -\frac{1}{4}\right)$ and decreasing in $\left(-\frac{1}{4}, t\right)$

> (B) decreasing in $\left(-t, -\frac{1}{4}\right)$ and increasing in 1

Q.19

Sol.

$$\left(-\frac{1}{4}, t\right)$$

(C) increasing in (-t, t)

(D) decreasing in
$$(-t, t)$$

[B] Sol.

Sol.

$$f'(x) = 12x^{2} + 6x + 2$$
$$f'(x) \uparrow \left(-\frac{1}{4}, \infty\right)$$
$$\downarrow \left(-\infty, -\frac{1}{4}\right)$$

Let the straight line x = b divide the area enclosed Q.18 by $y = (1 - x)^2$, y = 0, and x = 0 into two parts $R_1(0 \le x \le b)$ and $R_2(b \le x \le 1)$ such that

R₁ - R₂ =
$$\frac{1}{4}$$
. Then *b* equals [IIT 2011]
(A) $\frac{3}{4}$ (B) $\frac{1}{2}$ (C) $\frac{1}{3}$ (D) $\frac{1}{4}$
[B]

Edubull

$$R_{1} - R_{2} = \frac{1}{4}$$

$$\int_{0}^{b} (x - 1)^{2} dx - \int_{b}^{1} (x - 1)^{2} dx = \frac{1}{4}$$

$$\left[\frac{(x - 1)^{3}}{3}\right]_{0}^{b} - \left[\frac{(x - 1)^{3}}{3}\right]_{b}^{1} = \frac{1}{4}$$

$$\frac{(b - 1)^{3}}{3} + \frac{1}{3} - 0 + \frac{(b - 1)^{3}}{3} = \frac{1}{4}$$

$$\frac{2(b - 1)^{3}}{3} = \frac{1}{4} - \frac{1}{3} = -\frac{1}{12}$$

$$(b - 1)^{3} = -\frac{1}{8}$$

$$b - 1 = -\frac{1}{2} \implies b = \frac{1}{2}$$
Let $f: [-1, 2] \rightarrow [0, \infty)$ be a continuous function such that $f(x) = f(1 - x)$ for all $x \in [-1, 2]$.

Let $R_1 = \int x f(x) dx$, and R_2 be the area of the -1 region bounded by y = f(x), x = -1, x = 2, and the *x*-axis. Then [IIT 2011] (A) $R_1 = 2R_2$ (B) $R_1 = 3R_2$ (C) $2R_1 = R_2$ (D) $3R_1 = R_2$ [**C**]

$$R_{1} = \int_{-1}^{2} x f(x) dx \qquad \dots (i)$$

$$R_{1} = \int_{-1}^{2} (1-x) f(1-x) dx \qquad \dots (ii)$$

$$= \int_{-1}^{2} (1-x) f(x) dx \qquad \dots (ii)$$

$$(i) + (ii)$$

$$2R_{1} = \int_{-1}^{2} f(x) dx = R_{2}$$

$$\therefore 2R_{1} = R_{2}$$

Q.20 Let S be the area of the region enclosed by

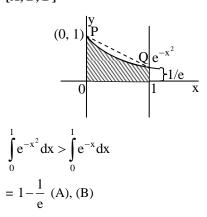
$$y = e^{-x^2}$$
, $y = 0$, $x = 0$, and $x = 1$. Then
[IIT 2012]
(A) $S \ge \frac{1}{e}$ (B) $S \ge 1 - \frac{1}{e}$

Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com

 \mathbf{R}_2

$$(C) S \leq \frac{1}{4} \left(1 + \frac{1}{\sqrt{e}} \right)$$
$$(D) S \leq \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{e}} \left(1 - \frac{1}{\sqrt{2}} \right)$$
$$[A, B, D]$$

Sol.



Area above x-axis by PQ line $y = 1 + x \left(\frac{1}{e} - 1\right)$

$$S \le \int_{0}^{1} y \, dx = \frac{1+e}{2e} < (D) \text{ also } (B) > (C)$$

Hence (C) not possible.

Hence A, B, D

EXERCISE # 5

Q.1 The slope of the tangent to the curve y = f(x) at a point (x, y) is 2x + 1 and the curve passes through (1, 2). The area of the region bounded by the curve, the x-axis and the line x = 1 is-

[IIT-1995]

(A) 5/3 units	(B) 5/6 units
(C) 6/5 units	(D) 6 units

Sol. [B]

Here $\frac{dy}{dx} = 2x + 1$ Integrating both side $\int dy = \int (2x+1) dx$ \Rightarrow y = x² + x + c which passes through (1, 2) so $\Theta 2 = 1 + 1 + c \Longrightarrow c = 0$ $\therefore y = x^2 + x$



required area bounded by curve, x-axis and x = 1 is

$$\int_{0}^{1} (x^{2} + x) dx = \left[\frac{x^{3}}{3} + \frac{x^{2}}{2}\right]$$
$$= \frac{1}{3} + \frac{1}{2} = \frac{5}{6} \text{ sq. units.}$$

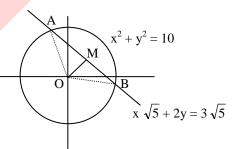
The area bounded by the parabola $y^2 = x$, the Q.2 line y = 4 and the y-axis is -[REE- 1995] (B) 32/3 (C) 16/3 (A) 64/3 (D) 128/3 [A]

Sol.

y =4 4 $x^{2} = x$ required area = $\int x \, dy$ $=\int_{0}^{4} y^{2} dy = \left[\frac{y^{3}}{3}\right]_{0}^{4} = \frac{64}{3}$



(A) 5 Sol. [A]



We want to find the area of $\triangle OAB$ for this, we draw a perpendicular from (0, 0) the given line

$$\Rightarrow OM = \left| \frac{-3\sqrt{5}}{\sqrt{5+4}} \right| = \sqrt{5}$$

$$OM = \sqrt{5}$$
given that OB = $\sqrt{10}$

$$\Rightarrow (MB)^2 = (OB)^2 - (OM)^2$$

$$= 10 - 5 = 5$$

$$\Rightarrow MB = \sqrt{5}$$

$$\Rightarrow AB = 2MB = 2\sqrt{5}$$
Area of $\triangle OAB$

Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com

$$=\frac{1}{2}$$
. AB. OM $=\frac{1}{2}$. $2\sqrt{5}$. $\sqrt{5}=5$

(C) 2,-4

Q.4 For which of the following values of m, is the area of the region bounded by the curve $y = x - x^2$ and the line y = mx equals 9/2.

[IIT-1999] (D) 4, – 2

Sol.

Sol.

(A) - 4

[C] $y = x - x^{2}$ and y = mx $\Rightarrow mx = x - x^{2} \Rightarrow x^{2} + x (m - 1) = 0$ $\Rightarrow x = 0, x = 1 - m$ required area = $\int_{0}^{1-m} (x - x^{2} - mx) dx$ 1-m

(B) - 2

$$= \int_{0}^{\infty} (x(1-m) - x^{2}) dx$$
$$= \left[\frac{x^{2}}{2}(1-m) - \frac{x^{3}}{3} \right]_{0}^{1-m}$$
$$= \frac{(1-m)^{3}}{2} - \frac{(1-m)^{3}}{3} = \frac{(1-m)^{3}}{6}$$

But given that area = $\frac{9}{2}$

$$\Rightarrow \frac{(1-m)^3}{6} = \pm \frac{9}{2}$$

Solving, we get $(1 - m)^3 = \pm 27$ $1 - m = \pm 3$ m = 4, -2

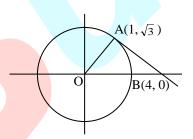
Q.5 The area of the region bounded by the curves $y = x^2$ and y = |x| is - [REE-1999] (A) 5/3 (B) 1/3 (C) 5/6 (D) 1/6 Sol. [B] $y = x^2$ and y = |x|

required area =
$$2 \int_{0}^{1} (x - x^{2}) dx$$

= $2 \left[\frac{x^{2}}{2} - \frac{x^{3}}{3} \right]_{0}^{1}$
= $2 \left[\frac{1}{2} - \frac{1}{3} \right]$
= $2 \cdot \frac{1}{6} = \frac{1}{3}$

Q.6 The area of the triangle formed by the positive x-axis and the normal and the tangent to the circle $x^2 + y^2 = 4$ at $(1, \sqrt{3})$ is.....

[IIT 1989]



Equation of tangent at $(1, \sqrt{3})$ is $x + \sqrt{3} y = 4$ ΔOAB is a right triangle \Rightarrow Area of $\Delta OAB = \frac{1}{2}$ (OA) (AB) $\Theta AB = \sqrt{9+3} = \sqrt{12}$ OA = 2Area $= \frac{1}{2} \cdot 2 \cdot \sqrt{12} = 2\sqrt{3}$

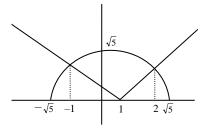
Q.7 Sketch the region bounded by the curves $y = \sqrt{5-x^2}$ and y = |x-1| and find its area. [IIT-1985]

Sol. $y = \sqrt{5-x^2}$ and y = |x-1|point of intersection are $5-x^2 = (x-1)^2 \Rightarrow x = 2, -1$ sketch is as follows

Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com

 \Rightarrow x(x - 1) = 0; x = 0, 1

 $\Theta \ y = x^2 \ \text{and} \ y = x$



required area

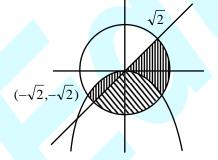
$$= \int_{-1}^{2} \sqrt{5 - x^{2}} \, dx - \int_{-1}^{1} (-x + 1) \, dx - \int_{1}^{2} (x - 1) \, dx$$
$$= \left[\frac{x}{2} \sqrt{5 - x^{2}} + \frac{5}{2} \sin^{-1} \frac{x}{\sqrt{5}} \right]_{-1}^{2} - \left[-\frac{x^{2}}{2} + x \right]_{-1}^{1}$$
$$- \left[\frac{x^{2}}{2} - x \right]_{1}^{2}$$
$$= 1 + \frac{5}{2} \sin^{-1} \frac{2}{\sqrt{5}} + 1 - \frac{5}{2} \sin^{-1} \left(\frac{-1}{\sqrt{5}} \right) - 2 - \frac{1}{2}$$

Solving we get

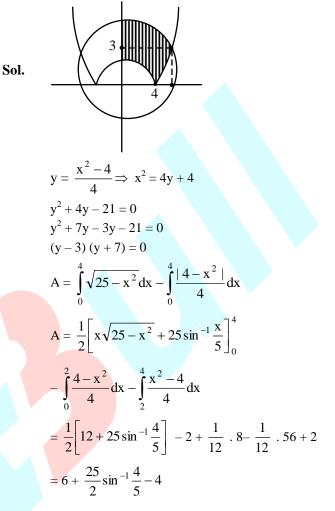
 $\frac{5}{2}\sin^{-1}(1) - \frac{1}{2} = \frac{5\pi}{4} - \frac{1}{2}$

Find the area bounded by the curves: $x^2 + y^2 = 4$, **Q.8** $x^2 = -\sqrt{2}$ v and x = v**[IIT 1986]**

Sol.
$$\frac{1}{\sqrt{2}} \int_{0}^{\sqrt{2}} \sqrt{4 - x^2} dx - \frac{1}{2} \cdot \sqrt{2} \cdot \sqrt{2} - \frac{1}{\sqrt{2}} \cdot \sqrt{2} \cdot \sqrt{2}$$



Find the area bounded by the curves $x^2 + y^2 = 25$, Q.9 $4y = |4 - x^2|$ and x = 0 above the x-axis. [IIT 1987]



Q.10 Find the area of the region bounded by the curve C : y = tan x, tangent drawn to C at $x = \pi/4$ and the x-axis. [IIT-1988]

Sol.
$$y = \tan x$$

at
$$x = \pi/4 \Rightarrow y = 1$$

 $\frac{dy}{dx} = \sec^2 x \Rightarrow \left(\frac{dy}{dx}\right)_{(\pi/4-1)} = 2$
Hence tangent at $\left(\frac{\pi}{4}, 1\right)$ is $(y-1) = 2\left(x - \frac{\pi}{4}\right)$
 $\Rightarrow 2x - y = \pi/2 - 1$
 $\pi/4$

required area

Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com

Mob no. : +91-9350679141

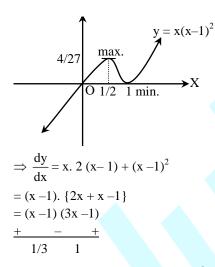
 $\int_{0}^{\sqrt{2}} \frac{-x^2}{\sqrt{2}} dx$

$$= \int_{0}^{\pi/4} \tan x \, dx - \int_{0}^{\pi/4} (2x + 1 - \pi/2) \, dx$$

= $(\log |\sec x|)_{0}^{\pi/4} - (x^{2} + x - \pi/2)_{0}^{\pi/4}$
= $\log \sqrt{2} - (\frac{\pi}{4} - \frac{\pi^{2}}{16})$
= $\frac{\pi^{2}}{16} - \frac{\pi}{4} - \frac{1}{2} \log 2$

Q.11 Find all maxima and minima of the function $y = x(x-1)^2$, $0 \le x \le 2$. Also determine the area bounded by the curve $y = x (x - 1)^2$, the x-axis and the line x = 2. [IIT-1989] $(-1)^2$

Sol.
$$y = x (x + y)$$

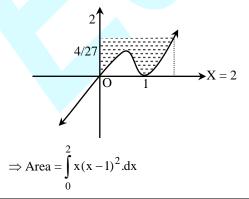


 \therefore maximum at x = 1/3 \Rightarrow y_{max} = $\frac{1}{3}\left(-\frac{2}{3}\right)^2 = \frac{4}{27}$

minimum at $x = 1 \Rightarrow y_{min} = 0$

Now, to find the area bounded by the curve $y = x (x - 1)^2$,

The y-axis and line x = 2.



Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com

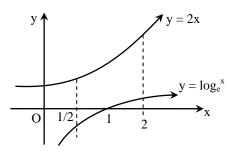
 $= \int_{0}^{2} (x^{3} - 2x^{2} + x) dx = \left(\frac{x^{4}}{4} - \frac{2x^{3}}{3} + \frac{x^{2}}{2}\right)_{0}^{2}$ $=\left(4-\frac{16}{3}+2\right)=6-\frac{16}{3}=\frac{2}{3}$ sq. units.

0.12 Compute the area of the region bounded by the curves $y = ex \lambda n x$ and $y = \frac{\lambda n x}{ex}$, where $\lambda n e =$ 1.

Sol.
$$ex \lambda n x = \frac{\lambda n x}{ex}$$

 $\frac{\lambda n x}{ex} (e^2 x^2 - 1) = 0$
 $x = 1, x = \frac{1}{e}$
 $A = \int_{1/e}^{1} \left(ex \lambda nx - \frac{\lambda nx}{ex} \right) dx$

Q.13 Sketch the curves and identify the region bounded by x = 1/2, x = 2, $y = \lambda nx$ and $y = 2^x$. Find the area of this region. [IIT- 1991] Sol. The required area is the shaded portion in following figure.



In the region $\frac{1}{2} \le x \le 2$ the curve $y = 2^x$ lies above

as compared to $y = \log_e x$ Hence, the required area

$$= \int_{1/2}^{2} (2^{x} - \log x) dx$$
$$= \left(\frac{2^{x}}{\log 2} - (x \log x - x)\right)_{1/2}^{2}$$

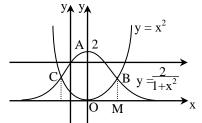
(given)

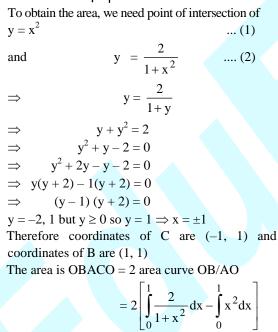
$$= \frac{4 - \sqrt{2}}{\log 2} - \frac{5}{2}\log 2 + \frac{3}{2}$$

Q.14 Sketch the region bounded by the curves $y = x^2$ and $y = 2/(1 + x^2)$, Find its area. **[IIT-1992]**

The curve $y = x^2$ is a parabola. It is symmetric Sol. about x-axis and has its vertex at (0, 0) and the curve $y = \frac{2}{1 + x^2}$ is a bell shaped curve, x-axis is

its asymptote and it is symmetric about y-axis and its vertex is (0, 2).





$$= 2 \left[\int_{0}^{1} \frac{1}{1 + x^{2}} dx - \int_{0}^{1} x dx \right]$$
$$= 2 \left[2 \tan^{-1} x \right]_{0}^{1} - \left[\frac{x^{3}}{3} \right]_{0}^{1}$$
$$= 2 \left[\frac{2\pi}{4} - \frac{1}{3} \right] = \pi - \frac{2}{3}$$

0.15 In what ratio does the x-axis divide the area of the region bounded by the parabolas $y = 4x - x^2$ and $y = x^2 - x$? [IIT- 1994] $y = 4x - x^2$ Sol. (given) Power by: VISIONet Info Solution Pvt. Ltd

$$= -(x^{2} - 4x + 4 - 4)$$

$$= -(x^{2} - 4x + 4) + 4$$

$$y = -(x - 2)^{2} + 4$$

$$y - 4 = -(x - 2)^{2}$$

$$y$$

$$(2, 4)$$

$$y = x^{2} - x$$

$$y = 4x - x^{2}$$

$$(1/2, -1/4)^{5/2}$$

Therefore, it is a vertically downward parabola with vertex at (2, 4) and its axis is x = 2.

and
$$y = x^2 - x$$

 $\Rightarrow \quad y = x^2 - x + \frac{1}{4} - \frac{1}{4}$
 $\Rightarrow \quad y = \left(x - \frac{1}{2}\right)^2 - \frac{1}{4}$

$$\Rightarrow \qquad \mathbf{y} + \frac{1}{4} = (\mathbf{x} - 1/2)^2$$

=

This is a parabola having its vertex at $\left(\frac{1}{2}, -\frac{1}{4}\right)$

its axis at $x = \frac{1}{2}$ and opening upwards.

To obtain the x-coordinate of the points of intersection we solve $y = 4x - x^2$ and $y = x^2 - x$ \Rightarrow $4\mathbf{x} - \mathbf{x}^2 = \mathbf{x}^2 - \mathbf{x}$ $\Rightarrow 2x^2 = 5x \Rightarrow 2x^2 - 5x = 0 \Rightarrow x (2 - 5x) = 0$ \Rightarrow x = 0, $\frac{5}{2}$ Also $y = x^2 - x$, meets x- axis at (0, 0) and (1, 0)

Now area, 5/2

$$A_{1} = \int_{0}^{5/2} [(4x - x^{2})] - [(x^{2} - x)] dx$$
$$= \int_{0}^{5/2} (5x - 2x^{2}) dx$$
$$= \left[\left(\frac{5}{2} x^{2} - \frac{2}{3} x^{3} \right) \right]_{0}^{5/2}$$
$$= \frac{5}{2} \left(\frac{5}{2} \right)^{2} - \frac{2}{3} \cdot \left(\frac{5}{2} \right)^{3}$$

Website : www.edubull.com Mob no. : +91-9350679141

$$= \frac{5}{2} \cdot \frac{25}{4} - \frac{2}{3} \cdot \frac{125}{8}$$
$$= \frac{125}{8} \left(1 - \frac{2}{3}\right) = \frac{125}{24}$$

This area is considering above and below x-axis both. Now for area below x-axis separately. We consider

$$A_{2} = -\int_{0}^{1} (x^{2} - x) dx = \left(\frac{x^{2}}{2} - \frac{x^{3}}{3}\right)_{0}^{1}$$
$$= \frac{1}{2} - \frac{1}{3} = \frac{1}{6}$$

Therefore net area above the x- axis

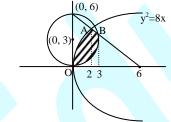
$$= A_1 - A_2 = \frac{125 - 4}{24} = \frac{121}{24}$$

Hence, ratio of area above the x- axis and area below x- axis

$$=\frac{121}{24}:\frac{1}{6}=121:4$$

- Q.16 Find the area given by $x + y \le 6$, $x^2 + y^2 \le 6y$ and $y^2 \le 8x$. [REE-1995]
- Sol. $x + y \le 6, x^2 + (y 3)^2 \le 9, y^2 \le 8x$ We take

$$x + y = 6$$
, $x^{2} + (y - 3)^{2} = 9$, $y^{2} = 8x$



Solving $y^2 = 8x$ and x + y = 6, we get A(2, 4) and solving $x^2 + (y - 3)^2 = 9$ and x + y = 6, we get B (3, 3)

required area

$$= \int_{0}^{2} \left(2\sqrt{2x} - (3 - \sqrt{9 - x^{2}}) \right) dx + \int_{2}^{3} \left[(6 - x) - (3 - \sqrt{9 - x^{2}}) \right] dx$$
$$= 2\sqrt{2} \int_{0}^{2} \sqrt{x} dx + \int_{2}^{3} (6 - x) dx - \int_{0}^{3} (3 - \sqrt{9 - x^{2}}) dx$$

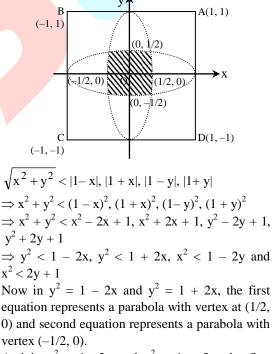
$$= 2\sqrt{2} \cdot \frac{2}{3} \left[x^{3/2} \right]_{0}^{2} + \left[6x - \frac{x^{2}}{2} \right]_{2}^{3}$$
$$- \left[3x - \frac{x}{2}\sqrt{9 - x^{2}} - \frac{9}{2} \sin^{-1} \frac{x}{3} \right]_{0}^{3}$$

Solving, we get

Area =
$$\frac{1}{12} (27\pi - 2)$$

- Q.17 Consider a square with vertices at (1, 1), (-1, 1), (-1, -1) and (1, -1). Let S be the region consisting of all points inside the square which are nearer to the origin than to any edge. Sketch the region S and find its area. [IIT-1995]
- Sol. The equations of the sides of the square are as follows:

AB : y = 1, BC : x = -1, CD : y = -1, DA : x = 1Let the region be S and (x, y) is any point inside it. Then according to given conditions,



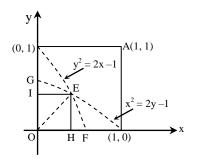
And in $x^2 = 1$ –2y and $x^2 = 1$ + 2y, the first equation represents a parabola with vertex at (0, -1/2).

Therefore, the region S is the region lying inside the four parabolas

$$y^2 = 1 - 2x$$
, $y^2 = 1 + 2x$, $x^2 = 1 + 2y$, $x^2 = 1 - 2y$

Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com

Edubull



where S is the shaded region.

Now, S is symmetrical in all four quadrants, therefore, $S = 4 \times \text{area lying in the first quadrant.}$ Now, $y^2 = 1 - 2x$ and $x^2 = 1 - 2y$ intersect on the line y = x. The point of intersection is $E(\sqrt{2}-1, \sqrt{2}-1)$ Area of the region OEFO = area of $\triangle OEH$ + area of HEFH $= \frac{1}{2} (\sqrt{2} - 1)^2 + \int_{\sqrt{2}}^{1/2} \sqrt{1 - 2x} \, dx$ $= \frac{1}{2} \left(\sqrt{2} - 1 \right)^2 + \left[\left(1 - 2x \right)^{3/2} \frac{2}{3} \cdot \frac{1}{2} \left(-1 \right) \right]^{1/2}$ $= \frac{1}{2} \left(2 + 1 - 2\sqrt{2}\right) + \frac{1}{3} \left(1 + 2 - 2\sqrt{2}\right)^{3/2}$ $=\frac{1}{2}(3-2\sqrt{2})+\frac{1}{2}(3-2\sqrt{2})^{3/2}$ $= \frac{1}{2} (3 - 2\sqrt{2}) + \frac{1}{3} [(\sqrt{2} - 1)^2]^{3/2}$ $=\frac{1}{2}(3-2\sqrt{2})+\frac{1}{2}(\sqrt{2}-1)^{3}$ $= \frac{1}{2} (3 - \sqrt{2}) + \frac{1}{2} [2 \sqrt{2} - 1 - 3 \sqrt{2} (\sqrt{2} - 1)]$ $=\frac{1}{2}(3-2\sqrt{2})+\frac{1}{2}[5\sqrt{2}-7]$ $=\frac{1}{6}[9-6\sqrt{2}+10\sqrt{2}-14]=\frac{1}{6}[4\sqrt{2}-5]$ Similarly, area OEGO = $\frac{1}{6}$ (4 $\sqrt{2}$ –5) Therefore, area of S lying in first quadrant

$$= \frac{2}{6} (4 \sqrt{2} - 5) = \frac{1}{3} (4 \sqrt{2} - 5)$$

Hence, S = $\frac{4}{3} (4 \sqrt{2} - 5) = \frac{1}{3} (16 \sqrt{2} - 20)$

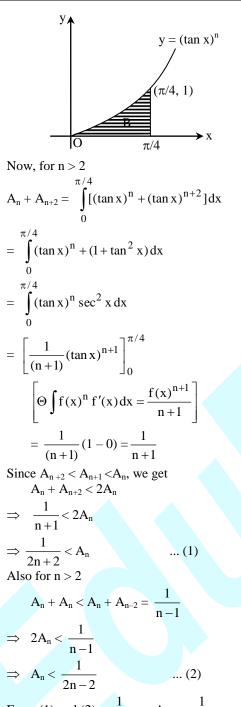
Q.18 Find the area of the region formed by

$$x^{2} + y^{2} - 6x - 4y + 12 \le 0, y \le x \text{ and } x \le \frac{5}{2}$$
.
[REE-1996]
Sol. $x^{2} + y^{2} - 6x - 4y + 12 \le 0, y \le x, \text{ and } x \le \frac{5}{2}$
 $\Rightarrow (x - 3)^{2} + (y - 2)^{2} = 1, y = x, x = \frac{5}{2}$
 $x^{2} + (y - 2)^{2} = 1, y = x, x = \frac{5}{2}$
required area
 $= \int_{2}^{5/2} \left[x - \left(2 - \sqrt{1 - (x - 3)^{2}} \right) \right] dx$
 $\left[x^{2} - 2x + \frac{x - 3}{2} \sqrt{1 - (x - 2)^{2}} + \frac{1}{2} \sin^{-1}(x - 2) \right]^{5/2}$

$$\begin{bmatrix} \frac{\pi}{2} - 2x + \frac{\pi}{2} \sqrt{1 - (x - 3)^2} + \frac{\pi}{2} \sin^{-1}(x - 3) \end{bmatrix}_2$$
$$= \frac{25}{8} - 5 - \frac{\sqrt{3}}{8} - \frac{\pi}{12} - 2 + 4 - \frac{\pi}{4}$$
$$= \frac{1}{8} - \frac{\sqrt{3}}{8} + \frac{\pi}{6}$$

Q.19 Let A_n be the area bounded by the curve $y = (\tan x)^n$ and the lines x = 0, y = 0 and $x = \pi/4$. Prove that for $n \ge 2$, $A_n + A_{n-2} = \frac{1}{n-1}$ and deduce $\frac{1}{2n+2} < A_n < \frac{1}{2n-2}$. [IIT- 1996] We have, $A_n = \int_{0}^{\pi/4} (\tan x)^n dx$ Sol. Since, $0 < \tan x < 1$, when $0 < x < \pi/4$ We have $0 < (\tan x)^{n+1} < (\tan x)^n$ for each $n \in N$ $\Rightarrow \int_{0}^{\pi/4} (\tan x)^{n+1} dx < \int_{0}^{\pi/4} (\tan x)^n dx$ $\Rightarrow A_{n+1} < A_n$

Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com



From (1) and (2)
$$\frac{1}{2n+2} < A_n < \frac{1}{2n-2}$$

Let O(0, 0), A(2, 0) and B $\left(1, \frac{1}{\sqrt{3}}\right)$ be the vertices Q.20

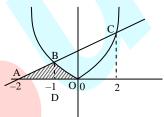
of a triangle. Let R be the region consisting of all those points P inside $\triangle OAB$ which satisfy $d(P, OA) \le \min \{d(P, OB), d(P, AB)\},$ where d denotes the distance from the point to the corresponding line. Sketch the region R and [IIT 1997] find its area.

Point P lies inside $\triangle OAB$ & closest to OA Sol.

$$A = \frac{1}{2} \times 2 \times \tan 15^{\circ} = \frac{1 - \frac{1}{\sqrt{3}}}{1 + \frac{1}{\sqrt{3}}} = \frac{\sqrt{3} - 1}{\sqrt{3} + 1}$$
$$A = \frac{4 - 2\sqrt{3}}{2}$$
$$A = 2 - \sqrt{3}$$

Q.21 Indicate the region bounded by the curves $x^2 = y$ and y = x + 2 and obtain the area enclosed by them. [REE- 1997] S

ol.
$$x^2 = y, y = x + 2, x$$
- axis



required area = area of $\triangle ABD$ + Area of region BOD

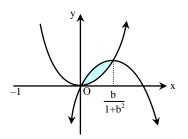
$$= \frac{1}{2} \times |\mathbf{x}| + \left| \int_{-1}^{0} \mathbf{x}^{2} \, d\mathbf{x} \right|$$
$$= \frac{1}{2} + \left| \left[\frac{\mathbf{x}^{3}}{3} \right]_{-1}^{0} \right| = \frac{1}{2} + \frac{1}{3} = \frac{5}{6}$$

Q.22 Find all possible values of b > 0, so that the area of the bounded region enclosed between the parabola $y = x - bx^2$ and $y = x^2/b$ is maximum. [IIT- 1997]

Sol. Eliminating y from
$$y = \frac{x^2}{b}$$
 and $y = x - bx^2$, we get $x^2 = bx - b^2x^2$

$$\Rightarrow \qquad x = 0, \ \frac{b}{1 + b^2}$$

Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com Mob no. : +91-9350679141



Thus, the area enclosed between the parabolas,

$$A = \int_{0}^{b/1+b^{2}} \left(x - bx^{2} - \frac{x^{2}}{b} \right) dx,$$
$$= \left\{ \frac{x^{2}}{2} - \frac{x^{3}}{3} \cdot \frac{1+b^{2}}{b} \right\}_{0}^{b/1+b^{2}}$$
$$= \frac{1}{6} \cdot \frac{b^{2}}{(1+b^{2})^{2}}$$

For maximum, value of A, $\frac{dA}{db} = 0$

But
$$\frac{dA}{db} = \frac{1}{6} \cdot \frac{(1+b^2)^2 \cdot 2b - 2b^2 \cdot (1+b^2) \cdot 2b}{(1+b^2)^4}$$

= $\frac{1}{3} \cdot \frac{b(1-b^2)}{(1+b^2)^3}$

Hence,
$$\frac{dA}{db} = 0$$
 gives $b = -1, 0, 1$ since $b > 0$

 \therefore we consider only b = 1

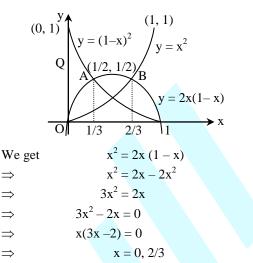
Sign scheme for $\frac{dA}{db}$ around b = 1 is as below

$$+$$
 $\rightarrow \infty$

from scheme it is clear A is maximum at b = 1.

Q.23 Let $f(x) = maximum \{x^2, (1 - x)^2, 2x (1 - x)\}$ where $0 \le x \le 1$. Determine the area of the region bounded by the curves y = f(x), x-axis, x = 0 and x = 1. [IIT-1997]

Sol. We can draw the graph of $y = x^2$, $y = (1 - x^2)$ and y = 2x (1 - x) in following fig. Now, to get the point of intersection of $y = x^2$ and y = 2x (1 - x). We solve both the equations.



Similarly, we can find the coordinate of the points of intersection of

 $y = (1 - x^2)$ and y = 2x (1 - x) are x = 1/3 and x = 1.

From the figure it is clear that

$$f(x) = \begin{cases} (1-x)^2 & , \quad 0 \le x \le 1/3 \\ 2x(1-x) & , \quad 1/3 \le x \le 2/3 \\ x^2 & , \quad 2/3 \le x \le 1 \end{cases}$$

The required area A is given by

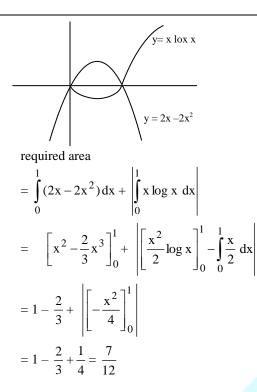
$$A = \int_{0}^{1} f(x) dx$$

= $\int_{0}^{1/3} (1-x)^{2} dx + \int_{1/3}^{2/3} 2x (1-x) dx + \int_{2/3}^{1} x^{2} dx$
= $\left[-\frac{1}{3} (1-x)^{3} \right]_{0}^{1/3} + \left[x^{2} - \frac{2x^{3}}{3} \right]_{1/3}^{2/3} + \left[\frac{1}{3} x^{3} \right]_{2/3}^{1}$
= $-\frac{1}{3} \left(\frac{2}{3} \right)^{3} + \frac{1}{3} \left(\frac{2}{3} \right)^{2} - \frac{2}{3} \left(\frac{2}{3} \right)^{3}$
 $- \left(\frac{1}{3} \right)^{2} + \frac{2}{3} \left(\frac{1}{3} \right)^{2} + \frac{1}{3} (1) - \frac{1}{3} \left(\frac{2}{3} \right)^{3} = \frac{17}{27}$ sq. units

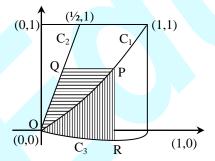
Q.24 Indicate the region bounded by the curves $y = x \log x$ and $y = 2x - 2x^2$ and obtain the area enclosed by them. [REE-1998] Sol. $y = x \log x$, $y = 2x - 2x^2$

$$\Rightarrow y = x \log x, \left(x - \frac{1}{2}\right)^2 = -\frac{1}{2}\left(y - \frac{1}{2}\right)$$

Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com



Q.25 Let C_1 and C_2 be the graphs of the functions $y = x^2$ and y = 2x, $0 \le x \le 1$ respectively. Let C_3 be the graph of a function y = f(x), $0 \le x \le 1$, f(0) = 0. For a point P on C_1 , let the lines through P, parallel to the axes meet C_2 and C_3 at Q and R respectively (see in figure). If for every position of P(on C_1), the areas of the shaded regions OPQ and ORP are equal, determine the function f(x). **[IIT-1998]**



Sol. Refer to the fig. in the question. Let the coordinates of P be (x, x^2) , where $0 \le x \le 1$. For the area (OPRO), upper boundary $y = x^2$ lower boundary : y = f(x) lower limit of x : 0upper limit of x : x \therefore area (OPRO) = $\int_{0}^{x} t^2 dt - \int_{0}^{x} f(t) dt$ $= \left\lfloor \frac{t^3}{3} \right\rfloor_0^x - \int_0^x f(t) dt$ $= \frac{x^3}{3} - \int_0^x f(t) dt - \int_0^{x^2} \frac{t}{2} dt$

For the area (OPQO) the upper curve: $x = \sqrt{y}$ the lower curve : x = y/2

lower limit of y : 0 and upper limit of $y : x^2$

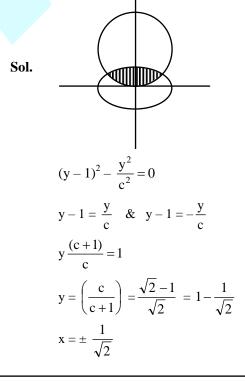
 $\therefore \text{ area (OPQO)} = \int_{0}^{\pi^{2}} \sqrt{t} \, dt - \int_{0}^{\pi^{2}} \frac{t}{2} \, dt$ $= \frac{2}{3} \left[t^{3/2} \right]_{0}^{x^{2}} - \frac{1}{4} \left[t^{2} \right]_{0}^{x^{2}}$ $= \frac{2}{3} x^{3} - \frac{1}{4} x^{4}$

according to the given condition,

$$\frac{1}{3}x^3 - \int_0^x f(t) dt = \frac{2}{3}x^3 - \frac{x^4}{4}$$

Differentiating both sides w.r.t. x, get $x^2 - f(x)$. 1 = $2x^2 - x^3$ $\Rightarrow f(x) = x^3 - x^2$, $0 \le x \le 1$

Q.26 Find the area of the region lying inside $x^2 + (y - 1)^2 = 1$ and outside $c^2x^2 + y^2 = c^2$ where $c = (\sqrt{2} - 1)$ [REE-1999]



 Power by: VISIONet Info Solution Pvt. Ltd

 Website : www.edubull.com
 Mob no. : +91-9350679141

$$A = c \int_{-\frac{1}{\sqrt{2}}}^{1/\sqrt{2}} \sqrt{1 - x^2} \, dx - \int_{-\frac{1}{\sqrt{2}}}^{1/\sqrt{2}} 1 \, dx - \int_{-\frac{1}{\sqrt{2}}}^{1/\sqrt{2}} \sqrt{1 - x^2} \, dx$$

$$A = \frac{(c - 1)}{2} \left[x \sqrt{1 - x^2} + \sin^{-1} x \right]_{-\frac{1}{\sqrt{2}}}^{\frac{1}{\sqrt{2}}} - \sqrt{2}$$

$$= \frac{(c - 1)}{2} \left\{ \frac{1}{2} + \frac{\pi}{4} + \frac{1}{2} + \frac{\pi}{4} - \sqrt{2} \right\}$$

$$= \frac{(c - 1)}{2} \left(1 + \frac{\pi}{2} \right) - \sqrt{2}$$

$$= \frac{c - 1}{2} + (c - 1)\frac{\pi}{4} - \sqrt{2}$$

$$= \frac{\sqrt{2} - 2}{2} + \left(\sqrt{2} - 2\right)\frac{\pi}{4} - \sqrt{2}$$

$$= \frac{1}{\sqrt{2}} - 1 - \sqrt{2} + \frac{\pi}{2\sqrt{2}} - \frac{\pi}{2}$$

Q.27 Let f(x) be a continuous function given by $f(x) = \begin{cases} 2x, & |x| \le 1 \\ x^2 + ax + b, & |x| > 1 \end{cases}$ Find the area of the region in the third quadrant bounded by the curves $x = -2y^2$ and y = f(x) lying on the left of the line 8x + 1 = 0 [IIT-1999]

.....(1)

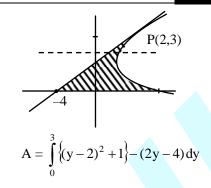
.....(2)

+2x - 1

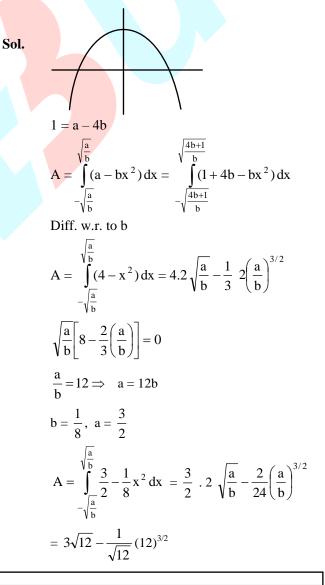
Sol.
$$2 = 1 + a + b$$

 $a + b = 1$
 $-2 = 1 - a + b$
 $a - b = 3$
 $a = 2$ & $b = -1$

Q.28 Find the area enclosed by the parabola $(y-2)^2 = x - 1$, the tangent to the parabola at (2, 3) and x-axis. [REE- 2000] Sol. Tangent at P(2, 3) 2y = x + 4



Q.29 Consider the collection of all curve of the form $y = a - bx^2$ that pass through the point (2, 1), where a and b are positive constants. Determine the value of a and b that will minimise the area of the region bounded by $y = a - bx^2$ and x-axis. Also find the minimum area.



Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com M

$$= 2\sqrt{12} = 4\sqrt{3}$$

Q.30 For what value of 'a' is the area bounded by the curve $y = a^2x^2 + ax + 1$ and the straight line y = 0, x = 0 and x = 1 the least ?

Sol.
$$A = \int_{0}^{1} y \, dx = \frac{a^2}{3} + \frac{a}{2} + 1$$

 $\frac{dA}{da} = \frac{2a}{3} + \frac{1}{2} = 0$
 $a = -\frac{3}{4}$

Q.31 The tangent drawn from the origin to the curve, $y = 2x^2 + 5x + 2$ meets the curve at a point whose y-coordinate is negative. Find the area of the figure bounded by the tangent between the point of contact and origin, the x-axis and the parabola.

Sol.
$$y = 2x^2 + 5x + 2$$

= $(2x + 1) (x + 2)$
 -1
 -2
 -1
 $-1/2$

P(x₁, y₁) tangent at P

$$\frac{y + y_1}{2} = 2x x_1 + \frac{5}{2} (x + x_1) + 2$$

O lies on it

$$y_{1} = 5x_{1} + 4$$

$$5x_{1} + 4 = 2x_{1}^{2} + 5x_{1} + 2$$

$$x_{1} = \pm 1$$

$$x_{1} = -1, y_{1} = -1$$

$$(-1, -1)$$

$$y = x$$

$$A = \frac{1}{2} \cdot 1 \cdot 1 + \int_{-1}^{-1/2} (2x^{2} + 5x + 2) dx$$

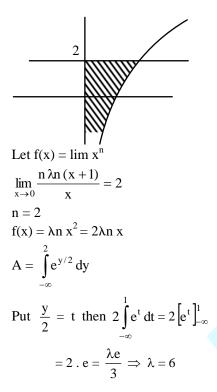
 Power by: VISIONet Info Solution Pvt. Ltd

 Website : www.edubull.com
 Mob no. : +91-9350679141

area bounded by curve y = f(x), y-axis and the

line
$$y = 2$$
 is $\frac{\lambda e}{3}$, then $\lambda =$

Sol.



Q.34 Let $f : \mathbb{R} \to \mathbb{R}$ be a differentiable function such that f(0) = 1 and

 $f(xy + 1) = f(x) f(y) - f(y) - x + 2 \forall x, y \in R$ then area bounded by f(x) and $g(x) = x^2 + 1$ can be expressed as p/q where p and q are relatively prime find (p + q).

Sol. f'(xy + 1)(y) = f'(x) - 1

=
$$f(y) f'(x) - 1$$

put y = 0
 $f'(x) = 1$
 $f(x) = x + c$
 $c = 1$
 $f(x) = x + 1$
 $g(x) = x^2 + 1$

Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com

$$A = \int_{0}^{1} x + 1 - x^{2} - 1 dx$$
$$= \frac{1}{2} - \frac{1}{3} = \frac{1}{6} = \frac{p}{q}$$
$$p - q = 7$$

ANSWER KEY

EXERCISE # 1

		r		r		1		1		1						1	-			-	
	Q.No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
	Ans.	Α	В	С	C	А	С	В	В	С	D	Α	С	D	В	D	Α	С	D	С	В
	Q.No.	21	22	23	24																
	Ans.	Α	Α	В	В																
25. True 26. False							27.	True	e					28. e ²	² sq. 1	unit					
20	1 / 4	•,				20 1				31. 2 sq. unit											
29.	1/4 sq.	unit				30.	l sq. ı	unit			31.	2 sq.	. unit					32. (2	$-\sqrt{2}$	2) so	ղ. un

EXERCISE # 2

PART-A

Q.No.	1	2	3	4	5	6	7	8	9	10	11	12
Ans.	С	В	D	С	С	D	В	D	D	Α	В	В

PART-B

Qus.	13	14	15
Ans.	B,C,D	B,C,D	A,B

PART-C

17. D

16. D

PART-D

18. $A \rightarrow Q, B \rightarrow Q, C \rightarrow R, D \rightarrow S$

19. $A \rightarrow Q$, $B \rightarrow R$, $C \rightarrow P$, R, $D \rightarrow S$

20. $A \rightarrow Q, B \rightarrow S, C \rightarrow P, D \rightarrow R$

Power by: VISIONet Info Solution Pvt. Ltd	
Website : www.edubull.com	Mob no. : +

EXERCISE # 3

2. $\sqrt{2}$	3. 44/27	4. $(\pi/2 - 4/\pi)$ sq. units	6. 8 sq. units
7. $(\sqrt{2} - 1)$ sq. units	8. 1/e	9. 5	10. $2 + \lambda n \left(\frac{4}{3\sqrt{3}}\right) - \frac{1}{e}$.
11. 11/3	$12.\left(\sqrt{3}+\frac{2\pi}{3}-\frac{1}{6}\right)$ units	² 13. $(2 - \pi/2)$ units ²	14. 4a ² units ²
15. A	16. A	17. B	18. B
19. C	20. A	21. B	22. C
23. D	24. B	25. C	26. C
27. B	28. C	29. D	

EXERCISE # 4

1. C	2. $\frac{(e+1)\pi(e^{n+1}-1)}{(\pi^2+1)(e-1)}$ sq.	units.	3. B	4. $\frac{20-12\sqrt{2}}{3}$
5. C	6. A	7. A	8. 125/3 sq. unit	9. 1/3 sq. unit
10. B	11. B	12. A	13. D	14. B, C, D
15. C	16. A	17. B	18. B	19. C

20. A, B, D

Power by: VISIONet Info Solution Pvt. Ltd	
Website : www.edubull.com	Mob no. : +91-9350679141

EXERCISE # 5

1. B	2. A	3. A	4. D	5. B
6. $2\sqrt{3}$ sq. unit	7. $\frac{5\pi}{4} - \frac{1}{2}$	8. $\pi + (1/3)$ sq. units	9. 25. sin ⁻¹ (4/5) + 4 sq. t	units
10. $\frac{\pi^2}{16} - \frac{\pi}{4} + \frac{1}{2} \log 2$	11. $\frac{2}{3}$ sq. units	12. $(e^2-5)/4e$ units ²	13. $\frac{4-\sqrt{2}}{\log 2} - \frac{5}{2}\log 2 + \frac{3}{2}$	
14. $\pi - \frac{2}{3}$	15. 121 : 4	16. 1/12 (27 π – 2)	17. 4/3 (4 √2 –5)	
18. $\frac{3(1-\sqrt{3})+4\pi}{24}$ unit ²	20. $(2-\sqrt{3})$ sq. t	ınit	21. 9/2 sq. unit	22. b = 1
23 . 17/27 sq. units	24. 7/12 sq. unit	s	25. $f(x) = -x^2 + x^3$	
$26.\left(\pi-\frac{\sqrt{2}}{4}\pi+\frac{1}{\sqrt{2}}\right)$ uni	its ²		27. $\frac{257}{192}$ sq. units	28. 9 sq. units
29. b = $1/8$, A _{minimum} = 4	3 sq. units	30. $a = -\frac{3}{4}$	31. $\frac{5}{24}$	
32. $a = 8 \text{ or } \frac{2}{5} (6 - \sqrt{21})$	-)	33. 6	34. 7	

Power by: VISIONet Info Solution Pvt. Ltd	
Website : www.edubull.com	Mob no. : +91-9350679141