SOLVED EXAMPLES

Ex. 1. (A) Find the angle between the curve $2y^2 = x^3$ and $y^2 = 32x$ (B) Prove that the angle between the curves $y^2 = x$ and $x^3 + y^3 = 3xy$ at the point other than origin is $\tan^{-1}(16)^{1/3}$.

Sol. (A)
Solving
$$2y^2 = x^3$$
 and $y^2 = 32x$
we get $(0, 0)$; $(8, 16)$ and $(8, -16)$
for $\sqrt{2}y = x\sqrt{x}$ or $\sqrt{2}y = -x\sqrt{x}$
at $(0, 0) \frac{dy}{dx}\Big|_{0,0} = 0$
for 1
at $(0, 0) \frac{dy}{dx}\Big|_{0,0} = \infty$
for I
hence angle = 90°
now $\frac{dy}{dx}\Big|_{n} = \frac{3x^2}{4y} = \frac{3}{4} \frac{64}{16} = 3$
 $\frac{dy}{dx}\Big|_{n} = \frac{3x^2}{2y} = \frac{16}{16} = 1$ \therefore $\tan\theta = \frac{3-1}{1+3} = \frac{2}{4} = \frac{1}{2}$
(B) $y^2 = x$; $x^3 + y^3 = 3xy$
 $2y\frac{dy}{dx} = 1 \implies \frac{dy}{dx}\Big|_{n} = \frac{1}{2y_1}$
again for the 2^{2d} curve
 $\frac{dy}{dx}\Big|_{n} = \frac{y_1 - x_1^2}{4y_1^2 - x_1}$
solving $y^2 = x$ and $x^3 + y^3 = 3xy$; $y^6 + y^3 = 3y^3 \implies y^3 + 1 = 3 \implies y^3 = 2$
 \therefore $y_1 = 2^{1/3}$ and $x_1 = 2^{2/3}$
now $m_1 = \frac{1}{2\cdot 2^{1/2}} = \frac{1}{2^{\frac{1}{2}}};$ $m_2 = \frac{2^{\frac{1}{2}} - 2^{\frac{4}{3}}}{2^{\frac{3}{2}} - 2^{\frac{4}{3}}} \rightarrow \infty$
 $\tan\theta = \left|\frac{m_2 - m_1}{1 + m_1m_2}\right| = \left|\frac{1 - \frac{m_1}{m_2}}{\frac{1}{m_2} + m_1}\right| = \left|\frac{1}{m_1}\right| = 2^{\frac{4}{3}} = 16^{\frac{1}{3}}$ \therefore $\theta = \tan^{-1}(16^{\frac{1}{3}})$

Ex 2 If area of circle increases at a rate of 2cm²/sec, then find the rate at which area of the inscribed square increases.

Sol. Area of circle,
$$A_1 = \pi r^2$$
. Area of square, $A_2 = 2r^2$ (see figure)

$$\frac{dA_1}{dt} = 2\pi r \frac{dr}{dt} , \qquad \qquad \frac{dA_2}{dt} = 4r \cdot \frac{dr}{dt}$$

- $\Rightarrow \qquad 2 = 2\pi r \cdot \frac{dr}{dt} \qquad \Rightarrow \qquad r \frac{dr}{dt} = \frac{1}{\pi}$
- $\therefore \qquad \frac{dA_2}{dt} = 4 \cdot \frac{1}{\pi} = \frac{4}{\pi} \text{ cm}^2/\text{sec}$

$$\therefore$$
 Area of square increases at the rate $\frac{4}{\pi}$ cm²/sec.

Ex.3 The equation of the tangent to the curve $x = a \cos^3 t$, $y = a \sin^3 t$ at 't' point is

Sol.
$$\frac{dy}{dx} = \frac{\left(\frac{dy}{dt}\right)}{\left(\frac{dx}{dt}\right)} = -\frac{3a\sin^2 t \cos t}{3a\cos^2 t \sin t} = -\frac{\sin t}{\cos t}$$

which is the slope of the tangent at 't' point. Hence equation of the tangent at 't' point is

$$y - a \sin^{3} t = -\frac{\sin t}{\cos t} \left(x - a \cos^{3} t \right) \implies \frac{y}{\sin t} - a \sin^{2} t = -\frac{x}{\cos t} + a \cos^{2} t$$
$$\implies x \sec t + y \csc t = a$$

Ex. 4 Sand is pouring from pipe at the rate of 12 cm³/s. The falling sand forms a cone on the ground in such a way that the height of the cone is always one - sixth of radius of base. How fast is the height of the sand cone increasing when height is 4 cm?

Sol.
$$V = \frac{1}{3} \pi r^2 h$$

but $h = \frac{r}{6}$
 $\Rightarrow V = \frac{1}{3} \pi (6h)^2 h$
 $\Rightarrow V = 12\pi h^3$
 $\frac{dV}{dt} = 36\pi h^2 \cdot \frac{dh}{dt}$
when, $\frac{dV}{dt} = 12 \text{ cm}^3/\text{s}$ and $h = 4 \text{ cm}$
 $\frac{dh}{dt} = \frac{12}{36\pi \cdot (4)^2} = \frac{1}{48\pi} \text{ cm/sec}.$

Fx.5 Find the condition for the line
$$y = mx$$
 to cut at right angles the conic
 $ax^2 + 2hxy + by^2 = 1$. Hence find the direction of the axes of the conic.
Sol. $ax^2 + 2hxy + by^2 = 1$ (1)
 $2ax + 2h\left[x\frac{dy}{dx} + y\right] + 2by\frac{dy}{dx} = 0$
 $(xh + by)\frac{dy}{dx} = -(ax + hy)$
 $\frac{dy}{dx} = -\frac{ax + hy}{bx + by}$
 $= 1$
 $m\left[\frac{ax + h \cdot mx}{bx + b \cdot mx}\right] = 1$
 $m\left(a + hm\right) = h + bm$
 $m^2h + (a - b)m - h = 0$
Ex.6 If curve $y = 1 - ax^2$ and $y = x^2$ intersect orthogonally then the value of a is -
Sol. $y = 1 - ax^2 \Rightarrow \frac{dy}{dx} = -2ax$ $y = x^2 \Rightarrow -\frac{dy}{dx} = 2x$
Two curves intersect orthogonally if $\left(\frac{dy}{dx}\right)_{x} \left(\frac{dy}{dx}\right)_{y} = -1$
 $\Rightarrow (-2ax)(2x) = -1$ $\Rightarrow 4ax^2 = 1$ (i)
Now eliminating y from the given equations we have $1 - ax^2 = x^2$
 $\Rightarrow (1 + a)x^2 = 1$ (ii)
Eliminating x^2 from (i) and (ii) we get $\frac{4a}{1 + a} = 1 \Rightarrow a = \frac{1}{3}$
Ex.7 Find the locus of point on the curve $y^2 = 4a\left[x + a\sin\frac{x}{a}\right]$ where tangents are parallel to the axis of x.
Sol. We have $y^2 = 4a\left(x + a\sin\frac{x}{a}\right)$ (i)
Differentiating w.r.t. x, we get $2y\frac{dy}{dx} = 4a\left[1 + \cos\frac{x}{a}\right]$
For points at which the tangents are parallel to x-axis,
 $\frac{dy}{dx} = 0$ or $4a\left[1 + \cos\frac{x}{a}\right] = 0$
or $\cos\frac{x}{a} = -1$ or $\frac{x}{a} = (2n + 1)\pi$

For these values of x, $\sin \frac{x}{a} = 0$.

Therefore, all these points lie on the parabola $y^2 = 4ax$ [putting sinx/a = 0 in equation (i).

or

Prove that sum of intercepts of the tangent at any point to the curve $\sqrt{x} + \sqrt{y} = \sqrt{a}$ on the **Ex.8** coordinate axis is constant.

Let $P(x_1, y_1)$ be a variable point on the curve $\sqrt{x} + \sqrt{y} = \sqrt{a}$, as shown in figure. Sol.

equation of tangent at point P is $-\frac{\sqrt{y_1}}{\sqrt{x_1}}$ $(x - x_1) = (y - y_1)$ ⇒ $\left(0,\sqrt{ay_1}\right)_B$

$$\Rightarrow \qquad -\frac{x}{\sqrt{x_1}} + \sqrt{x_1} = \frac{y}{\sqrt{y_1}} - \sqrt{y_1}$$

$$\Rightarrow \qquad \frac{x}{\sqrt{x_1}} + \frac{y}{\sqrt{y_1}} = \sqrt{x_1} + \sqrt{y_1}$$

$$\Rightarrow \qquad \frac{x}{\sqrt{x_1}} + \frac{y}{\sqrt{y_1}} = \sqrt{a} \qquad (\Rightarrow \sqrt{x_1} + \sqrt{y_1} = \sqrt{a})$$

Hence point A is $(\sqrt{ax_1}, 0)$ and coordinates of point B is $(0, \sqrt{ay_1})$. Sum of intercepts

$$=\sqrt{a}(\sqrt{x_1} + \sqrt{y_1}) = \sqrt{a} \cdot \sqrt{a} = a$$
 (which is constant)

- x and y are the sides of two squares such that $y = x x^2$. Find the rate of change of the area of the second square with **Ex.9** respect to the first square.
- Given x and y are sides of two squares. Thus the area of two squares are x^2 and y^2 Sol.

We have to obtain
$$\frac{d(y^2)}{d(x^2)} = \frac{2y\frac{dy}{dx}}{2x} = \frac{y}{x} \cdot \frac{dy}{dx}$$

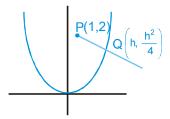
where the given curve is,
$$y = x - x^2 \implies \frac{dy}{dx} = 1 - 2x$$
 (ii)
Thus, $\frac{d(y^2)}{d(x^2)} = \frac{y}{x}(1 - 2x)$ [from (i) and (ii)]
or $\frac{d(y^2)}{d(x^2)} = \frac{(x - x^2)(1 - 2x)}{x} \implies \frac{d^2(y^2)}{d(x^2)^2} = (2x^2 - 3x + 1)$

The rate of change of the area of second square with respect to first square is $(2x^2 - 3x + 1)$

Find the equation of all possible normal/s to the parabola $x^2 = 4y$ drawn from point (1, 2). Ex. 10

Let point Q be $\left(h, \frac{h^2}{4}\right)$ on parabola $x^2 = 4y$ as shown in figure Sol.

> $m_{po} = slope of normal at Q.$ Now, Slope of normal = $-\frac{dx}{dy}\Big|_{x=h} = -\frac{2}{h}$ $\frac{\frac{h^2}{4}-2}{\frac{h-1}{h-1}} = -\frac{2}{h} \implies \frac{h^3}{4} - 2h = -2h + 2$ $h^3 = 8$ h = 2⇒ ⇒



.... (i)

 $P(X_1, y_1)$

(a, 0)

 $\sqrt{ax_1}, 0$

Hence coordinates of point Q is (2, 1) and so equation of required normal becomes x + y = 3.

Ex. 11 The equation of normal to the curve $x + y = x^y$, where it cuts x-axis is -

- Sol. Given curve is $x + y = x^y$ (i) at x-axis y = 0, \therefore $x + 0 = x^0 \implies x = 1$
 - \therefore Point is A(1, 0)

Now to differentiate $x + y = x^y$ take log on both sides

$$\Rightarrow \log(x+y) = y \log x \qquad \therefore \ \frac{1}{x+y} \left\{ 1 + \frac{dy}{dx} \right\} = y \cdot \frac{1}{x} + \left(\log x \right) \frac{dy}{dx}$$

Putting
$$x = 1, y = 0$$
 $\left\{1 + \frac{dy}{dx}\right\} = 0 \implies \left(\frac{dy}{dx}\right)_{(1,0)} = -1$

 \therefore slope of normal = 1

Equation of normal is, $\frac{y-0}{x-1} = 1 \implies y = x-1$

Ex. 12 The length of the normal to the curve $x = a(\theta + \sin \theta)$, $y = a(1 - \cos \theta)$ at $\theta = \frac{\pi}{2}$ is -

Sol.
$$\frac{dy}{dx} = \frac{\left(\frac{dy}{d\theta}\right)}{\left(\frac{dx}{d\theta}\right)} = \frac{a\sin\theta}{a\left(1+\cos\theta\right)} = \tan\frac{\theta}{2} \implies \left(\frac{dy}{dx}\right)_{\theta=\frac{\pi}{2}} = \tan\left(\frac{\pi}{4}\right) = 1$$

Also at $\theta = \frac{\pi}{2}$, $y = a\left(1-\cos\frac{\pi}{2}\right) = a$
 \therefore required length of normal $= y\sqrt{1+\left(\frac{dy}{dx}\right)^2} = a\sqrt{1+1} = \sqrt{2}a$

Ex. 13 Find the possible values of 'a' such that the inequality $3 - x^2 > |x - a|$ has at least one negative solution. **Sol.** $3 - x^2 > |x - a|$

Case (i) if a < 0 and y = x - a is tangent of $y = 3 - x^2$

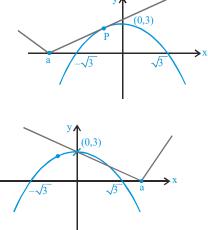
$$\Rightarrow -2x = 1 \qquad \Rightarrow \qquad x = -\frac{1}{2} \quad \Rightarrow \quad p\left(-\frac{1}{2}, \frac{11}{4}\right)$$

Since
$$y = x - a$$
 passes the $\left(-\frac{1}{2}, \frac{11}{4}\right) \implies a = x - y$

$$=-\left(\frac{11}{4}+\frac{1}{2}\right)=-\frac{13}{4}$$
 (minimum value of a)

Case (ii) a > 0 and y = -x + a passes through (0, 3), then a = 3 (maximum value of a)

 $a \in \left(-\frac{13}{4}, 3\right)$



- Ex. 14 For the curve $y = a \bullet n (x^2 a^2)$ show that sum of lengths of tangent & subtangent at any point is proportional to coordinates of point of tangency.
- **Sol.** Let point of tangency be (x_1, y_1)

$$m = \frac{dy}{dx}\Big|_{x=x_1} = \frac{2ax_1}{x_1^2 - a^2}$$

Length of tangent + subtangent = $|y_1| \sqrt{1 + \frac{1}{m^2}} + \left|\frac{y_1}{m}\right|$

$$= |y_1| \sqrt{1 + \frac{(x_1^2 - a^2)^2}{4a^2 x_1^2}} + \left| \frac{y_1(x_1^2 - a^2)}{2ax_1} \right| = |y_1| \frac{\sqrt{x_1^4 + a^4 + 2a^2 x_1^2}}{2|ax_1|} + \left| \frac{y_1(x_1^2 - a^2)}{2ax_1} \right|$$

$$= \left| \frac{y_1(x_1^2 + a^2)}{2ax_1} \right| + \left| \frac{y_1(x_1^2 - a^2)}{2ax_1} \right| = \frac{|y_1|(2x_1^2)}{2|ax_1|} = \left| \frac{x_1 y_1}{a} \right|$$

Ex.15 If the relation between subnormal SN and subtangent ST at any point S on the curve $by^2 = (x + a)^3 is p(SN) = q(ST)^2$, then find value of $\frac{p}{q}$ in terms of b and a.

Sol.
$$by^2 = (x + a)^3$$

b.
$$2y \frac{dy}{dx} = 3(x+a)^2 \implies \frac{dy}{dx} = \frac{3(x+a)^2}{2by}$$

Given that $p(SN) = q(ST)^2$

$$\Rightarrow \qquad py \ \frac{dy}{dx} = q \ \frac{y^2}{\left(\frac{dy}{dx}\right)^2} \qquad \Rightarrow \ \frac{p}{q} = \frac{y}{\left(\frac{dy}{dx}\right)^3} = \frac{y8b^3y^3}{27(x+a)^6} = \frac{8}{27} \ \frac{b^3(x+a)^6}{b^2(x+a)^6} = \frac{8}{27}b^3(x+a)^6$$

- **Ex. 16** Find the shortest distance between the line y = x 2 and the parabola $y = x^2 + 3x + 2$
- **Sol.** Let $P(x_1, y_2)$ be a point closest to the line y = x 2. Then

$$\frac{dy}{dx}\Big|_{(x_1,y_1)} = \text{slope of line}$$
or
$$2x_1 + 3 = 1$$
or
$$x_1 = -1$$

0

$$y_1 =$$

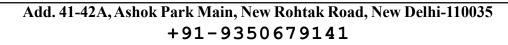
or

 $y=x^2+3x+2$ y x' y=x-2

y

Hence, point (-1, 0) is the closest and its perpendicular distance from the line y = x - 2 will give the shortest distance. Therefore,

Shortest distance = $\frac{3}{\sqrt{2}}$



0

 $\sqrt{5}$

Ex. 17 Find the angle of intersection of curves, $y = [|\sin x| + |\cos x|]$ and $x^2 + y^2 = 5$ where [.] denotes greatest integral function.

Sol. We know that, $1 \le |\sin x| + |\cos x| \le \sqrt{2}$

:
$$y = [|\sin x| + |\cos x|] = 1$$

Let P and Q be the points of intersection of given curves.

Clearly the given curves meet at points where y = 1 so, we get

 $x^{2} + 1 = 5$ $x = \pm 2$ Now, P(2, 1) and Q(-2, 1)

Now,
$$x^2 + y^2 = 5$$

Differentiating the above equation w.r.t. x,

we get
$$2x + 2y \frac{dy}{dx} = 0 \implies \frac{dy}{dx} = -\frac{x}{y}$$
$$\left(\frac{dy}{dx}\right)_{(2,1)} =$$

 $\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_{(-2,1)} = 2$

and

Clearly the slope of line y = 1 is zero and the slope of the tangents at P and Q are (-2) and (2) respectively. Thus, the angle of intersection is $\tan^{-1}(2)$

Ex. 18 Find the point on the curve $3x^2 - 4y^2 = 72$ which is nearest to the line 3x + 2y + 1 = 0.

Sol. Slope of the given line 3x + 2y + 1 = 0 is (-3/2)

Let us located the point on the curve at which the tangent is parallel to given line.

Differentiating the curve on both sides w.r.t. to x,

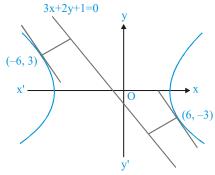
we get
$$6x - 8y \frac{dy}{dx} = 0$$

or $\left(\frac{dy}{dx}\right)_{(x_1,y_1)} = \frac{3x_1}{4y_1} = -\frac{3}{2}$ [since parallel to 3x + 2y + 1 = 0] or $\frac{x_1}{y_1} = -2$ (i)

Also the point (x_1, y_1) lies on $3x^2 - 4y^2 = 72$. Therefore,

$$3x_{1}^{2} - 4y_{1}^{2} = 72$$

$$3\frac{x_{1}^{2}}{y_{1}^{2}} - 4 = \frac{72}{y_{1}^{2}} \qquad \dots (ii)$$



or

or
$$3(4)-4=\frac{72}{y_1^2}$$
 [from (i)]

or $y_1^2 = 9$ or $y_1 = \pm 3$

The required points are (-6, 3) and (6, -3)

Distance (-6, 3) from the given line

$$=\frac{|-18+6+1|}{\sqrt{13}}\!=\!\frac{11}{\sqrt{13}}$$

and distance of (6, -3) from the given line

$$=\frac{|18-6+1|}{\sqrt{13}}=\frac{13}{\sqrt{13}}=\sqrt{13}$$

Thus, (-6, 3) is the required point.

Ex. 19 The tangent at any point on the curve $x = a \cos^3\theta$, $y = a\sin^3\theta$ meets the axes in P and Q. Proove that the locus of the midpoint of PQ is circle.

 $\frac{1}{(a\sin\theta)} = 1$

Sol. The given curve is $x = a \cos^3\theta$, $y = a\sin^3\theta$. Then

$$\frac{dy}{dx} = \frac{\left(\frac{dy}{d\theta}\right)}{\left(\frac{dx}{d\theta}\right)} = \frac{3a\sin^2\theta\cos\theta}{3a\cos^2\theta(-\sin\theta)} = -\tan\theta$$

Therefore, equation of tange1nt at θ is

$$y - a \sin^3\theta = -\tan\theta (x - a\cos^3\theta)$$

or
$$\frac{y}{\sin\theta} - a\sin^2\theta = -\frac{x}{\cos\theta} + a\cos^2\theta$$

or

$$\frac{y}{\sin\theta} = a$$
 or

$$\therefore$$
 P = (a cos θ , 0) and Q = (0, a sin θ)

If midpoint of PQ is R(h, k), then

cosA

$$2h = a \cos\theta$$
 and $2k = a \sin\theta$

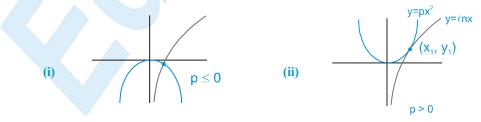
or
$$(2h)^2 + (2k)^2 = a^2$$
 or $h^2 + k^2 = a^2/4$

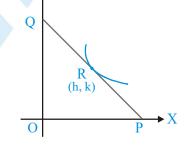
Hence, the locus of midpoint is $x^2 + y^2 = a^2/4$, which is a circle.

Ex.20 Find possible values of p such that the equation $px^2 = \bullet nx$ has exactly one solution. **Sol.** Two curves must intersect at only one point.

Х

 $(a\cos\theta)$





I. If $p \le 0$ then there exists only one solution (see graph - (i))

II. If
$$p > 0$$

then the two curves must only touch each other

 $y_1 = px_1^2 \implies y_1 = p\left(\frac{1}{2p}\right)$

tangent at $y = px^2$ and $y = \bullet nx$ must have same slope at point (x_1, y_1) i.e.

also

⇒

 $y_1 = \frac{1}{2}$

and
$$y_1 = \bullet nx_1 \implies \frac{1}{2}$$

 $\Rightarrow x_1 = e^{1/2}$

$$\Rightarrow \qquad x_1^2 = \frac{1}{2p} \qquad \Rightarrow \qquad e = \frac{1}{2p}$$

$$\Rightarrow \qquad p = \frac{1}{2e}$$

Hence possible values of p are
$$(-\infty, 0] \cup \left\{\frac{1}{2e}\right\}$$

(x+1, x < 1)Find the complete set of values of λ , for which the function $f(x) = \{\lambda, x = 1\}$ Ex. 21 is strictly increasing at x = 1. $x^{2} - x + 3, x > 1$

.....(ii)

.....(iii)

Let g(x) = x + 1, where x < 1. Then g(x) is strictly increasing. Sol. Let $h(x) = x^2 - x + 3$, where x > 1. h(x) is also strictly increasing since $h'(x) = 2x - 1 > 0 \forall x > 1$. Since f(x) is an increasing function,

•nx

1

 $\lim_{x \to 1^{-}} (x+1) \leq \lambda \leq \lim_{x \to 1^{+}} (x^{2}-x+3) \quad \text{or} \quad 2 \leq \lambda \leq 3.$

Find the intervals of monotonicity of the function $y = x^2 - \log_e |x|$, $(x \neq 0)$. Ex. 22

Sol. Let
$$y = f(x) = x^2 - \log_e |x|$$

$$f'(x) = \frac{2x^2 - 1}{x} \implies f'(x) = \frac{(\sqrt{2}x - 1)(\sqrt{2}x + 1)}{x}$$
So $f'(x) > 0$ when $x \in \left(-\frac{1}{\sqrt{2}}, 0\right) \cup \left(\frac{1}{\sqrt{2}}, \infty\right)$ and $f'(x) < 0$ when $x \in \left(-\infty, -\frac{1}{\sqrt{2}}\right) \cup \left(0, \frac{1}{\sqrt{2}}\right)$
 \therefore f(x) is increasing when $x \in \left(-\frac{1}{\sqrt{2}}, 0\right) \cup \left(\frac{1}{\sqrt{2}}, \infty\right)$
and decreasing when $x \in \left(-\infty, -\frac{1}{\sqrt{2}}\right) \cup \left(0, \frac{1}{\sqrt{2}}\right)$
Ex. 23 Find the intervals of monotonicity of the following functions.
(i) $f(x) = x^2(x - 2)^2$ (ii) $f(x) = x \bullet nx$
(iii) $f(x) = \sin x + \cos x; \quad x \in [0, 2\pi]$
Sol. (i) $f(x) = x^2(x - 2)^2$
 $f'(x) = 4x(x - 1)(x - 2)$
observing the sign change of $f'(x)$
 $\frac{-\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}$
Hence increasing in [0, 1] and in [2, ∞)
and decreasing for $x \in (-\infty, 0]$ and $[1, 2]$
(ii) $f(x) = x \bullet x$
 $f'(x) = 1 + \bullet nx$
 $f'(x) = 1 + \bullet nx$
 $f'(x) = 2 \implies \bullet nx \ge -1 \implies x \ge \frac{1}{e}$
 \Rightarrow increasing for $x \in \left[\frac{1}{e}, \infty\right)$ and decreasing for $x \in \left(0, \frac{1}{e}\right]$.
(iii) $f(x) = \sin x + \cos x$
 $f'(x) = \cos x - \sin x$
for increasing $f'(x) \ge 0 \implies \cos x \ge \sin x$
 \Rightarrow f is increasing in $\left[0, \frac{\pi}{4}\right]$ and $\left[\frac{5\pi}{4}, 2\pi\right]$
f is decreasing in $\left[\frac{\pi}{4}, \frac{5\pi}{4}\right]$

Sol.

Ex. 24
$$2\sin x + \tan x \ge 3x$$
 $(0 \le x < \frac{\pi}{2})$
Sol. Consider, $f(x) = 2\sin x + \tan x - 3x$
 $f'(x) = 2\cos x + \sec^2 x - 3$
 $= \frac{2\cos^2 x - 3\cos^2 x + 1}{\cos^2 x} = \frac{(\cos x - 1)^2(2\cos x + 1)}{\cos^2 x}$
Hence $f'(0) > 0$ $\forall x \in \left(0, \frac{\pi}{2}\right) \Rightarrow f(x) \text{ is } \uparrow \text{ in } x \in \left(0, \frac{\pi}{2}\right)$
 \therefore $f(x) > f(0) > 0$ $\forall x \in \left(0, \frac{\pi}{2}\right)$; but $f(0) = 0$
 \therefore $f(x) > 0$; as equally holds
Hence $f(x) > 0$ in $\left[0, \frac{\pi}{2}\right] \Rightarrow$ the result
Ex. 25 Prove the following
(i) $y = e^x + \sin x$ is increasing in $x \in \mathbb{R}^x$
(ii) $y = 2x - \sin x - \tan x$ is decreasing in $x \in (0, \pi/2)$
Sol. (i) $f(x) = e^x + \sin x, x \in \mathbb{R}^x \Rightarrow f(x) = e^x + \cos x$
 $Clearly f(x) > 0 \forall x \in \mathbb{R}^x$ (as $e^x > 1, x \in \mathbb{R}^x$ and $-1 \le \cos x \le 1, x \in \mathbb{R}^x$)
Hence $f(x)$ is increasing.
(ii) $f(x) = 2x - \sin x - \tan x x \le (0, \pi/2)$
 \Rightarrow $f(x) = 2\cos x - \csc^2 x$
 \Rightarrow $f(x) = \cos^2 x - \cos x - (\cos x - \sec^2 x)^2$
 \therefore $f(x) < 0, x \in (0, \pi/2)$ \Rightarrow $\cos^2 x < \cos x, x \in (0, \pi/2)$
Hence $f(x)$ is decreasing in $(0, \pi/2)$
Ex. 26 Let f: $\mathbb{R} \to \mathbb{R}$ be a twice differentiable function such that $f(2) = 8$, $f(4) > 64$, $f(7) = 343$ then show that there exists a c
 $e (2, 7)$ such that $f'(c) < 6c$.
Sol. Consider $g(x) - f(x) = x^2$

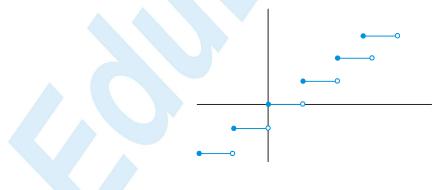
Consider
$$g(x) = f(x) - x$$

By LMVT
 $\frac{g(4) - g(2)}{4 - 2} = g'(c_1), 2 < c_1 < 4$ and $\frac{g(7) - g(4)}{7 - 4} = g'(c_2), 4 < c_2 < 7$
 $g'(c_1) > 0, g'(c_2) < 0$
By LMVT
 $\frac{g'(c_2) - g'(c_1)}{c_2 - c_1} = g''(c), c_1 < c < c_2$
 $\Rightarrow g''(c) < 0 \Rightarrow f'(c) - 6c < 0$ for same $c \in (c_1, c_2) c(2, 7)$

 $\frac{\tan x}{x} > \frac{x}{\sin x} \quad \text{for } 0 < x < \frac{\pi}{2}.$ Ex. 27 Sol. We have to show that $\frac{\tan x \sin x - x^2}{x \sin x} > 0 \text{ for } 0 < x < \pi/2$ Since $x \sin x > 0$ for $0 < x < \pi/2$, it is enough to show that $\tan x \cdot \sin x - x^2 > 0, \ 0 < x < \pi / 2$ $f(x) = \tan x \sin x - x^2$ for $0 < x < \pi/2$ Let $f'(x) = \sin x \sec^2 x + \tan x \cos x - 2x = \sin x \sec^2 x + \sin x - 2x$ $f''(x) = \cos x \sec^2 x + \sin x \cdot 2 \sec^2 x \tan x + \cos x - 2$ $= \sec x + \cos x - 2 + 2 \sin x \tan x \sec^2 x$ $= \left(\sqrt{\sec x} - \sqrt{\cos x}\right)^2 + 2\sin x \tan x \sec^2 x > 0 \text{ for } 0 < x < \pi/2$ f' is strictly increasing in $[0, \pi/2]$. Also f' (0) = 0... f'(x) > 0 for $0 < x < \pi/2$ ⇒ f is strictly increasing in [0, $\pi/2$). Also f (0) = 0 ⇒ f (x)>0 for $0 < x < \pi/2$. \Rightarrow $\tan x \sin x - x^2 > 0$ for $0 < x < \pi / 2$. ⇒ $\frac{\tan x \sin x - x^2}{x \sin x} > 0, \quad 0 \le x \le \pi/2.$... $\frac{\tan x}{x} > \frac{x}{\sin x}$ for $0 < x < \frac{\pi}{2}$. Henced proved.

Ex. 28 f(x) = [x] is a step up function. Is it a strictly increasing function for $x \in R$.

Sol. No, f(x) = [x] is increasing (monotonically increasing) (non-decreasing), but not strictly increasing function as illustrated by its graph.



APPLICATION OF DERIVATIVE

Ex. 29 If a, b, c are real, then
$$f(x) = \begin{vmatrix} x + a^2 & ab & ac \\ ab & x + b^2 & bc \\ ac & bc & x + c^2 \end{vmatrix}$$
 is decreasing in

f(x) will be decreasing when f'(x) < 0

$$\Rightarrow 3x^{2} + 2x(a^{2} + b^{2} + c^{2}) < 0 \Rightarrow x \in \left(-\frac{2}{3}(a^{2} + b^{2} + c^{2}), 0\right)$$

Ex. 30 Establish the inequality given below by examining the sign of the derivative of an appropriate function:

$$\frac{1}{x + (1/2)} < \ln\left(1 + \frac{1}{x}\right) < \frac{1}{x} \qquad \text{for } x > 0$$
Sol. consider $f(x) = \frac{2}{2x + 1} - \ln\left(1 + \frac{1}{x}\right)$; $f'(x) = \frac{-4}{(2x + 1)^2} - \frac{1}{1 + (1/x)} \cdot \left(-\frac{1}{x^2}\right)$

$$= \frac{1}{x(x + 1)} - \frac{4}{(2x + 1)^2} = \frac{1}{x(x + 1)(2x + 1)^2}$$
which is always +ve for $x > 0$
hence $f(x)$ is \uparrow for $x > 0$
i.e. $f(x) < \lim_{x \to \infty} f(x)$ (note carefully)
$$\frac{1}{0} = \frac{1}{x}$$
but $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \left\{\frac{2}{2x + 1} - \ln\left(1 + \frac{1}{x}\right)\right\} = 0$
so $f(x) < 0$ i.e.
$$\frac{2}{2x + 1} < \ln\left(1 + \frac{1}{x}\right) \qquad \text{Proved}$$
Similarly consider $g(x) = \ln\left(1 + \frac{1}{x}\right) - \frac{1}{x}$; $g'(x) = \frac{1}{x^2} - \frac{1}{x(x + 1)} = \frac{1}{x^2(x + 1)}$
 $g'(x)$ is \uparrow i.e.
so $g(x) < \lim_{x \to \infty} g(x)$ but $\lim_{x \to \infty} g(x)$ but $\lim_{x \to \infty} f(x) = 0$
so $g(x) < 0$ hence proved

MATHS FOR JEE MAIN & ADVANCED

If $f(x) = \sin^4 x + \cos^4 x + bx + c$, then find possible values of b and c such that f(x) is monotonic for all $x \in \mathbb{R}$ Ex. 31 Sol. $f(x) = \sin^4 x + \cos^4 x + bx + c$ $f'(x) = 4 \sin^3 x \cos x - 4 \cos^3 x \sin x + b = -\sin 4x + b.$ Case - (i) : for M.I. $f'(x) \ge 0$ for all $x \in R$ $b \ge \sin 4x$ for all $x \in R$ $b \geq 1$ 0 Case - (ii) : for M.D. $f'(x) \le 0$ for all $x \in \mathbb{R}$ $b \le \sin 4x$ for all $x \in R$ b ≤ − 1 ⇔ Hence for f(x) to be monotonic $b \in (-\infty, -1] \cup [1, \infty)$ and $c \in R$. In any $\triangle ABC$ prove that $\sin A + \sin B + \sin C \le \frac{3\sqrt{3}}{2}$. Ex.32 Co-ordinates of centroid G are $\left(\frac{A+B+C}{3}, \frac{\sin A + \sin B + \sin C}{3}\right)$ Sol. from figure we have $\left(\frac{\pi}{3}, \frac{\sqrt{3}}{2}\right)$ PM>GM (B,sinB) (C.sinC) $\sin\left(\frac{A+B+C}{3}\right) \ge \frac{\sin A + \sin B + \sin C}{3}$ $\sin\left(\frac{\pi}{3}\right) \ge \frac{\sin A + \sin B + \sin C}{3}$ O $A+B+C = \frac{\pi}{2}$ $\sin A + \sin B + \sin C \le \frac{3\sqrt{3}}{2}$ sin x ⇒ equality holds when triangle is equilateral. Ex. 33 If $f(x) = \ln(\ln x)$ where x > eProve that $\frac{1}{(m+1)\ln(m+1)} \le f(m+1) - f(m) \le \frac{1}{m \cdot \ln(m)}$ for $m \ge e$. Sol. f(x) = ln(lnx) $g(x) = f'(x) = \frac{1}{x \ln x}$ g(m) $g'(x) = \frac{1}{-(x \ln x)^2} \left[\ln x + 1 \right] = -\left[\frac{1}{x^2 \ln^2 x} + \frac{1}{x^2 \ln x} \right]$ which is < 0 for x > eg(m+1)Hence g(x) is a decreasing function for x > em+1hence g(m) > g(m+1)for m > eFrom the graph $g(m+1)(m+1-m) < \int_{-\infty}^{m+1} g(x) dx < g(m)[m+1-m]$ $g(m+1) \leq \int^{m+1} f'(x) \, dx \leq g(m) \implies \frac{1}{(m+1)\ln(m+1)} \leq f(m+1) - f(m) \leq \frac{1}{m \cdot \ln(m)}$

Find possible values of 'a' such that $f(x) = e^{2x} - (a + 1)e^x + 2x$ is monotonically increasing for $x \in \mathbb{R}$ Ex. 34 $f(x) = e^{2x} - (a+1)e^{x} + 2x$ Sol. $f'(x) = 2e^{2x} - (a+1)e^{x} + 2$ Now, $2e^{2x} - (a+1)e^x + 2 \ge 0$ for all $x \in R$ $\Rightarrow 2\left(e^{x}+\frac{1}{e^{x}}\right)-(a+1)\geq 0$ for all $x \in R$ $(a+1) \le 2\left(e^x + \frac{1}{e^x}\right)$ for all $x \in R$ $a+1 \le 4 \left(Q - e^x + \frac{1}{e^x} \right)$ has minimum value 2 a ≤ 3 ⇒ Ex.35 Show that between any two roots of $e^{-x} - \cos x = 0$ there exists at least one root of $\sin x - e^{-x} = 0.$ If x = a and x = b are two distinct roots of $e^{-x} - \cos x = 0$ Sol. then $e^{-a} - \cos a = 0$ and $e^{-b} - \cos b = 0$(1) and let $f(x) = e^{-x} - \cos x$ We observe that e^{-x} and cos x are continuous as well as differentiable in [a, b] then f(x) is also continuous in [a, b] & **(i)** differentiable in (a,b). $f(a) = e^{-a} - \cos a = 0$ **(ii)** {from (1)} and $f(b) = e^{-b} - \cos b = 0$ i.e. f(a) = f(b) = 0Thus f satisfies all the three conditions of Rolle's theorem in [a, b]. Hence there is at least one value of x in

Now f'(c) = 0

(a, b), say c such that f(c) = 0.

 $\Rightarrow -e^{-c} + \sin c = 0 \Rightarrow \sin c - e^{-c} = 0$

 $(1)^x$ $x \ln\left(1+\frac{1}{2}\right)$

 \Rightarrow c is a root of the equation sin x – $e^{-x} = 0$.

Hence between any two roots of the equation $e^{-x} - \cos x = 0$, there is at least one root of the equation $\sin x - e^{-x} = 0$.

Ex.36 Prove that $f(x) = \left(1 + \frac{1}{x}\right)^x$ is always an increasing function for all x in its domain. State its range and also plot the graph of the function.

Sol.

$$f(x) = y = \left(1 + \frac{1}{x}\right)^{x} = e^{-(-x)}$$

Hence for domain $\frac{x+1}{x} > 0$, \Rightarrow $x \in (-\infty, -1) \cup (0, \infty)$
now $\lim_{x \to \pm \infty} \left(1 + \frac{1}{x}\right)^{x} = e$; Also $\ln y = x \ln \left(1 + \frac{1}{x}\right)$

MATHS FOR JEE MAIN & ADVANCED

$$\therefore \qquad \lim_{x \to 0^+} \frac{\ln\left(1 + \frac{1}{x}\right)}{\frac{1}{x}} \quad \left(\frac{\infty}{\infty}\right) = \frac{x}{x+1} \left(\frac{-\frac{1}{x^2}}{-\frac{1}{x^2}}\right) = 0 \implies y = e^0 = 1 \quad ; \quad \therefore \quad \lim_{x \to 0^+} f(x) = 1$$

 $\lim_{x \to -1^{-}} f(x) = \infty \quad (obviously)$

Now

Now
$$f'(x) = \left(1 + \frac{1}{x}\right)^x \left[x\left(\frac{1}{1+x} - \frac{1}{x}\right) + \ln\frac{1+x}{x}\right] = \left(1 + \frac{1}{x}\right)^x \left[\frac{x}{1+x} - 1 + \ln\frac{1+x}{x}\right]$$

Let
$$\frac{x}{1+x} = u \qquad [\text{for } x > 0, u \in (0, 1)]$$

consider a function

g (u) = u - 1 - ln u
g'(u) = 1 -
$$\frac{1}{u} < 0$$
 which is negative for $u \in (0, 1)$

Hence g(u) is decreasing in (0, 1]

:
$$g(u) > g(1) \quad \forall \ u \in (0, 1]$$

But g(1) = 0

$$\therefore \qquad g(u) > 0 \ \forall \ u \in (0, 1)$$

$$\therefore \qquad \frac{x}{1+x} - 1 + \ln \frac{1+x}{x} > 0 \ \forall \ x > 0$$

$$\therefore$$
 f'(x)>0

$$\therefore$$
 f(x) is increasing for x > 0

again for x < -1

f'(x) =
$$\left(1 + \frac{1}{x}\right)^{x} \left[\ln\frac{1+x}{x} + \frac{x}{1+x} - 1\right]$$
 put $\frac{1+x}{x} = u$

(1)

consider $g(u) = \ln u + \frac{1}{u} - 1$ as $x \in (-\infty, -1)$, $u \in (0, 1)$

$$g'(u) = \frac{1}{u} - \frac{1}{u^2} = \frac{u-1}{u^2} < 0 \text{ for } u \in (0,1)$$

g(u) is decreasing in (0, 1)

$$\therefore \qquad g(u) > g(1)$$

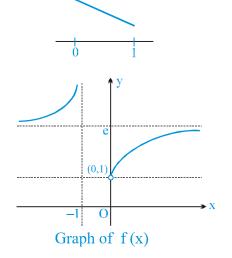
$$n\frac{1+x}{x} + \frac{x}{1+x} - 1 > 0$$

f'(x)>0 for
$$x \in (-\infty, -1)$$

f (x) is increasing in
$$(-\infty, -1)$$
(2)

from (1) and (2)

f(x) is increasing for all x in the domain of f(x).



u ò

Ex. 37 For
$$x \in (0, 1)$$
 prove that $x = \frac{x^3}{3} \le \tan^{-1} x \le x = \frac{x^3}{6}$ hence or otherwise find $\lim_{x \to 0} \left[\frac{\tan^{-1} x}{x} \right]$
Sol. Let $f(x) = x - \frac{x^3}{3} - \tan^{-1} x$
 $f(x) = 1 - x^2 - \frac{1}{1 + x^2}$
 $f'(x) \le 0$ for $x \in (0, 1) \implies f(x)$ is M.D.
 $\implies f(x) \le f(0) \implies x - \frac{x^3}{3} - \tan^{-1} x = 0$
 $\implies x - \frac{x^3}{3} \le \tan^{-1} x = \dots \dots (1)$
Similarly $g(x) = x - \frac{x^3}{6} - \tan^{-1} x$
 $g'(x) = 1 - \frac{x^3}{6} - \tan^{-1} x$
 $g'(x) = 1 - \frac{x^3}{6} - \tan^{-1} x$
 $g'(x) = 1 - \frac{x^3}{2} - \frac{1}{1 + x^2}$
 $g'(x) = 0$ for $x \in (0, 1) \implies g(x)$ is M.D.
 $\implies g(x) \ge 0$ for $x \in (0, 1) \implies g(x)$ is M.D.
 $\implies g(x) \ge 0$ for $x = (0, 1) \implies g(x)$ is M.D.
 $\implies g(x) \ge 0$ for $x = (0, 1) \implies g(x)$ is M.L.
 $\implies g(x) \ge 0$ for $x = (0, 1) \implies g(x)$ is M.L.
 $\implies g(x) \ge 0$ for $x = (0, 1) \implies g(x)$ is M.L.
 $\implies g(x) \ge 0$ for $x = (0, 1) \implies g(x)$ is M.L.
 $\implies g(x) \ge 0$ for $x = (0, 1) \implies 0$
Hence by sandwich theorem we can prove that $\lim_{x \to 0} \frac{\tan^{-1} x}{x} = 1$ but it must also be noted that as $x \to 0$, value
of $\frac{\tan^{-1} x}{x} \longrightarrow 1$ from left hand side i.e. $\frac{\tan^{-1} x}{x} \le 1$
Ex.38 ffg(x) = f(x) = f(x) = 0 f(x) $0 \le x \le 1$, show that g(x) increasing in $x \in [0, 1/2]$ and decreasing in $x \in [1/2, 1]$
For $x = (x) = (f(x) + f(1 - x))$ f(x) $0 \le x \le 1$, show that g(x) increasing in $x \in [0, 1/2]$ and decreasing in $x \in [1/2, 1]$
For $x = (f(x) \le f(1 - x)) \implies x \ge 1/2$
 $\therefore f(x) \le f((-x)) \implies x \ge 1/2$
 $\therefore f(x) \le f((-x) \implies x \ge 1/2$
 $\therefore f(x) \le f((-x) \implies x \ge 1/2$

 \Rightarrow g'(x) ≤ 0

$$\begin{array}{ll} \therefore & g(x) \text{ decreases in } x \in \left[\frac{1}{2}, 1\right] \\ \hline \textbf{Case II}: If x \leq (1-x) \Rightarrow & x \leq 1/2 \\ \therefore & f(x) \geq f(1-x) \\ \Rightarrow & f(x) - f(1-x) \geq 0 \quad \Rightarrow \quad g'(x) \geq 0 \\ \therefore & g(x) \text{ increases in } x \in [0, 1/2] \end{array}$$

Ex. 39 Let f(x) and g(x) be differentiable functions such that $f'(x) g(x) \neq f(x) g'(x)$ for any real x. Show that between any two real solutions of f(x) = 0, there is at least one real solution of g(x) = 0

Sol. Let a, b be the solutions of f(x)=0

suppose g(x) is not equal to zero for any x belonging to [a,b] now consider h(x) = f(x)/g(x) since g(x) not equal to zero

h(x) is differentiable and continuous in (a,b)

h(a) = h(b) = 0 (as f(a) = 0 and f(b) = 0 but g(a) or $g(b) \neq 0$) applying rolles theorem

h'(c)=0 for some c belonging to (a,b)

f(x)g'(x)=f'(x)g(x)

this gives the contadiction

hence proved

Ex. 40 Examine which is greater : sinx tanx or x². Hence evaluate $\lim_{x\to 0} \left[\frac{\sin x \tan x}{x^2}\right]$, where

$$\mathbf{x} \in \left(0, \frac{\pi}{2}\right)$$

Sol.

Let $f(x) = \sin x \tan x - x^2$

 $f'(x) = \cos x \cdot \tan x + \sin x \cdot \sec^2 x - 2x$

 \Rightarrow f'(x) = sinx + sinx sec²x - 2x

- $\Rightarrow f''(x) = \cos x + \cos x \sec^2 x + 2\sec^2 x \sin x \tan x 2$
- $\Rightarrow f''(x) = (\cos x + \sec x 2) + 2 \sec^2 x \sin x \tan x$

Now
$$\cos x + \sec x - 2 = \left(\sqrt{\cos x} - \sqrt{\sec x}\right)^2$$
 and $2 \sec^2 x \tan x \cdot \sin x > 0$ because $x \in \left(0, \frac{\pi}{2}\right)^2$

f'(x) is M.I.

 $\sin x \tan x - x^2 > 0$

 $\Rightarrow f''(x) > 0$ Hence f'(x) > f'(0)

$$f'(x) > 0 \implies f(x) \text{ is M.I.}$$

$$\Rightarrow f(x) > 0 \Rightarrow$$

Hence
$$\sin x \tan x > x^2$$

$$\frac{\sin x \tan x}{x^2} > 1 \implies \lim_{x \to 0} \left[\frac{\sin x \tan x}{x^2} \right] = 1$$
$$\lim_{x \to 0} \left[\frac{\tan^{-1} x}{x} \right] = 0$$

⇒

Ex. 41 If functions f(x) and g(x) are continuous in [a, b] and differentiable in (a, b), show that there will be at least one

point c,
$$a < c < b$$
 such that $\begin{vmatrix} f(a) & f(b) \\ g(a) & g(b) \end{vmatrix} = (b-a) \begin{vmatrix} f(a) & f'(c) \\ g(a) & g'(c) \end{vmatrix}$

Sol. Let
$$F(x) = \begin{vmatrix} f(a) & f(x) \\ g(a) & g(x) \end{vmatrix} = f(a) g(x) - g(a) f(x)$$
(i)

Since f(x) and g(x) are continuous in [a, b] and differentiable in (a, b), therefore, from (i) and (ii) it follows that F(x) is continuous in [a, b] and differentiable in (a, b).

.....**(ii)**

Also from (i),
$$F(a) = f(a)g(a) - g(a)f(a) = 0$$

F'(x) = f(a) g'(x) - g(a) f'(x)

And
$$F(b) = f(a) g(b) - g(a) f(b)$$

⇒

Now by mean value theorem for F(x) in [a, b], there will be at least one point c, a < c < b

such that
$$F'(c) = \frac{F(b) - F(a)}{b - a}$$

$$\Rightarrow \qquad f(a) g'(c) - g(a) f'(c) = \frac{f(a)g(b) - g(a)f(b) - 0}{b - a}$$

or
$$f(a)g(b) - g(a)f(b) = (b - a)\{f(a)g'(c) - g(a)f'(c)\}$$

or
$$\begin{vmatrix} f(a) & f(b) \\ g(a) & g(b) \end{vmatrix} = (b-a) \begin{vmatrix} f(a) & f'(c) \\ g(a) & g'(c) \end{vmatrix}$$

Ex. 42 Let P (x) be a polynomial with real coefficients. Let a, $b \in R$, a < b, be two consecutive roots of P(x). Show that there exists 'c' such that $a \le c \le b$ and P'(c) + 100 P(c) = 0.

Sol. Consider $f(x) = e^{100x} \cdot P(x)$.

Now
$$f(a) = f(b) = 0$$
 {as P (a) = P (b) = 0 }

Also as P (x) is polynomial

- \Rightarrow f(x) is continuous and differentiable in [a, b]
- \Rightarrow Rolle's theorem can be applied
- \Rightarrow $\exists c \in (a, b)$ such that f'(c) = 0

now $f'(x) = e^{100x} (P'(x) + 100 \cdot P(x))$

 $\Rightarrow e^{100 c} (\mathbf{P'(c)} + 100 \cdot \mathbf{P(c)}) = 0, \qquad \text{from}(1)$

$$\Rightarrow P'(c) + 100 \cdot P(c) = 0 \qquad (as [e^{100 c} \neq 0]) \text{ hence proved.}$$

Ex. 43 Prove that $f(x) = \left(1 + \frac{1}{x}\right)^x$ is monotonically increasing in its domain. Hence or otherwise draw graph of f(x) and find its range

Sol.
$$f(x) = \left(1 + \frac{1}{x}\right)^x$$
, for Domain of $f(x)$, $1 + \frac{1}{x} > 0$
 $\Rightarrow \frac{x+1}{x} > 0 \Rightarrow (-\infty, -1) \cup (0, \infty)$

Consider
$$f'(x) = \left(1 + \frac{1}{x}\right)^x \left[\ln\left(1 + \frac{1}{x}\right) + \frac{x}{1 + \frac{1}{x}} - \frac{1}{x^2} \right]$$

$$\Rightarrow f'(x) = \left(1 + \frac{1}{x}\right)^x \left[\ln\left(1 + \frac{1}{x}\right) - \frac{1}{x + 1} \right]$$
Now $\left(1 + \frac{1}{x}\right)^x$ is always positive, hence the sign of $f'(x)$ depends on sign of \bullet n $\left(1 + \frac{1}{x}\right) - \frac{1}{1 + x}$
i.e. we have to compare \bullet n $\left(1 + \frac{1}{x}\right)$ and $\frac{1}{1 + x}$
So lets assume $g(x) = \bullet$ n $\left(1 + \frac{1}{x}\right) - \frac{1}{x + 1}$
 $g'(x) = \frac{1}{1 + \frac{1}{x}} - \frac{1}{x^2} + \frac{1}{(x + 1)^2} \Rightarrow g'(x) = \frac{-1}{x(x + 1)^2}$
(i) for $x \in (0, \infty)$, $g'(x) < 0 \Rightarrow g(x)$ is M.D. for $x \in (0, \infty)$
 $g(x) > \lim_{x \to \infty} g(x)$
 $g(x) > 0$.
and since $g(x) > 0 \Rightarrow f'(x) > 0$
(ii) for $x \in (-\infty, -1), g'(x) > 0 \Rightarrow g(x)$ is M.I. for $x \in (-\infty, -1)$
 $\Rightarrow g(x) > \lim_{x \to \infty} g(x)$
 $\Rightarrow g(x) > 0 \Rightarrow f'(x) > 0$
Hence from (i) and (ii) we get $f'(x) > 0$ for all $x \in (-\infty, -1) \cup (0, \infty)$

 \Rightarrow f(x) is M.I. in its Domain

For drawing the graph of f(x), its important to find the value of f(x) at boundary points

i.e.
$$\pm \infty, 0, -1$$

$$\lim_{x \to \pm \infty} \left(1 + \frac{1}{x}\right)^{x} = e$$

$$\lim_{x \to 0^{+}} \left(1 + \frac{1}{x}\right)^{x} = 1$$
 and $\lim_{x \to -1} \left(1 + \frac{1}{x}\right)^{x} = \infty$
so the graph of f(x) is
Range is $y \in (1, \infty) - \{e\}$

Prove that if $2a_0^2 < 15a$, all roots of $x^5 - a_0x^4 + 3ax^3 + bx^2 + cx + d = 0$ can't be real. It is given that $a_0, a, b, c, d \in \mathbb{R}$. Ex. 44 Let $f(x) = x^5 - a_0 x^4 + 3ax^3 + bx^2 + cx + d$ Sol. $f'(x) = 5x^4 - 4a_0x^3 + 9ax^2 + 2bx + c$ $f''(x) = 20x^3 - 12a_0x^2 + 18ax + 2b$ $f'''(x) = 60x^2 - 24a_0x + 18a = 6(10x^2 - 4a_0x + 3a)$ Now, discriminant = $16a_0^2 - 4$. 10. $3a = 8(2a_0^2 - 15a) < 0$ as $2a_0^2 - 15a < 0$ is given. Hence the roots of f''(x) = 0 can not be real. ... f'(x) have one real root and f(x) = 0 have at most two real roots so f(x) = 0 have at most three real roots. Therefore all the roots of f(x) = 0 will not be real. Ex. 45 Let a, b, c be three real number such that $a \le b \le c$, f(x) is continuous in [a, c] and differentiable in (a, c). Also f'(x)is strictly increasing in (a, c). Prove that (b-c) f(a) + (c-a) f(b) + (a-b) f(c) < 0Sol. By LMVT in [a, b] for f $\frac{f(b) - f(a)}{b - a} = f'(u)$ where a < u < band applying LMVT in [b, c] $\frac{f(c) - f(b)}{c - b} = f'(v) \text{ where } b < v < c$ and Since f'(x) is strictly increasing $\therefore \qquad f'(u) < f'(v) \quad ; \quad \therefore \qquad \frac{f(b) - f(a)}{b - a} < \frac{f(c) - f(b)}{c - b}$ f(b)(c-b+b-a)-f(a)(c-b)-f(c)(b-a) < 0(b-c) f(a) + (c-a) f(b) + (a-b) f(c) < 0.... Prove that for any two numbers $x_1 \& x_2, \frac{2e^{x_1} + e^{x_2}}{3} > e^{\frac{2x_1 + x_2}{3}}$ **Ex. 46** Sol. Assume $f(x) = e^x$ and let $x_1 \& x_2$ be two points on the curve y = Ex. Let R be another point which divides PQ in ratio 1 : 2. v = e' (x_1, e^x) X₁

X.

 $2x_1 + x_2$

y coordinate of point R is
$$\frac{2e^{x_1} + e^{x_2}}{3}$$
 and y coordinate of point S is $e^{\frac{2x_1 + x_2}{3}}$. Since $f(x) = e^x$ is

concave up, the point R will always be above the point S.

$$\Rightarrow \qquad \frac{2e^{x_1} + e^{x_2}}{3} > e^{\frac{2x_1 + x_2}{3}}$$

Ex. 47 Show by using mean value theorem that $\frac{\beta - \alpha}{1 + \beta^2} < \tan^{-1}\beta - \tan^{-1}\alpha < \frac{\beta - \alpha}{1 + \alpha^2}$ where $\beta > \alpha > 0$.

Sol. Take
$$f(x) = \tan^{-1}x$$

$$\Rightarrow f(x) = \frac{1}{1 + x^{2}}. \text{ By mean value theorem for } f(x) \text{ in } [\alpha, \beta]$$

$$\frac{f(\beta) - f(\alpha)}{\beta - \alpha} = f(c) = \frac{1}{1 + c^{2}} \quad \text{where } \alpha < c < \beta \qquad \dots \dots (i)$$
Now, $c > \alpha \qquad \Rightarrow \qquad \frac{1}{1 + c^{2}} < \frac{1}{1 + \alpha^{2}}$
as $c < \beta \qquad \Rightarrow \qquad \frac{1}{1 + c^{2}} > \frac{1}{1 + \beta^{2}}$

$$\therefore \qquad \text{from (i), } \frac{1}{1+\beta^2} < \frac{f(\beta)-f(\alpha)}{\beta-\alpha} < \frac{1}{1+\alpha^2}$$

or
$$\frac{\beta-\alpha}{1+\beta^2} < f(\beta) - f(\alpha) < \frac{\beta-\alpha}{1+\alpha^2}$$

Hence,
$$\frac{\beta - \alpha}{1 + \beta^2} < \tan^{-1}\beta - \tan^{-1}\alpha < \frac{\beta - \alpha}{1 + \alpha^2}$$

- Ex. 48 If the function $f : [0, 4] \rightarrow R$ is differentiable then show that for $a, b \in (0, 4)$ $f^2(4) - f^2(0) = 8 f'(a) f(b)$
- **Sol.** Since f is differentiable on [0, 4] so it is continuous also. Hence by LMVT,

∃ some a ∈ (0, 4) such that f'(a) =
$$\frac{f(4) - f(0)}{4 - 0}$$
(1)

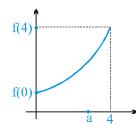
again, by intermediate value theorem for continuous functions,

$$\exists b \in (0, 4)$$
 such that

$$f(b) = {f(0) + f(4) \over 2}$$
(2)

from (1) and (2)

$$f'(a) \cdot f(b) = \frac{f^2(4) - f^2(0)}{8}$$

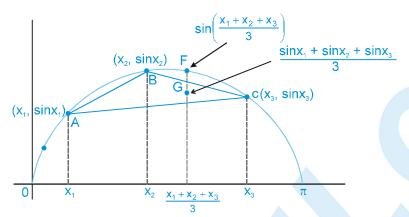


Ex.49 If
$$0 < x_1 < x_2 < x_3 < \pi$$
 then prove that $\sin\left(\frac{x_1 + x_2 + x_3}{3}\right) > \frac{\sin x_1 + \sin x_2 + \sin x_3}{3}$.

Henceprove that : if A, B, C are angles of a triangle then maximum value of

$$\sin A + \sin B + \sin C$$
 is $\frac{3\sqrt{3}}{2}$.

Sol.



Point A, B, C form a triangle.

y coordinate of centroid G is $\frac{\sin x_1 + \sin x_2 + \sin x_3}{3}$ and y coordinate of point F is $\sin \left(\frac{x_1 + x_2 + x_3}{3}\right)$.

Hence
$$\sin\left(\frac{x_1 + x_2 + x_3}{3}\right) \ge \frac{\sin x_1 + \sin x_2 + \sin x_3}{3}$$
.

If
$$A + B + C = \pi$$
, then

$$\sin\left(\frac{A+B+C}{3}\right) \ge \frac{\sin A + \sin B + \sin C}{3} \implies \sin \frac{\pi}{3} \ge \frac{\sin A + \sin B + \sin C}{3}$$

$$\Rightarrow \qquad \frac{3\sqrt{3}}{2} \ge \sin A + \sin B + \sin C$$

$$\Rightarrow \qquad \text{maximum value of } (\sin A + \sin B + \sin C) = \frac{3\sqrt{3}}{2}$$

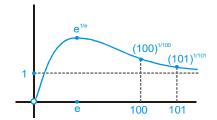
Ex. 50 Compare which of the two is greater $(100)^{1/100}$ or $(101)^{1/101}$. **Sol.** Assume $f(x) = x^{1/x}$ and let us examine monotonic nature of f(x), (x > 0)

$$f(x) = x^{1/x} \cdot \left(\frac{1 - \ln x}{x^2}\right)$$

$$f(x) > 0 \implies x \in (0, e)$$
and
$$f(x) < 0 \implies x \in (e, \infty)$$
Hence
$$f(x) \text{ is M.D. for } x \ge e$$
and since
$$100 < 101$$

$$\Rightarrow f(100) > f(101)$$

$$\Rightarrow (100)^{1/100} > (101)^{1/101}$$



Ex.51 If f and F are continuous in [a, b] and derivable in (a, b) with F'(x) $\neq 0 \quad \forall x \in (a, b)$. Prove that

$$\exists \ c \in (a,b) \text{ such that } \quad \frac{f'(c)}{F'(c)} = \frac{f(b) - f(a)}{F(b) - F(a)} \ .$$

Sol. Let $K_1 = f(b) - f(a)$ and $K_2 = F(b) - F(a) \implies TPT$ $\frac{f'(c)}{F'(c)} = \frac{K_1}{K_2}$ Consider a function $\phi(x) = K_1 F(x) - K_2 f(x)$ (1)

f(x) and F(x) are continuous in [a, b] and derivable in (a, b) hence $\phi(x)$ will also be continuous and differentiable

also
$$\phi(a) = K_1 F(a) - K_2 f(a)$$
 and $\phi(b) = K_1 F(b) - K_2 f(b)$
now $\phi(a) - \phi(b) = K_1 (F(a) - F(b)) - K_2 (f(a) - f(b))$
 $= [f(b) - f(a)] [F(a) - F(b)] - [F(b) - F(a)] [f(a) - f(b)]$
 $= [f(b) - f(a)] \{F(a) - F(b) + F(b) - F(a)] = 0$

 $\Rightarrow \phi(a) = \phi(b)$

Hence rolles theorem is applicable for $\phi(x)$

 \therefore \exists some $c \in (a, b)$, such that, $\phi'(c) = 0$

$$\phi'(x)]_{x=c} = K_1 F'(x) - K_2 f'(x) = 0$$
 or $K_1 F'(c) = K_2 f'(c)$

:.
$$\frac{f'(c)}{F'(c)} = \frac{K_1}{K_2} = \frac{f(b) - f(a)}{F(b) - F(a)}$$

Ex. 52 Find the points of inflection of the function $f(x) = \sin^2 x x \in [0, 2\pi]$

Sol.
$$f(x) = \sin^2 x$$

4

4.

...

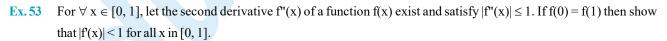
 $f'(x) = \sin 2x$

$$f''(x) = 2\cos 2x$$

 $f''(0) = 0 \qquad \Rightarrow \qquad x = \frac{\pi}{4}, \frac{3\pi}{4}$

both these points are inflection points as sign of f''(x)

change on either sides of these points.



Sol. Since f''(x) exists for all x in [0, 1]

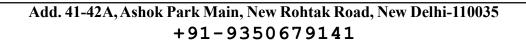
f(x) and f'(x) are differentiable as well as continuous for all x in [0, 1]

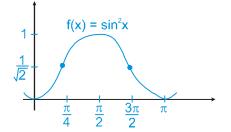
Now f(x) is continuous in [0, 1] and differentiable in (0, 1) and f(0) = f(1)

By Rolle's theorem there is at least one c such that f(c) = 0, where 0 < c < 1.

Case I: Let x = c then f'(x) = f(c) = 0

$$|\mathbf{f}(\mathbf{x})| = |\mathbf{0}| = \mathbf{0} < 1$$





Case II: Let x > c. By Largrange's mean value theorem for f'(x) in [c, x]

$$\frac{f'(x) - f'(c)}{x - c} = f''(\alpha) \text{ for at least one } \alpha, c < \alpha < x$$
or
$$f(x) = (x - c) f''(\alpha) \qquad (\Rightarrow f(c) = 0)$$
or
$$|f(x)| = |x - c||f''(\alpha)|$$
But
$$x \in [0, 1], c \in (0, 1)$$

$$\therefore |x - c| < 1 - 0 \quad \text{or} \quad |x - c| < 1$$
and given $|f''(x)| \le 1 \forall x \in [0, 1]$

$$\therefore |f'(\alpha)| \le 1$$

$$\therefore |f(x)| < 1.1. \qquad (\Rightarrow |f(x)| = |x - c||f''(\alpha)|$$
or
$$|f(x)| < 1 \forall x \in [0, 1]$$
Case III : Let $x < c$ then
$$\frac{f'(x) - f'(c)}{x - c} = f''(\alpha)$$

$$\therefore \qquad |-\mathbf{f}(\mathbf{x})| = |\mathbf{c} - \mathbf{x}||\mathbf{f}'(\alpha)|$$

$$\Rightarrow ||\mathbf{f}(\mathbf{x})| < 1.1 \qquad \text{or} \qquad ||\mathbf{f}'(\mathbf{x})| < 1$$

Combining all cases, we get $|f(x)| \le 1 \ \forall x \in [0, 1]$

Ex. 54 Use the mean value theorem to prove

$$e^x \ge 1 + x, \forall x \in \mathbb{R},$$

- Sol. Consider the function $f(x) = e^{x} 1$ in [0, x] where x > 0
 - f is continuous and differentiable hence using LMVT some $c \in (0, x)$

$$f'(c) = \frac{(e^{x} - 1) - 0}{x} = \frac{e^{x} - 1}{x}$$

$$f'(c) = \frac{f(x) - f(0)}{x - 0}$$

but $f'(c) = e^{c}$; hence $\frac{e^{x} - 1}{x} = e^{c} > 1$, for x > 0

- \therefore $e^x 1 > x$
- $\therefore \qquad e^{x} > x + 1 \text{ for } x > 0 \qquad \qquad \dots (1)$

again consider the function

 $f(x) = e^{x} - 1$ in [x, 0] where x < 0

using LMVT some $c \in (x, 0)$ such that

$$f'(c) = \frac{0 - (e^{x} - 1)}{-x} = \frac{1 - e^{x}}{-x} = \frac{e^{x} - 1}{x}$$
$$f'(c) = e^{c} \quad \text{hence} \quad \frac{e^{x} - 1}{x} = e^{c} < 1 \text{ for } c < 0$$

but

hence $\frac{(e^x - 1)}{x} < 1$ for x < 0 $(e^x - 1) > x$ (as x is - ve) $e^x - 1 - x > 0$ for x < 0(2) from (1) and (2)

 $e^x > x + 1$ for $x \neq 0$

- \therefore for x = 0 equality holds
- $\therefore \qquad e^x \ge x+1 \ for \ x \in R$
- **Ex. 55** Find the inflection point of $f(x) = 3x^4 4x^3$. Also draw the graph of f(x) giving due importance to concavity and point of inflection.

f(x)

C

 $\left(\frac{2}{3}, -\frac{16}{27}\right)$

2/3

1

x

4

3

Sol.
$$f(x) = 3x^4 - 4x^3$$

$$f'(x) = 12x^3 - 12x^2$$
$$f'(x) = 12x^2(x-1)$$

 $f''(x) = 12(3x^2 - 2x)$

$$f''(x) = 12x(3x-2)$$

$$f''(x) = 0 \implies x = 0, \frac{2}{3}.$$

Again examining sign of f''(x)

thus $x = 0, \frac{2}{3}$ are the inflection points

Hence the graph of f(x) is

Ex. 56 Find the points of maxima, minima of $f(x) = x^3 - 12x$. Also draw the graph of this functions.

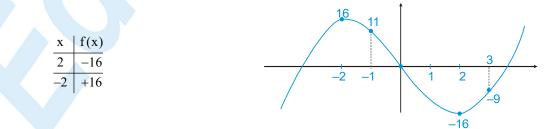
Sol. $f(x) = x^3 - 12x$

 $f'(x) = 3(x^2 - 4) = 3(x - 2) (x + 2)$ $f'(x) = 0 \implies x = \pm 2$ + - - - 2

Maxima

For tracing the graph let us find maximum and minimum values of f(x).

Minima



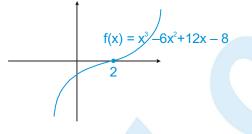
Find the value of a and b where a < b, for which the integral $\int (24 - 2x - x^2)^{1/2} dx$ has the largest value. Ex. 57 $I = \int_{0}^{b} [25 - (x+1)^{2}]^{1/2} dx$ Sol. for I to be largest $(x+1)^2$ must be minimum $\Rightarrow x=-1$ i.e. a=-1 $I = \int_{-1}^{b} (24 - 2x - x^2) dx$... for maxima, $\frac{dI}{db} = 24 - 2b - b^2 = 0 \implies b^2 + 2b - 24 = 0 \implies (b+6)(b-4) = 0$ $b \neq -6$ hence b = 4as hence $I = \int_{-1}^{4} (25 - (x+1)^2)^{1/2} dx$ $put x + 1 = 5 \sin \theta$ $= 24 \int_{0}^{\pi/2} \cos^2 \theta \, d\theta = \frac{25\pi}{4} \text{ Ans.} \qquad \text{Hence } a = -1; b = 4; I_{\text{max}} = \frac{25\pi}{4}$ Ex. 58 If $f(x) = \begin{cases} 3x^2 + 12x - 1, & -1 \le x \le 2\\ 37 - x, & 2 < x \le 3, \end{cases}$, then Given, $f(x) = \begin{cases} 3x^2 + 12x - 1, & -1 \le x \le 2\\ 37 - x, & 2 < x \le 3 \end{cases}$ Sol. $f'(x) = \begin{cases} 6x + 12, & -1 \le x \le 2\\ -1, & 2 < x \le 3 \end{cases}$ ⇒ which shows f'(x) > 0 for $x \in [-1, 2)$ **(A)** So, f(x) is increasing on [-1, 2)Hence, (A) is correct. **(B)** for continuity of f(x). (check at x = 2) LHL = 35 and f(2) = 35RHL = 35, So, (B) is correct Rf(2) = -1and Lf(2) = 24**(C)** so, not differentiable at x = 2. Hence, (C) is correct. **(D)** we know f(x) is increasing on [-1, 2) and decreasing on (2, 3], Thus maximum at x = 2, Hence, (D) is correct. (A), (B), (C), (D) all are correct.

Ex. 59 Show that $f(x) = (x^3 - 6x^2 + 12x - 8)$ does not have any point of local maxima or minima. Hence draw graph

Sol. $f(x) = x^3 - 6x^2 + 12x - 8$ $f'(x) = 3(x^2 - 4x + 4)$

> $f'(x) = 3(x-2)^2$ $f'(x) = 0 \implies x = 2$

but clearly f'(x) does not change sign about x = 2. $f'(2^+) > 0$ and $f'(2^-) > 0$. So f(x) has no point of maxima or minima. In fact f(x) is a monotonically increasing function for $x \in \mathbb{R}$.



Ex. 60 Find the global maximum and global minimum of $f(x) = \frac{e^x + e^{-x}}{2}$ in $[-\log_e 2, \log_e 7]$.

Sol.
$$f(x) = \frac{e^x + e^{-x}}{2}$$
 is differentiable at all x in its domain.

Then $f'(x) = \frac{e^x - e^{-x}}{2}$, $f''(x) = \frac{e^x + e^{-x}}{2}$

$$f'(x) = 0 \Rightarrow \frac{e^x - e^{-x}}{2} = 0 \Rightarrow e^{2x} = 1 \Rightarrow x = 0$$

f'(0) = 1 : x = 0 is a point of local minimum

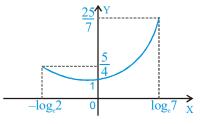
Points $x = -\log_e 2$ and $x = \log_e 7$ are extreme points.

Now, check the value of f(x) at all these three points $x = -\log_e 2, 0, \log_e 7$

$$\Rightarrow \qquad f(-\log_e 2) = \frac{e^{-\log_e 2} + e^{+\log_e 2}}{2} = \frac{5}{4}$$

$$f(0) = \frac{e^0 + e^{-0}}{2} = 1$$

$$f(\log_e 7) = \frac{e^{\log_e 7} + e^{-\log_e 7}}{2} = \frac{25}{7}$$



$$x = 0$$
 is absolute minima & $x = \log_e 7$ is absolute maxima

Hence, absolute/global minimum value of f(x) is 1 at x = 0

and absolute/global maximum value of f(x) is $\frac{25}{7}$ at $x = \log_e 7$

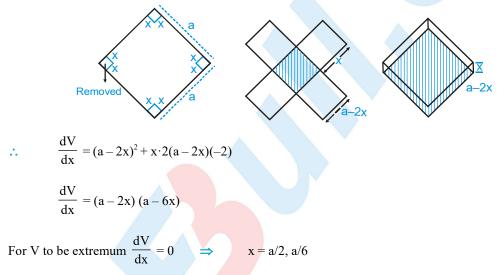
Ex. 61 Find the possible points of Maxima/Minima for $f(x) = |x^2 - 2x|$ ($x \in R$)

Sol..
$$f(x) = \begin{cases} x^2 - 2x & x \ge 2\\ 2x - x^2 & 0 < x < 2\\ x^2 - 2x & x \le 0 \end{cases}$$

$$f'(x) = \begin{cases} 2(x-1) & x > 2\\ 2(1-x) & 0 < x < 2\\ 2(x-1) & x < 0 \end{cases}$$

f'(x) = 0 at x = 1 and f'(x) does not exist at x = 0, 2. Thus these are critical points.

- Ex. 62 A box of maximum volume with top open is to be made by cutting out four equal squares from four corners of a square tin sheet of side length a ft, and then folding up the flaps. Find the side of the square base cut off.
- Sol. Volume of the box is, $V = x(a 2x)^2$ i.e., squares of side x are cut out then we will get a box with a square base of side (a 2x) and height x.



But when x = a/2; V = 0 (minimum) and we know minimum and maximum occurs alternately in a continuous function. Hence, V is maximum when x = a/6.

Ex. 63 Let
$$f(x) = \begin{cases} x^3 + x^2 - 10x & x < 0\\ 3\sin x & x \ge 0 \end{cases}$$
. Examine the behaviour of $f(x)$ at $x = 0$.

Sol. f(x) is continuous at x = 0.

$$P(x) = \begin{cases} 3x^2 + 2x - 10 & x < 0\\ 3\cos x & x > 0 \end{cases}$$

 $f'(0^+) = 3$ and $f'(0^-) = -10$ thus f(x) is non-differentiable at x = 0

x = 0 is a critical point.

Also derivative changes sign from negative to positive, so x = 0 is a point of local minima.

- Ex. 64 Find the co-ordinates of the point on the curve $x^2 = 4y$, which is at least distance from the line y=x-4.
- Sol. Let $P(x_1y_1)$ be a point on the curve $x^2 = 4y$ at which normal is also a perpendicular to the line y = x - 4.

Slope of the tangent at (x_1, y_1) is $2x = 4 \frac{dy}{dx} \Rightarrow \frac{dy}{dx}\Big|_{(x_1, y_1)} = \frac{x_1}{2}$

 $\therefore \qquad \frac{x_1}{2} = 1 \implies x_1 = 2$

 $\Rightarrow \qquad x_1^2 = 4y_1 \Rightarrow y_1 = 1$

Hence required point is (2, 1)

Ex. 65 Two towns located on the same side of the river agree to construct a pumping station and filteration plant at the river's edge, to be used jointly to supply the towns with water. If the distance of the two towns from the river are 'a' & 'b' and the distance between them is 'c', show that the pipe lines joining them to the pumping station is atleast

as great as $\sqrt{c^2 + 4ab}$.

Sol.
$$L = AP + PB$$

$$L = \sqrt{a^2 + x^2} + \sqrt{(K - x)^2 + b^2}$$

$$\frac{dL}{dx} = \frac{2x}{2\sqrt{a^2 + x^2}} - \frac{2(K - x)}{2\sqrt{(K - x)^2 + b^2}}$$

for maximum or minimum $\frac{dL}{dx} = 0$

$$\frac{x}{\sqrt{a^{2} + x^{2}}} = \frac{K - x}{\sqrt{(K - x)^{2} + b^{2}}}$$

$$x^{2}[(K-x)^{2}+b^{2}]=(K-x)^{2}(a^{2}+x^{2})$$

$$b^2 x^2 = a^2 (K-x)^2$$

$$\therefore \qquad bx = a (K-x)$$

$$x(a+b)=aK$$

$$=\frac{Ka}{a+b} \qquad (K-x=\frac{Kb}{a+b})$$

$$L|_{x=\frac{Ka}{a+b}} = \sqrt{a^2 + \frac{K^2 a^2}{(a+b)^2}} + \sqrt{b^2 + \frac{K^2 b^2}{(a+b)^2}} \implies \frac{a}{a+b}\sqrt{(a+b)^2 + K^2} + \frac{b}{a+b}\sqrt{(a+b)^2 + K^2}$$

$$\frac{\sqrt{(a+b)^2 + K^2}}{a+b}(a+b) = \sqrt{(a+b)^2 - c^2 - (a-b)^2} = \sqrt{c^2 + 4ab}$$

 $|c^2$

a

N

x

(b

 $(a)^2 = k$

K-x

Μ

Ex. 66 Find the critical points of the function $f(x) = 4x^3 - 6x^2 - 24x + 9$ if

(i) $x \in [0,3]$ (ii) $x \in [-3,3]$ (iii) $x \in [-1,2]$.

Sol. $f'(x) = 12(x^2 - x - 2)$

= 12(x-2)(x+1)

 $f'(x) = 0 \implies x = -1 \text{ or } 2$

(i) if $x \in [0, 3]$, x = 2 is critical point.

- (ii) if $x \in [-3, 3]$, then we have two critical points x = -1, 2.
- (iii) If $x \in [-1, 2]$, then no critical point as both x = 1 and x = 2 become boundary points.

Ex. 67 Find the minimum value of $(x_1 - x_2)^2 + \left(\sqrt{2 - x_1^2} - \frac{9}{x_2}\right)^2$ where $x_1 \in (0, \sqrt{2})$ and $x_2 \in \mathbb{R}^+$

Sol.
$$d^2 = (x_1 - x_2)^2 + \left(\sqrt{2 - x_1^2} - \frac{9}{x_2}\right)^2$$

The above expression is the square of the distance between the points $(x_1, \sqrt{2-x_1^2}), (x_2, \frac{9}{x_2})$ which lie on the curves $x^2 + y^2 = 2$ and xy = 9 respectively.

Now, the minimum value of the expression means square of the shortest distance between the two curves. Slope of the normal at $P(x_2, y_2)$ on the curve xy = 9

0

$$\frac{dy}{dx} = \frac{-9}{x^2}$$

Slope of OP = $\frac{x_2^2}{9} = \frac{y_2}{x_2}$ \Rightarrow $x_2y_2 = 9$

$$\mathbf{x}_2^4 = 81 \qquad \Rightarrow \qquad \mathbf{x}_2 = \pm 3$$

:. $y_2 = \pm 3$ (x₂, y₂) = (3, 3)

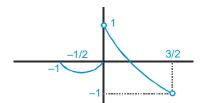
Now, shortest distance = PQ = OP - OQ = $3\sqrt{2} - \sqrt{2} = 2\sqrt{2}$

$$d^2 = 8$$

Ex. 68 Let
$$f(x) = \begin{cases} x^2 + x & ; -1 \le x < 0 \\ \lambda & ; x = 0 \\ \log_{1/2} \left(x + \frac{1}{2} \right) & ; 0 < x < \frac{3}{2} \end{cases}$$

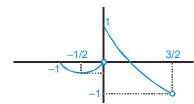
Discuss global maxima, minima for $\lambda = 0$ and $\lambda = 1$. For what values of λ does f(x) has global maxima

Sol. Graph of y = f(x) for $\lambda = 0$



No global maxima, minima

Graph of y = f(x) for $\lambda = 1$



Global maxima is 1, which occurs at x = 0Global minima does not exists

 $\lim_{x \to 0^{-}} f(x) = 0, \lim_{x \to 0^{+}} f(x) = 1, f(0) = \lambda$

For global maxima to exists

 $\mathbf{f}(0) \ge 1 \qquad \implies \qquad \lambda \ge 1.$

Ex. 69 Find the inflection point of $f(x) = 3x^4 - 4x^3$. Also draw the graph of f(x) giving due importance to maxima, minima and concavity.

Sol.
$$f(x) = 3x^4 - 4x^3$$

 $f(x) = 12x^3 - 12x^2$

 $f(x) = 12x^2(x-1)$

 $f(x) = 0 \implies x = 0, 1$

examining sign change of f(x)

thus x = 1 is a point of local minima

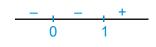
$$f''(x) = 12(3x^2 - 2x)$$

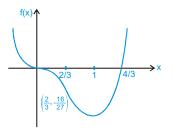
$$f'(x) = 12x(3x-2)$$

$$f'(x) = 0 \implies x = 0, \frac{2}{3}$$

Again examining sign of f'(x)

thus x = 0, $\frac{2}{3}$ are the inflection points Hence the graph of f(x) is





Ex. 70 Rectangles are inscribed inside a semicircle of radius r. Find the rectangle with maximum area.

Sol. Let sides of rectangle be x and y (as shown in figure).

$$\Rightarrow$$
 A = xy.

Here x and y are not independent variables and are related by Pythogorus theorem with r.

$$\frac{x^2}{4} + y^2 = r^2 \implies y = \sqrt{r^2 - \frac{x^2}{4}}$$

$$\Rightarrow \qquad A(x) = x \sqrt{r^2 - \frac{x^2}{4}}$$

$$\Rightarrow \qquad A(x) = \sqrt{x^2 r^2 - \frac{x^4}{4}}$$
Let
$$f(x) = r^2 x^2 - \frac{x^4}{4} ; x \in (0, r)$$

A(x) is maximum when f(x) is maximum

Hence
$$f'(x) = x(2r^2 - x^2) = 0$$

 $\Rightarrow \quad x = r\sqrt{2}$
also $f'(r\sqrt{2^+}) < 0$ and $f'(r\sqrt{2^-}) > 0$

confirming at f(x) is maximum when x = r $\sqrt{2}$ & y = $\frac{r}{\sqrt{2}}$

Ex.71 Find all the values of a for which the function $f(x) = (a^2 - 3a + 2) \cos(\frac{x}{2}) + (a - 1)x$ possesses critical points.

Sol. Given
$$f(x) = (a^2 - 3a + 2) \cos\left(\frac{x}{2}\right) + (a - 1)x$$

$$\therefore \qquad f(x) = -\frac{(a^2 - 3a + 2)}{2} \sin\left(\frac{x}{2}\right) + (a - 1) \qquad = (a - 1) \left\{ 1 - \frac{1}{2}(a - 2) \sin\left(\frac{x}{2}\right) \right\}$$

Put f(x) = 0 then a = 1 and $sin\left(\frac{x}{2}\right) = \frac{2}{a-2}$

but $-1 \le \sin\left(\frac{x}{2}\right) \le 1$

or
$$\left| \sin\left(\frac{x}{2}\right) \right| \le 1$$
 \Rightarrow $\left| \frac{2}{a-2} \right| \le 1$ \Rightarrow $|a-2| \ge 2$
 \Rightarrow $a-2 \ge 2$ and $a-2 \le -2$
 \therefore $a \ge 4$ and $a \le 0$ \Rightarrow $a \in (-\infty, 0] \cup [4, \infty)$

Hence $a \in (-\infty, 0] \cup \{1\} \cup [4, \infty)$

MATHS FOR JEE MAIN & ADVANCED

- Ex. 72 If a right circular cylinder is inscribed in a given cone. Find the dimensions of the cylinder such that its volume is maximum.
- **Sol.** Let x be the radius of cylinder and y be its height
 - $v = \pi x^2 y$

x, y can be related by using similar triangles (as shown in figure).

$$\frac{y}{r-x} = \frac{h}{r}$$

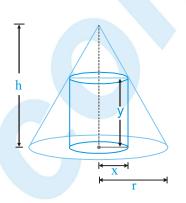
$$\Rightarrow \qquad y = \frac{h}{r} (r-x)$$

$$\Rightarrow \qquad v(x) = \pi x^2 \frac{h}{r} (r-x) \qquad x \in (0, r)$$

$$\Rightarrow \qquad v(x) = \frac{\pi h}{r} (rx^2 - x^3)$$

$$v'(x) = \frac{\pi h}{r} x (2r - 3x)$$

$$v'\left(\frac{2r}{3}\right) = 0 \qquad \text{and} \qquad v''\left(\frac{2r}{3}\right) < 0$$
Thus volume is maximum at $x = \left(\frac{2r}{3}\right)$ and $y = \frac{h}{3}$.



Ex. 73 A point P is given on the circumference of a circle of radius *r*. Chords QR are parallel to the tangent at P. Determine the maximum possible area of the triangle PQR.

Sol. Ar. of
$$\Delta PQR = \frac{2r\cos\theta(r + r\sin\theta)}{2}$$

 $A(\theta) = r^{2}\cos\theta(1 + \sin\theta)$
 $A'(\theta) = r^{2}[\cos\theta \cdot \cos\theta - (1 + \sin\theta)\sin\theta]$
for maximum or minimum $A'(\theta) = 0$
 $\cos^{2}\theta - \sin\theta(1 + \sin\theta) = 0 = 1 - \sin^{2}\theta - \sin\theta - \sin^{2}\theta = 0$
 $= 2\sin^{2}\theta + \sin\theta - 1 = 0 = (\sin\theta + 1)(2\sin\theta - 1) = 0$
 $\sin\theta = -1$ (not possible)
 $\sin\theta = 1/2$ hence, $\theta = \pi/6$ or $5\pi/6$
 $\frac{d^{2}A}{d\theta^{2}} = -2\cos\theta\sin\theta - \cos\theta - 2\sin\theta\cos\theta$
 $\frac{d^{2}A}{d\theta^{2}} = -ve \Rightarrow A \text{ is maximum}$
 $A_{max} = 2r^{2}\frac{\sqrt{3}}{2}\left(1 + \frac{1}{2}\right)\frac{1}{2} \Rightarrow A_{max} = \frac{3\sqrt{3}}{4}r^{2}$

Ex. 74 The three sides of a trapezium are equal each being 6cm long; find the area of trapezium when it is maximum.Sol. Let ABCD be the given trapezium.

Let
$$AM = BN = x \text{ cm}$$

then $DM = CN = \sqrt{(36 - x^2)}$
 \therefore Area of trapezium ABCD is
 $S = \frac{1}{2} (6 + x + 6 + x) \times \sqrt{(36 - x^2)}$
 $= (6 + x) \sqrt{(36 - x^2)}$
or $S^2 = (6 + x)^2(36 - x^2)$
Let $y = (6 + x)^2(36 - x^2)$
 $\therefore \frac{dy}{dx} = (6 + x)^2(-2x) + (36 - x^2).2(6 + x)$
 $= 2(6 + x)^2(6 - 2x) = 4(3 - x)(6 + x)^2$
and $\frac{d^2y}{dx^2} = -12x(6 + x)$
For max. or min. of y, $\frac{dy}{dx} = 0$ then $x = 3$ ($x \neq -6$)

$$\frac{d^2 y}{dx^2}\Big|_{x=3} = -324 < 0$$

 \therefore y is maximum at x = 3 then S is also maximum at x = 3

:.
$$S = (6+3)\sqrt{(36-9)} = 27\sqrt{3} \text{ cm}^2$$

- Ex. 75 Among all regular square pyramids of volume $36\sqrt{2}$ cm³. Find dimensions of the pyramid having least lateral surface area.
- Sol. Let the length of a side of base be x cm and y be the perpendicular height of the pyramid (see figure).

$$V = \frac{1}{3} \times \text{area of base x height}$$

$$\Rightarrow V = \frac{1}{3} x^2 y = 36\sqrt{2} \Rightarrow y = \frac{108\sqrt{2}}{x^2}$$
and
$$S = \frac{1}{2} \times \text{perimeter of base x slant height}$$

$$= \frac{1}{2} (4x). \bullet$$

$$\bullet = \sqrt{\frac{x^2}{4} + y^2}$$

$$\Rightarrow S = 2x \sqrt{\frac{x^2}{4} + y^2} = \sqrt{x^4 + 4x^2y^2} \Rightarrow S = \sqrt{x^4 + 4x^2\left(\frac{108\sqrt{2}}{x^2}\right)^2}$$

$$S(x) = \sqrt{x^4 + \frac{8.(108)^2}{x^2}}$$
Let $f(x) = x^4 + \frac{8.(108)^2}{x^2}$ for minimizing $f(x)$
 $f'(x) = 4x^3 - \frac{16(108)^2}{x^3} = 0 \implies f'(x) = 4 \frac{(x^6 - 6^6)}{x^3} = 0 \implies x = 6$, which a point of minima
Hence $x = 6$ cm and $y = 3\sqrt{2}$.
Show that the triangle of maximum area that can be inscribed in a given circle is an equilateral triangle.
Area $= \frac{1}{2}$ (Base) × (Height)
For maximum area height must be maximum. Height will be maximum if triangle is an isosceles triangle.
Let ΔABC is isosceles.
Let $\Delta B = \angle C = \theta$ then $\angle A = \pi - 2\theta$
 $\therefore \angle COM = \angle BOM = \pi - 2\theta$
If r be the radius of circle
 $\therefore OM = rcos(\pi - 2\theta)$ and $MC = rsin(\pi - 2\theta)$
 $\therefore Area of \Delta ABC = \frac{1}{2} \times BC \times AM$
 $= \frac{1}{2} \times 2r \sin(\pi - 2\theta) \times \{r + r \cos(\pi - 2\theta)\} \implies r^2 \sin 2\theta(1 - \cos 2\theta)$

Let
$$S = r^2 \left\{ \sin 2\theta - \frac{1}{2} \sin 4\theta \right\}$$

$$\therefore \qquad \frac{\mathrm{dS}}{\mathrm{d}\theta} = \mathrm{r}^2 \left\{ 2\cos 2\theta - 2\cos 4\theta \right\}$$

Ex. 76

Sol.

$$\frac{d^2S}{d\theta^2} = r^2 \left\{ -4\sin 2\theta + 8\sin 4\theta \right\}$$

For max. or min. of S, $\frac{dS}{d\theta} = 0$

or $\cos 2\theta = \cos 4\theta$ or $4\theta = 2\pi - 2\theta$ $\Rightarrow \qquad \theta = \frac{\pi}{3}$ and $\frac{d^2S}{d\theta^2}\Big|_{\theta = \pi/3} = -6\sqrt{3}r^2 < 0$ $\therefore \qquad \theta = \frac{\pi}{3}$ is point of maxima $\therefore \qquad \angle B = \angle C = \frac{\pi}{3}$ and $\angle A = \pi - \frac{2\pi}{3} = \frac{\pi}{3}$ $\therefore \qquad Area of triangle is maximum if triangle is equilateral.$

Exercise # 1 [Single Correct Choice Type Questions] If a variable tangent to the curve $x^2y = c^3$ makes intercepts a, b on x and y axis respectively, 1. then the value of a²b is -**(B)** $\frac{4}{27}$ c³ (C) $\frac{27}{4}$ c³ (**D**) $\frac{4}{2}c^{3}$ (A) $27c^3$ Equation of normal drawn to the graph of the function defined as $f(x) = \frac{\sin x^2}{x}$, $x \neq 0$ and f(0) = 0 at the origin is 2. (A) x + y = 0**(B)** x - y = 0(C) y = 0**(D)** x = 0Using differentials, find the approximate value of $\sqrt{25.2}$. 3. (A) 5.02 **(B)** 5.01 **(D)** 5.04 (C) 5.03 The angle at which the curve $y = Ke^{Kx}$ intersects the y-axis is : 4. (C) $\sec^{-1}\left(\sqrt{1+k^4}\right)$ **(B)** $\cot^{-1}(k^2)$ (A) $\tan^{-1} k^2$ (D) none 5. If tangents are drawn from the origin to the curve $y = \sin x$, then their points of contact lie on the curve (C) $x^2 - y^2 = x^2 y^2$ (D) $x^2 + y^2 = x^2y^2$ **(B)** x + y = xy(A) x - y = xyA kite is 300 m high and there are 500 m of cord out. If the wind moves the kite horizontally at the rate of 6. 5 km/hr. directly away from the person who is flying it, find the rate at which the cord is being paid ? **(A)**4 **(B)**8 (C) 3(D) cannot be determined The tangent to the curve $3xy^2 - 2x^2y = 1$ at (1,1) meets the curve again at the point -7. **(B)** $\left(-\frac{16}{5}, -\frac{1}{20}\right)$ **(C)** $\left(\frac{1}{20}, \frac{16}{5}\right)$ **(D)** $\left(-\frac{1}{20}, \frac{16}{5}\right)$ (A) $\left(\frac{16}{5}, \frac{1}{20}\right)$ Equation of the normal to the curve $y = -\sqrt{x} + 2$ at the point of its intersection with the curve 8. $y = tan (tan^{-1} x) is$ **(B)** 2x - y + 1 = 0(A) 2x - y - 1 = 0(C) 2x + y - 3 = 0(D) none A particle moves along the curve $y = x^{3/2}$ in the first quadrant in such a way that its distance from the origin increases 9. at the rate of 11 units per second. The value of $\frac{dx}{dt}$ when x = 3 is -**(B)** $\frac{9}{2}$ (C) $\frac{3\sqrt{3}}{2}$ (A)4 (D) none of these The angle between the tangent lines to the graph of the function $f(x) = \int (2t-5)dt$ at the points where the graph 10. cuts the x-axis is (A) $\frac{\pi}{6}$ (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{3}$ (D) $\frac{\pi}{2}$

11.	The approximate chang	e in the volume of a cube of	f side x meters caused by in	creasing the side by 4% is
	(A) $0.06x^3m^3$	(B) $0.09x^3m^3$	(C) $0.12x^3m^3$	(D) $0.15x^3m^3$
12.	Suppose f and g both and	The linear function with $f(\mathbf{x})$	= -2x + 1 and $f(g(x)) = 6x - 6x$	-7, then slope of line $y = g(x)$ is -
	(A) 3	(B) -3	(C) 6	(D) –2
13.	The curve $y - e^{xy} + x =$	0 has a vertical tangent a	t	
	(A) (1, 1)	(B) (0, 1)	(C) (1, 0)	(D) no point
14.	A point is moving alor ordinate, is -	ng the curve $y^3 = 27x$. The	e interval in which the abs	scissa changes at slower rate than
	(A) (-3, 3)	(B) $(-\infty,\infty)$		
15.	The lines tangent to the an angle θ equal to -	e curves $y^3 - x^2y + 5y - 2$	$x = 0$ and $x^4 - x^3y^2 + 5x^3y^2 + 5x^3y^3 + 5x^3y^3 + 5x^3y^3$	+2y = 0 at the origin intersect at
	(A) $\frac{\pi}{6}$	(B) $\frac{\pi}{4}$	(C) $\frac{\pi}{3}$	(D) $\frac{\pi}{2}$
16.	The ordinate of $y = (a/(A) a/2)$	2) $(e^{x/a} + e^{-x/a})$ is the geom (B) a	etric mean of the length of (C) e	f the normal and the quantity: (D) none of these.
17.	If the tangent to the cur	$ve x = a (\theta + \sin \theta), y = a (\theta + \sin \theta)$	$1 + \cos \theta$ at $\theta = \frac{\pi}{3}$ makes	an angle α ($0 \le \alpha < \pi$) with x-axis,
	then $\alpha =$			
	(A) $\frac{\pi}{3}$	$(\mathbf{B}) \ \frac{2\pi}{3}$	(C) $\frac{\pi}{6}$	(D) $\frac{5\pi}{6}$
18.	The angle of intersection	n of x = \sqrt{y} and x ³ + 6y = 7	at (1, 1) is -	
	(A) $\frac{\pi}{5}$	(B) $\frac{\pi}{4}$	(C) $\frac{\pi}{3}$	(D) $\frac{\pi}{2}$
19.	All points on curve y ²	$=4a\left(x+a\sin\frac{x}{a}\right)$ at which	tangents are parallel to th	ne axis of x, lie on a
	(A) circle	(B) parabola	(C) line	(D) none of these
20.	-			ase is 2m and height 4m, at the stant when the depth is 70 cm is -
	(A) 10 cm/min	(B) 20 cm/min	(C) 40 cm /min	(D) none
21.	At the point P(a, a ⁿ) on t	the graph of $y = x^n (n \in N)$ is	n the first quadrant a normal	is drawn. The normal intersects the
	y-axis at the point (0, b)	If $\lim_{a\to 0} b = \frac{1}{2}$, then <i>n</i> equ	als	
	(A) 1	(B) 3	(C) 2	(D) 4
22.	-	wn from the point $(-1/2, 0)$	• • •	} denotes fractional part function).
	(A)2	(B) 1	(C) 3	(D) 4

B

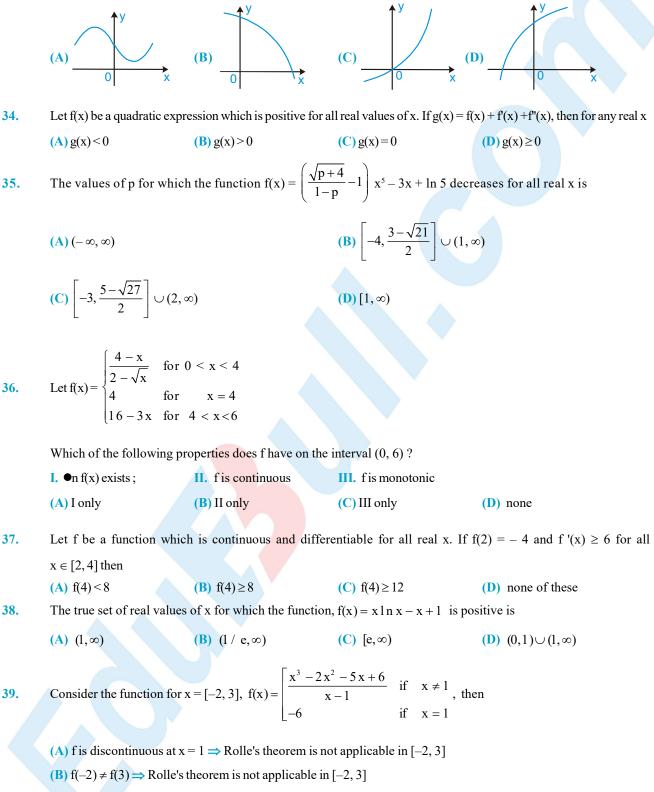
APPLICATION OF DERIVATIVE

23.	The length of the subnormal of the curve $y^2 = 8ax (a > 0)$ is -				
	(A) 2a (B) 4a	(C) 6a	(D) 8a		
24.	If curve $y = 1 - ax^2$ and $y = x^2$ interval.	rsect orthogonally then the value	ue of a is		
	(A) 1/2 (B) 1/3	(C) 2	(D) 3		
25.	The coordinates of the point of	the parabola $y^2 = 8x$, which	is at minimum distance from the circle		
	$x^2 + (y+6)^2 = 1$ are				
	(A) $(2, -4)$ (B) $(18, -4)$	-12) (C) (2,4)	(D) none of these		
26.	Function $f(x) = x^2 (x-2)^2$ is -				
	(A) increasing in $(0,1) \cup (2,\infty)$	(B) decreasing	g in $(0,1)\cup(2,\infty)$		
	(C) decreasing function	(D) increasing	function		
	$ \mathbf{x}-1 $				
27.	The function $\frac{ \mathbf{x}-1 }{\mathbf{x}^2}$ is monotonic	cally decreasing at the point			
	(A) $x = 3$ (B) $x = 1$	(C) x = 2	(D) none of these		
28.	Consider $f(x) = \int_{1}^{x} \left(t + \frac{1}{t}\right) dt$ and	$g(x) = f'(x)$ for $x \in \left[\frac{1}{2}, 3\right]$			
	If P is a point on the curve $y = g(x)$ such that the tangent to this curve at P is parallel to a chord joining the points				
	$\left(\frac{1}{2}, g\left(\frac{1}{2}\right)\right)$ and (3, g(3)) of the curve, then the coordinates of the point P				
	(A) can't be found out (B) $\left(\frac{7}{4}\right)$,	$\left(\frac{65}{28}\right)$ (C) (1, 2)	$(\mathbf{D})\left(\sqrt{\frac{3}{2}},\frac{5}{\sqrt{6}}\right)$		
29.	Least value of the function, $f(x) =$ (A) 0 (B) 3/2	$2^{x^2} - 1 + \frac{2}{2^{x^2} + 1}$ is:			
	(A) 0 (B) 3/2	(C) 2/3	(D) 1		
30.	The function $f(x) = \tan x - x$				
	(A) always increases	(B) always de	creases		
	(C) never decreases		s increases and sometimes decreases		
31.	The value of 'a' for which the function $f(x) = sinx - cosx - ax + b$ decreases for all real values of x, is -				
	(A) $a \ge -\sqrt{2}$ (B) $a \le$	$-\sqrt{2}$ (C) $a \le \sqrt{2}$	(D) $a \ge \sqrt{2}$		
32.	(A) $a \ge -\sqrt{2}$ (B) $a \le f(x) = \int \left(2 - \frac{1}{1 + x^2} - \frac{1}{\sqrt{1 + x^2}}\right) dx$	then f is -			
	(A) increasing in $(0, \infty)$ and decreasing	ng in $(-\infty, 0)$ (B) increasing	in $(-\infty, 0)$ and decreasing in $(0, \infty)$		

(D) decreasing in $(-\infty, \infty)$

(C) increasing in $(-\infty, \infty)$

33. The curve y = f(x) which satisfies the condition f'(x) > 0 and f''(x) < 0 for all real x, is:



- (C) f is not derivable in $(-2, 3) \Rightarrow$ Rolle's theorem is not applicable
- (D) Rolle's theorem is applicable as f satisfies all the conditions and c of Rolle's theorem is 1/2

Add. 41-42A, Ashok Park Main, New Rohtak Road, New Delhi-110035 +91 - 9350679141

40.	For which values of 'a	a' will the function $f(x) = x^4$	$+ax^{3}+\frac{3x^{2}}{2}+1$ will be co	ncave upward along the entire real line	
	(A) $a \in [0, \infty)$		$(C) a \in [-2, 2]$		
41.				ed interval [1, a] then the value of 'a'	
	(A) 3	(B) 4	(C) 6	(D) 1	
42.	The length of largest c	continuous interval in which	function $f(x) = 4x - \tan 2x$	is monotonic, is -	
	(A) π/2	(B) π/4	(C) π/8	(D) π/16	
43.	The function $f(x) = x$ verifies Rolle's theor		conditions of Rolle's the	orem on $[-3, 0]$. The value of c which	
	(A) 0	(B) – 1	(C) – 2	(D) 3	
44.	Suppose that f is difination value equal to	fferentiable for all x and th	hat $f'(\mathbf{x}) \leq 2$ for all \mathbf{x} . If f	(1) = 2 and $f(4) = 8$ then $f(2)$ has the	
	(A) 3	(B) 4	(C) 6	(D) 8	
45.	Consider $f(x) = 1 - x $, $1 \le x \le 2$ and $g(x) = f(x) + b \sin \frac{\pi}{2} x$, $1 \le x \le 2$ then which of the following is correct ? (A) Rolles theorem is applicable to both f, g and $b = \frac{3}{2}$				
	(B) LMVT is not applicable to f and Rolles theorem if applicable to g with $b = \frac{1}{2}$ (C) LMVT is applicable to f and Rolles theorem is applicable to g with $b = 1$ (D) Rolles theorem is not applicable to both f, g for any real b.				
46.	If the point $(1, 3)$ set (A) $a = 3/2 \& b = -9$ (C) $a = -3/2 \& b = -9$	/2	tion of the curve $y = ax^3 + (B) a = 3/2 \& b = 9/(D) a = -3/2 \& b = 9/(D) a = -3/2 \& b = 0$		
47.	Number of solution o	f the equation $3\tan x + x^3 =$	$2 \operatorname{in} \left(0, \frac{\pi}{4} \right)$ is		
	(A) 0	(B) 1	(C) 2	(D) 3	
48.	Rolle's theorem in the	indicated intervals will not	be valid for which of the fol	lowing function-	
		$ \begin{array}{l} \neq 0 \\ = 0 \end{array} ; x \in [-1, 1] \\ = 0 \end{array} \\ x \neq 0 \\ ; x \in [-2\pi, 2\pi] \\ x = 0 \end{array} $		$ \begin{array}{l} x \neq 0 \\ x = 0 \end{array} ; x \in [-2\pi, 2\pi] \\ x \neq 0 \\ ; x \in \left[-\frac{1}{\pi}, \frac{1}{2\pi} \right] \end{array} $	
	$\lfloor \overline{2}$	$\mathbf{x} = 0$	L 0	$\mathbf{X} = 0$	

49.	If $f(x)$ satisfies the requirements of Lagrange's mean value theorem on [0, 2] and if $f(0) = 0$ and			
	$f'(x) \le \frac{1}{2} \forall x \in [0, 2], \text{ then}$			
	(A) $ f(x) \le 2$		(B) $f(x) \le 1$	
	(C) $f(x) = 2x$		(D) $f(x) = 3$ for at least	one x in [0, 2]
50.	If $f(x) = x^3 + 7x - 1$ then	f(x) has a zero between $x =$	0 and $x = 1$. The theorem w	hich best describes this, is -
	(A) Rolle's theorem		(B) mean value theorem	
	(C) maximum-minimum	value theorem	(D) intermediate value the	heorem
51.				ordinates of A, B & D are known as quadrilateral ABCD is greatest, is
	(A) (1/2, 7/4)	(B) (1/2, -7/4)	(C) (−1/2, 7/4)	(D) none
52.	On the interval [0,1] the	e function $x^{25} (1-x)^{75}$ takes	its maximum value at the r	point -
	(A) 0	(B) 1/3	(C) 1/2	(D) 1/4
53.	If $f(x) = \sin^3 x + \lambda \sin^2 x$ minima and one maxima		nterval in which λ should l	ie in order that $f(x)$ has exactly one
	(A) (-3/2, 3/2) - {0}	(B) (-2/3, 2/3) - {0}	(C) R	$(\mathbf{D})\left[-\frac{3}{2},0\right)$
54.	The real number x when	added to it's reciprocal giv	es the minimum value of th	e sum at x equal to -
	(A) 1	(B) -1	(C) -2	(D) 2
55.		prism t <mark>he dista</mark> nce from th e prism fo <mark>r which the v</mark> olu		e of the vertices of the other base
	(A) $\frac{1}{2}$	(B) $\frac{1}{\sqrt{3}}$	(C) $\frac{1}{3}$	(D) $\frac{1}{4}$
56.	If $f(x) = a \bullet n x + bx^2 +$	x has its extremum values	at $x = -1$ and $x = 2$, then	
	(A) $a = 2, b = -1$	(B) $a = 2, b = -1/2$	(C) $a = -2, b = 1/2$	(D) none of these
57.		R then the least value of the x-b + x-c + x-d		
	$(\mathbf{A})\mathbf{c}-\mathbf{d}+\mathbf{b}-\mathbf{a}$	$(\mathbf{B})\mathbf{c} + \mathbf{d} - \mathbf{b} - \mathbf{a}$	$(\mathbf{C})\mathbf{c} + \mathbf{d} - \mathbf{b} + \mathbf{a}$	(D) $c - d + b + a$
58.	The greatest, the least	values of the function, f(x	$(x) = 2 - \sqrt{1 + 2x + x^2}$, $x \in$	[-2, 1] are respectively
	(A) 2, 1	(B) 2, -1	(C) 2, 0	(D) none
59.	If $f(x) = 1 + 2x^2 + 4x^4 + 6$	$5x^6 + \dots + 100x^{100}$ is a polyr	nomial in a real variable x, th	en f(x) has -
	(A) neither a maximum r	or a minimum	(B) only one maximum	
	(C) only one minimum		(D) none	
	Add. 41-42	A, Ashok Park Main,	New Rohtak Road, N	lew Delhi-110035
	72	+91-93	350679141	

60.	The lower corner of a leaf in a book is folded over so as to just reach the inner edge of the page. The fraction of width folded over if the area of the folded part is minimum is:			
	(A) 5/8	(B) 2/3	(C) 3/4	(D) 4/5
61.	The difference between	the greatest and the least v	alue of $f(x) = \cos^2 \frac{x}{2} \sin x$,	$x\in [0,\pi]$ is -
	(A) $\frac{3\sqrt{3}}{8}$	(B) $\frac{\sqrt{3}}{8}$	(C) $\frac{3}{8}$	(D) $\frac{1}{2\sqrt{2}}$
62.	Let $f(x)$ and $g(x)$ be two	o continuous functions def	ined from $R \longrightarrow R$, such the form $R \longrightarrow R$ and $R \longrightarrow R$	hat $f(x_1) > f(x_2)$ and $g(x_1) < g(x_2)$,
	$\forall x_1 > x_2$, then solution	set of $f(g(\alpha^2-2\alpha)) > 1$	$f(g(3\alpha-4))$ is	
	(A) R	(B) \$\$	(C) (1,4)	(D) R-[1,4]
63.	A rectangle has one side	on the positive y-axis and	one side on the positive x-a	axis. The upper right hand vertex on
	the curve $y = \frac{\ln x}{x^2}$. The	maximum area of the rectar	ngle is -	
	(A) e^{-1}	(B) $e^{-1/2}$	(C) 1	(D) $e^{1/2}$
64.	The dimensions of the $(x/4)^2 + (y/3)^2 = 1$ are	rectangle of maximum are		-
	(A) $\sqrt{8}, \sqrt{2}$	(B) 4, 3	(C) $2\sqrt{8}, 3\sqrt{2}$	(D) $\sqrt{2}$, $\sqrt{6}$
65.	The set of value (s) of 'a	' for which the function f(x	$=\frac{ax^{3}}{2}+(a+2)x^{2}+(a-1)x^{2}$) $x + 2$ possess a negative point of
	inflection -		3	
	(A) $(-\infty, -2) \cup (0, \infty)$	(B) {-4/5}	(C) (-2,0)	(D) empty set
66.	If x_1 and x_2 are abscissa expression $(x_1 + x_2) - (x_1 + x_2)$		$f(x) = x - x^2$ in the interval	[0, 1], then maximum value of the
	(A) $\frac{1}{2}$	(B) $\frac{1}{4}$	(C) 1	(D) 2
67.	If the function $f(\mathbf{x}) = \frac{\mathbf{t} + \mathbf{t}}{\mathbf{x}}$	$\frac{3x-x^2}{x-4}$, where 't' is a parameter	meter has a minimum and a 1	maximum then the range of values of
	't' is (A) (0, 4)	(B) $(0,\infty)$	(C) (−∞, 4)	(D) (4,∞)
68.	The radius of a right circular cylinder of greatest curved surface which can be inscribed in a given rig circular cone is			
	(A) one third that of the cone		(B) $1/\sqrt{2}$ times that of the cone	
	(C) 2/3 that of the cone	2	(D) $1/2$ that of the con	e
69.		is to be made from 1 cu feet have minimum surface area	•	times as long as it is wide. The width
	$(2)^{1/3}$			3
	(A) $\left(\frac{2}{9}\right)$	(B) $\frac{2}{9}$	(C) $\frac{8}{729}$	(D) $\frac{3}{2}$
	$\mathbf{\nabla}$			

70. The maximum area of the rectangle whose sides pass through the angular points of a given rectangle of sides a and b is

(A) 2 (ab) (B)
$$\frac{1}{2} (a+b)^2$$
 (C) $\frac{1}{2} (a^2+b^2)$ (D) none of these

71. Which of the following statements is true for the general cubic function $f(x) = ax^3 + bx^2 + cx + d$ ($a \neq 0$) **I.** If the derivative f'(x) has two distinct real roots then cubic has one local maxima and one local minima. II. If the derivative f'(x) has exactly one real root then the cubic has exactly one relative extremum. III. If the derivative f'(x) has no real roots, then the cubic has no relative extrema (A) only I & II (B) only II and III (C) only I and III (D) all I, II, III are correct.

72. P and Q are two points on a circle of centre C and radius α , the angle PCQ being 20 then the radius of the circle inscribed in the triangle CPQ is maximum when

(A)
$$\sin \theta = \frac{\sqrt{3}-1}{2\sqrt{2}}$$
 (B) $\sin \theta = \frac{\sqrt{5}-1}{2}$ (C) $\sin \theta = \frac{\sqrt{5}+1}{2}$ (D) $\sin \theta = \frac{\sqrt{5}-1}{4}$
Let $f(x) = \bigvee_{x=1}^{x} \frac{\pi x}{2}$, $0 \le x < 1$
then :
 $2x$, $x \ge 1$
(A) $f(x)$ has local maxima at $x = 1$
(C) $f(x)$ does not have any local extrema at $x = 1$
(B) $f(x)$ has local minima at $x = 1$
(D) $f(x)$ has a global minima at $x = 1$
The maximum distance of the point (k, 0) from the curve $2x^2 + y^2 - 2x = 0$ is equal to

74.

(A)
$$\sqrt{1+2k-k^2}$$

73.

(B) $\sqrt{1+2k+2k^2}$ **(C)** $\sqrt{1-2k+2k^2}$ **(D)** $\sqrt{1-2k+k^2}$

- 75. Function f(x), g(x) are defined on [-1, 3] and f''(x) > 0, g''(x) > 0 for all $x \in [-1, 3]$, then which of the following is always true ?
 - (A) f(x) g(x) is concave upwards on (-1, 3)
 - (C) f(x) g(x) does not have a critical point on (-1, 3) (D) f(x) + g(x) is concave upwards on (-1, 3)
- **(B)** f(x) g(x) is concave upwards on (-1, 3)

Exercise # 2 Part # I [Multiple Correct Choice Type Questions] 1. Which of the following pair(s) of curves is/are orthogonal. (A) $y^2 = 4ax$; $y = e^{-x/2a}$ **(B)** $y^2 = 4ax$; $x^2 = 4ay$ (C) $xy = a^2$; $x^2 - y^2 = b^2$ (D) $y = ax : x^2 + y^2 = c^2$ Let $h(x) = f(x) - (f(x))^2 + (f(x))^3$ for every real number x. Then. 2. (A) h is increasing whenever f is increasing (B) h is increasing whenever f is decreasing (C) h is decreasing whenever f is decreasing (**D**) nothing can be said in general Let S be the set of real values of parameter λ for which the function $f(x) = 2x^3 - 3(2 + \lambda)x^2 + 12\lambda x$ has exactly one local 3. maxima and exactly one local minima. Then the subset of S is -(D) $(-\infty, -1)$ $(\mathbf{A})(5,\infty)$ **(B)** (-4, 4) (C)(3,8)If tangent to curve $2y^3 = ax^2 + x^3$ at point (a, a) cuts off intercepts α , β on co-ordinate axes, where **4**. $\alpha^2 + \beta^2 = 61$, then the value of 'a' is equal to (A) 20 **(B)** 25 (C) 30 **(D)** -30If P is a point on the curve $5x^2 + 3xy + y^2 = 2$ and O is the origin, then OP has 5. (A) minimum value $\frac{1}{2}$ (B) minimum value $\frac{2}{\sqrt{11}}$ (C) maximum value $\sqrt{11}$ (D) maximum value 2 The angle at which the curve $y = Ke^{Kx}$ intersects the y-axis is -6. (C) $\sin^{-1}\left(\frac{1}{\sqrt{1+k^4}}\right)$ (D) $\sec^{-1}\left(\sqrt{1+k^4}\right)$ **(B)** $\cot^{-1}(k^2)$ (A) $\tan^{-1}k^2$ For the function $f(x) = x \cot^{-1}x, x \ge 0$ 7. (A) there is at least one $x \in (0, 1)$ for which $\cot^{-1}x = \frac{x}{1+x^2}$ (B) for at least one x in the internal $(0, \infty)$, $f\left(x + \frac{2}{\pi}\right) - f(x) < 1$ (C) number of solution of the equation $f(x) = \sec x$ is 1 (D) f'(x) is strictly decreasing is the internal $(0, \infty)$ If $f(x) = \frac{x}{1 + x \tan x}$, $x \in \left(0, \frac{\pi}{2}\right)$, then 8. (A) f(x) has exactly one point of minima **(B)** f(x) has exactly one point of maxima (C) f(x) is increasing in $\left(0, \frac{\pi}{2}\right)$ **(D)** maxima occurs at x_0 where $x_0 = \cos x_0$ If $\frac{x}{a} + \frac{y}{b} = 1$ is a tangent to the curve x = Kt, $y = \frac{K}{t}$, K > 0 then : 9. (A) a > 0, b > 0**(B)** a > 0, b < 0(C) a < 0, b > 0 (D) a < 0, b < 0Add. 41-42A, Ashok Park Main, New Rohtak Road, New Delhi-110035

+91 - 9350679141

f"(x) > 0 for all x ∈ [-3, 4], then which of the following are always true?
(A) f(x) has a relative minimum on (-3, 4)
(B) f(x) has a minimum on [-3, 4]
(C) f(x) is concave upwards on [-3, 4]
(D) if f(3)=f(4) then f(x) has a critical point on [-3, 4]

11. The function
$$y = \frac{2x-1}{x-2}$$
 (x \neq 2) -

(A) is its own inverse

(B) decreases for all values of x

(D) is bound for all x

- (C) has a graph entirely above x-axis
- 12. The curve $y = \frac{x+1}{x^2+1}$ has
 - (A) x = 1, as point of inflection (B) $x = -2 + \sqrt{3}$, as point of inflection (C) x = -1, as point of minimum (D) $x = -2 - \sqrt{3}$, as point of inflection

13. The coordinates of the point(s) on the graph of the function, $f(x) = \frac{x^3}{3} - \frac{5x^2}{2} + 7x - 4$ where the tangent drawn cut off intercepts from the coordinate axes which are equal in magnitude but opposite in sign, is -(A) (2,8/3) (B) (3,7/2) (C) (1,5/6) (D) none

14. The co-ordinates of point(s) on the graph of the function, $f(x) = \frac{x^3}{3} - \frac{5x^2}{2} + 7x - 4$ where the tangent drawn cut off intercepts from the co-ordinate axes which are equal in magnitude but opposite in sign, is (A) (2, 8/3) (B) (3, 7/2) (C) (1, 5/6) (D) none

- 15. Let $f(x) = \int e^{x} (x-1)(x-2) dx$. Then 'f' increases in the interval -(A) $(-\infty, -2)$ (B) (-2, -1) (C) (1, 2) (D) $(2, \infty)$
- 16. If $f(x) = \begin{bmatrix} -\sqrt{1-x^2} & , & 0 \le x \le 1 \\ -x & , & x > 1 \end{bmatrix}$, then
 - (A) Maximum of f(x) exist at x = 1(B) Maximum of f(x) doesn't exists(C) Minimum of $f^{-1}(x)$ exist at x = -1(D) Minimum of $f^{-1}(x)$ exist at x = 1
- 17. The abscissa of the point on the curve $\sqrt{xy} = a + x$, the tangent at which cuts off equal intercepts from the co-ordinate axes is (a > 0)
 - (A) $\frac{a}{\sqrt{2}}$ (B) $-\frac{a}{\sqrt{2}}$ (C) $a\sqrt{2}$ (D) $-a\sqrt{2}$

APPLICATION OF DERIVATIVE

The value of 'a' for which the function $f(\mathbf{x}) = \begin{cases} -\mathbf{x}^3 + \cos^{-1} \mathbf{a}, & 0 < \mathbf{x} < 1 \\ \mathbf{x}^2, & \mathbf{x} \ge 1 \end{cases}$ has a local minimum at $\mathbf{x} = 1$, is -18. **(D)** $-\frac{1}{2}$ (A) - 1**(C)**0 **(B)** 1 19. If f(0) = f(1) = f(2) = 0 & function f(x) is twice differentiable in (0, 2) and continuous in [0, 2]. Then which of the following is/are definitely true -(A) $f''(c) = 0; \forall c \in (0, 2)$ (B) f'(c) = 0; for at least two $c \in (0, 2)$ (D) f''(c) = 0; for at least one $c \in (0, 2)$ (C) f'(c) = 0; for exactly one $c \in (0, 2)$ 20. Which of the following inequalities always hold good in (0, 1)**(B)** $\cos x < 1 - \frac{x^2}{2}$ (A) $x > tan^{-1}x$ **(D)** $x - \frac{x^2}{2} < ln(1+x)$ (C) $1 + x \ln(x + \sqrt{1 + x^2}) > \sqrt{1 + x^2}$ Equation of a tangent to the curve $y \cot x = y^3 \tan x$ at the point where the abscissa is $\frac{\pi}{4}$ is -21. **(B)** $4x - 2y = \pi + 2$ (A) $4x + 2y = \pi + 2$ **(D)** y = 0(C) x = 022. For the curve $x = t^2 + 3t - 8$, $y = 2t^2 - 2t - 5$, at point (2, -1) (A) length of subtangent is 7/6. **(B)** slope of tangent = 6/7(C) length of tangent = $\sqrt{(85)}/6$ (D) none of these For the curve represented parametrically by the equations, $x = 2 \bullet n \cot t + 1$ and $y = tant + \cot t$ 23. (A) tangent at $t = \pi/4$ is parallel to x-axis **(B)** normal at $t = \pi/4$ is parallel to y-axis (C) tangent at $t = \pi/4$ is parallel to the line y = x(D) normal at $t = \pi/4$ is parallel to the line y = x24. The co-ordinates of a point on the parabola $2y = x^2$ which is nearest to the point (0, 3) is **(B)** $(-\sqrt{2}, 1)$ **(C)** $(\sqrt{2}, 1)$ (A)(2,2)**(D)** (-2, 2)If $f(x) = \begin{bmatrix} 3x^2 + 12x - 1, & -1 \le x \le 2\\ 37 - x, & 2 \le x \le 3 \end{bmatrix}$ then -25. (A) f(x) is increasing on (-1, 2)**(B)** f(x) is continuous on [-1, 3](D) f(x) has the maximum value at x = 2(C) f(2) does not exist If $f(x) = 2x + \cot^{-1} x + \bullet n \left(\sqrt{1 + x^2} - x\right)$, then f(x): 26. (A) increases in $[0, \infty)$ (B) decreases in $[0, \infty)$ (C) neither increases nor decreases in $[0, \infty)$ (D) increases in $(-\infty, \infty)$

27.	Let $\phi(x) = (f(x))^3 - 3(f(x))^2 + 4f(x) + 5x + 3\sin x + 4\cos x \forall x$	\in R, then -
	(A) ϕ is increasing whenever f is increasing (B)) \$\phi\$ is increasing whenever f is decreasing
	(C) ϕ is decreasing whenever f is decreasing (D)	ϕ is decreasing if $f(x) = -11$
28.	A function f is defined by $f(x) = \int_{0}^{\pi} \cos t \cos(x-t) dt$, $0 \le x$	$x \le 2\pi$ then which of the following hold(s) good ?
	(A) $f(x)$ is continuous but not differentiable in $(0, 2\pi)$	
	(B) Maximum value of f is π	
	(C) There exists at least one $c \in (0, 2\pi)$ s.t. $f'(c) = 0$.	
	(D) Minimum value of f is $-\frac{\pi}{2}$.	
29.	If $y = f(x)$ be the equation of a parabola which is touch	hed by the line $y = x$ at the point where $x = 1$. Then -
	(A) $f'(1) = 1$ (B) $f'(0) = f'(1)$ (C)	2f(0) = 1 - f'(0) (D) $f(0) + f'(0) + f''(0) = 1$
30.	The function $f(x) = \int_{0}^{x} \sqrt{1 - t^4} dt$ is such that :	
	(A) it is defined on the interval $[-1,1]$ (B)	it is an increasing function
	(C) it is an odd function (D)) the point $(0,0)$ is the point of inflection
31.	Consider the curve $f(x) = x^{1/3}$, then -	
) the equation of normal at $(0, 0)$ is $y = 0$
	(C) normal to the curve does not exist at $(0, 0)$ (D)) $f(x)$ and its inverse meet at exactly 3 points.
32.	Which of the following statements is/are correct?	
	(A) $x + \sin x$ is increasing function	
	 (B) sec x is neither increasing nor decreasing function (C) x + sinx is decreasing function 	
	(D) sec x is an increasing function	
33.	Let f and g be two functions defined on an interval I suc	b that $f(x) > 0$ and $g(x) < 0$ for all $x \in I$ and f is strictly
00.	decreasing on I while g is strictly increasing on I then -	In that $f(x) \ge 0$ and $g(x) \ge 0$ for all $x \in T$ and T is strictly
	(A) the product function fg is strictly increasing on I	
	(B) the product function fg is strictly decreasing on I	
	(C) $fog(x)$ is monotonically increasing on I	
	(D) fog(x) is monotonically decreasing on I	
34.	Let f and g be two differentiable functions defined on an	
	f is strictly decreasing on I while g is strictly increasing(A) The product function fg is strictly increasing on I	g on I then
	(B) The product function fg is strictly increasing on I (B) The product function fg is strictly decreasing on I	
	(C) fog(x) is monotonically increasing on I	
	(D) fog (x) is monotonically decreasing on I	
35.	Let $g(x) = 2f(x/2) + f(1-x)$ and $f'(x) < 0$ in $0 \le x \le 1$ then	n g (x) -
	(A) decreases in [0,2/3) (B) decreases in (2/3,1] (C)) increases in [0,2/3) (D) increases in (2/3,1]

36.	The function $f(x) = x^{1/3}(x-1)$				
	(A) has 2 inflection points.				
	(B) is strictly increasing for $x > 1/4$ and strictly defined as the strictly defined as $1/4$ and $1/4$ and strictly defined as $1/4$ and $1/4$	creasing for $x < 1/4$.			
	(C) is concave down in $(-1/2, 0)$.				
	(D) Area enclosed by the curve lying in the fourth	n quadrant is 9/28.			
37.	If the line $ax + by + c = 0$ is a normal to the curve $xy = 1$, then -				
	(A) $a > 0, b > 0$ (B) $a > 0, b < 0$	(C) $a < 0, b > 0$	(D) $a < 0, b < 0$		
38. Let $\phi(x) = (f(x))^3 - 3(f(x))^2 + 4f(x) + 5x + 3\sin x + 4\cos x \ \forall x \in \mathbb{R}$, then					
	(A) ϕ is increasing whenever f is increasing	(B) ϕ is increasing whe	never f is decreasing		
	(C) ϕ is decreasing whenever f is decreasing	(D) ϕ is decreasing if f'((x) = -11		
39.	If a continuous function $f(\mathbf{x})$ has a local maximum	n at $x = a$, then -			
	(A) $f'(a^+)$ may be 0 (B) $f'(a^+)$ may be $-\infty$				
	(C) $f'(a^+)$ may be non-zero finite real number	(D) $f'(a^{-})$ may be $-\infty$			
40.	Let $f(x) = 8x^3 - 6x^2 - 2x + 1$, then -				
	(A) $f(x) = 0$ has no root in $(0, 1)$	(B) $f(x) = 0$ has at least of	ne root in $(0, 1)$		
	(C) $f(c)$ vanishes for some $c \in (0,1)$	(D) none			
41.	Let $f(x) = (x^2 - 1)^n (x^2 + x + 1)$. $f(x)$ has local extra				
	(A) $n = 2$ (B) $n = 3$	(C) $n = 4$	(D) $n = 6$		
42.	The function $\frac{\sin(x+a)}{\sin(x+b)}$ has no maxima or minima	aif-			
	(A) $b-a=n\pi$, $n \in I$	(B) $b - a = (2n+1)\pi n \in$: T		
	(C) $b - a = 2n \pi$, $n \in I$	(D) none of these.			
		(b) none of these.			
43.	Equation of common tangent(s) of $x^2 - y^2 = 12$ and	d xy = 8 is (are) -			
	(A) $y = 3x + 4\sqrt{6}$ (B) $y = -3x + 4\sqrt{6}$	(C) $3y = x + 4\sqrt{6}$	(D) $y = -3x - 4\sqrt{6}$		
44.	Which of the following statements are true :				
	(A) $ \tan^{-1} x - \tan^{-1} y \le x - y $, where x, y are real to	numbers.			
	(B) The function $x^{100} + \sin x - 1$ is strictly increasing	ng in [0, 1]			
	(C) If a, b, c are is A.P, then at least one root of the equation $3ax^2 - 4bx + c = 0$ is positive				
	(D) Curve $y^2 = 4ax$ and $y = e^{-\frac{x}{2a}}$ are orthogonal or	curves.			
	, , , , , , , , , , , , , , , , , , ,				
45.	Equation $\frac{1}{(x+1)^3} - 3x + \sin x = 0$ has -				
	(A) no real root	(B) two real and distinct	roots		
	(C) exactly one negative root	(D) exactly one root betw	ween -1 and 1		

46. Let $f(x) = \frac{x-1}{x^2}$ then which of the following is correct.

 $(\mathbf{A})f(\mathbf{x})$ has minima but no maxima.

- **(B)** f(x) increases in the interval (0, 2) and decreases in the interval $(-\infty, 0) \cup (2, \infty)$.
- (C) f(x) is concave down in $(-\infty, 0) \cup (0, 3)$.

(D) x = 3 is the point of inflection.

- 47. The coordinates of the point P on the graph of the function $y = e^{-|x|}$, where area of triangle made by tangent and the coordinate axis has the greatest area, is -
 - (A) $\left(1,\frac{1}{e}\right)$ (B) $\left(-1,\frac{1}{e}\right)$ (C) (e,e^{-e}) (D) none

48. Let f(x) = 40/(3x⁴ + 8x³ - 18x² + 60). Which of the following statement(s) about f(x) is (are) correct ?
(A) f(x) has local minima at x = 0.
(B) f(x) has local maxima at x = 0.
(C) Absolute maximum value of f(x) is not defined. (D) f(x) is local maxima at x = -3, x = 1.

49. Let
$$g(x) = 2f(x/2) + f(1-x)$$
 and $f''(x) < 0$ in $0 \le x \le 1$ then $g(x)$

- (A) decreases in $\begin{bmatrix} 0, \frac{2}{3} \end{bmatrix}$ (B) decreases $\begin{bmatrix} \frac{2}{3}, 1 \end{bmatrix}$ (C) increases in $\begin{bmatrix} 0, \frac{2}{3} \end{bmatrix}$ (D) increases in $\begin{bmatrix} \frac{2}{3}, 1 \end{bmatrix}$
- 50. If $f(x) = \tan^{-1}x (1/2) \bullet n x$. Then

(A) the greatest value of f(x) on $\left[1/\sqrt{3}, \sqrt{3}\right]$ is $\pi/6 + (1/4) \bullet n 3$

- (B) the least value of f(x) on $\left[\frac{1}{\sqrt{3}}, \sqrt{3}\right]$ is $\pi/3 (1/4) \bullet n 3$
- (C) f(x) decreases on $(0, \infty)$
- **(D)** f(x) increases on $(-\infty, 0)$

	Part # II [Assertion & Reason Type Questions]
	 These questions contains, Statement I (assertion) and Statement II (reason). (A) Statement-I is true, Statement-II is true ; Statement-II is correct explanation for Statement-I. (B) Statement-I is true, Statement-II is true ; Statement-II is NOT a correct explanation for statement-I. (C) Statement-I is true, Statement-II is false. (D) Statement-I is false, Statement-II is true.
1.	Statement-I : The ratio of length of tangent to length of normal is proportional to the ordinate of the point of tangency at the curve $y^2 = 4ax$.
	Statement-II : Length of normal and tangent to a curve $y = f(x)$ is $\left y\sqrt{1+m^2} \right $ and $\left \frac{y\sqrt{1+m^2}}{m} \right $, where $m = \frac{dy}{dx}$.
2.	Statement I: The curves $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ and $\frac{x^2}{1+a^2} + \frac{y^2}{1-b^2} = 1$ are orthogonal, for $b \in (-1,1)$.
3.	Statement II : $ax^2 + by^2 = 1$ and $Ax^2 + By^2 = 1$ are orthogonal iff $ab(A - B) = AB(a - b)$. Statement-I : The quadratic equation $10x^2 - 28x + 17 = 0$ has at least one root in [1,2].
5.	Statement-II : $f(x) = e^{10x}(x - 1)(x - 2)$ satisfies all the conditions for Rolle's theorem in [1,2]
4.	Let $f(x) = x^{50} - x^{20}$ Statement-I : Global maximum of $f(x)$ in [0, 1] is 0. Statement-II : $x = 0$ is a stationary point of $f(x)$.
5.	Statement-I : The greatest of the numbers 1, $2^{1/2}$, $3^{1/3}$, $4^{1/4}$, $5^{1/5}$, $6^{1/6}$, $7^{1/7}$ is $3^{1/3}$.
	Statement-II : $x^{1/x}$ is increasing for $0 < x < e$ and decreasing for $x > e$.
6.	Consider the graph of the function $f(x) = x + \sqrt{ x }$ Statement–I: The graph of $y = f(x)$ has only one critical point
	Statement-II: f'(x) vanishes only at one point
7.	Statement-I : Any tangent to the curve $y = x^7 + 8x^3 + 2x + 1$ makes an acute angle with the positive x-axis. Statement-II : Any tangent to the curve $y = a_0x^{2n+1} + a_1x^{2n-1} + a_2x^{2n-3} + \dots + a_nx + 1$ makes an acute angle with the positive x-axis where a_1 ,, $a_{n-1} \ge 0$; a_0 , $a_n > 0$ and $n \in N$.
8.	Statement-I: Consider the function, $f(x) = \begin{cases} -\frac{x}{2}, & x < 0\\ 7x + 8, & x \ge 0 \end{cases}$; $f(x)$ has local minima at $x = 0$
	Statement-II: If $f(a) < f(a-h) & f(a) < f(a+h)$ where 'h' is sufficiently small; then $f(x)$ has local minima at $x = a$.
9.	Statement-I : If $f(x)$ is increasing function with concavity upwards, then concavity of $f^{-1}(x)$ is also upwards.
	Statement-II : If $f(x)$ is decreasing function with concavity upwards, then concavity of $f^{-1}(x)$ is also upwards.

10. Consider the polynomial function
$$f(x) = \frac{x^7}{7} - \frac{x^6}{6} + \frac{x^5}{5} - \frac{x^4}{4} + \frac{x^3}{3} - \frac{x^2}{2} + x$$

Statement-I : The equation f(x) = 0 can not have two or more roots. **Statement-II :** Rolles theorem is not applicable for y = f(x) on any interval [a, b] where a, $b \in \mathbb{R}$

- Statement-I : The product of the ordinates to the point of tangency to the curve (1 + x²)y = 2 x, where the tangent makes equal intercept with coordinate axes is equal to 1.
 Statement-II : Slope of straight line making equal intercept with coordinate axis is equal to 1.
- 12. Statement-I: e^{π} is bigger than π^e . Statement-II: $f(x) = x^{1/x}$ is a increasing function when $x \in [e, \infty)$
- 13. Statement-I : The largest term in the sequence $a_n = \frac{n^2}{n^3 + 200}$, $n \in N$ is the 7th term. Statement-II : The function $f(x) = \frac{x^2}{x^3 + 200}$ attains local maxima at x = 7.
- 14. Statement I : ABC is given triangle having respective sides a,b,c. D,E,F are points of the sides BC,CA,AB respec

tively so that AFDE is a parallelogram. The maximum area of the parallelogram is $\frac{1}{4}$ besinA.

Statement II: Maximum value of $2kx - x^2$ is at x = k.

15. Let $f : R \to R$, $f(x) = x^3 + x^2 + 3x + \sin x$.

Statement-I: f(x) is one-one.

Statement-II : f(x) is decreasing function.

16. Let
$$f(x) = ln(2+x) - \frac{2x+2}{x+3}$$
.

Statement-I: The equation f(x) = 0 has a unique solution in the domain of f(x). **Statement-II:** If f(x) is continuous in [a, b] and is strictly monotonic in (a, b) then f has a unique root in (a, b)

- 17. Statement-I : $e^{\pi} > \pi^{e}$. Statement-II : The function $f(x) = x^{1/x}$ attains global maxima at x = e.
- 18. Let y = f (x) be a thrice derivable function such that f (a) f (b) < 0, f (b) f (c) < 0, f (c) f (d) < 0 where a < b < c < d. Also the equations f (x) = 0 & f "(x) = 0 have no common roots.
 Statement-I : The equation f (x)(f "(x))² + f (x) f '(x) f "'(x) + (f '(x))² f "(x) = 0 has atleast 5 real roots.
 Statement-II : The equation f (x) = 0 has atleast 3 real distinct roots & if f (x) = 0 has k real distinct roots, then f '(x) = 0 has atleast k 1 distinct roots.

Exercise # 3 Part # I [Matrix Match Type Questions]

Following question contains statements given in two columns, which have to be matched. The statements in **Column-I** are labelled as A, B, C and D while the statements in **Column-II** are labelled as p, q, r and s. Any given statement in **Column-I** can have correct matching with one or more statement(s) in **Column-II**.

1.		Column-I	Colum	ı-II
	(A)	The angle of intersection of $y^2 = 4x$ and $x^2 = 4y$ is 90° and	(p)	0
		$\tan^{-1}\left(\frac{m}{n}\right)$ then $ m + n $ is equal to (m and n are coprime)	(q)	$\frac{1}{2}$
	(B)	The area of triangle formed by normal at the point (1, 0) on the curve $x = e^{siny}$ with axes is	(r)	7
	(C)	If the angle between curves $x^2y=1$ and $y = e^{2(1-x)}$ at the point (1, 1) is θ then tan θ is equal to		
	(D)	The length of sub-tangent at any point on the curve $y = be^{x/3}$ is equal to	(s)	3
2.		Column-I	Colum	n-II
	(A)	If θ is angle between the curves $y = [\sin x + \cos x]]$,	(p)	$\frac{5}{4}$
		([\cdot] denote GIF) and $x^2 + y^2 = 5$ then $\csc^2\theta$ is		
	(B)	Length of subnormal to $x = \sqrt{2} \cos t$, $y = -3\sin t$ at $t = \frac{-\pi}{4}$ is	(q)	2
	(C)	If [a, b], (b < 1) is largest interval in which	(r)	$\frac{8}{3}$
		$f(x) = 3x^4 + 8x^3 - 6x^2 - 24x + 19$ is strictly increasing then $\frac{a}{b}$ is		
	(D)	If $a + b = 8$, $a, b > 0$ then minimum value of $\frac{a^3 + b^3}{48}$ is	(\$)	$\frac{9}{2}$
3.	Colum	n-I	Colum	n-II
	(A)	The equation $x \log x = 3 - x$ has at least one root in	(p)	[0, 1]
	(B)	If $27a + 9b + 3c + d = 0$, then the equation $4ax^3 + 3bx^2 + 2cx + d = 0$ has at least one root in	(q)	[1,3]
	(C)	If $c = \sqrt{3}$ & $f(x) = x + \frac{1}{x}$ then interval in which	(r)	[0,3]
		LMVT is applicable for f(x) is		
	(D)	If $c = \frac{1}{2}$ & $f(x) = 2x - x^2$, then interval in which	(s)	[-1,1]
		LMVT is applicable for f(x) is		

4. Column-I

(A)
$$f(x) = \frac{\sin x}{e^x}, x \in [0,\pi]$$

(B)
$$f(x) = \operatorname{sgn}((e^{x}-1) \bullet nx), x \in \left[\frac{1}{2}, \frac{3}{2}\right]$$

(C)
$$f(x) = (x-1)^{2/5}, x \in [0,3]$$

(**D**)
$$f(\mathbf{x}) = \begin{cases} x \left(\frac{e^{\frac{1}{\mathbf{x}}} - 1}{e^{\frac{1}{\mathbf{x}}} + 1} \right), & \mathbf{x} \in [-1, 1] - \{0\} \\ 0, & \mathbf{x} = 0 \end{cases}$$

$Column-I\!I$

- (p) Conditions in Rolle's theorem are satisfied.
- (q) Conditions in LMVT are satisfied.
- (r) At least one condition in Rolle's theorem is not satisfied.

At least one condition in LMVT is not satisfied.

5. Four points A, B, C and D lie in the order on the parabola $y = ax^2 + bx + c$ and the coordinates of A, B and D are known A(-2, 3); B(-1, 1); D(2, 7).

(s)

On the basis of above information match the following :

	Column-I	Colun	ın-II
(A)	The value of $a + b + c =$	(p)	-1
(B)	If roots of the equation $ax^2 + bx + c = 0$	(q)	8
	are $\alpha \& \beta$ then $\alpha^{19} + \beta^7 =$		
(C)	If the value of function $(a + 2)x^2 + 2\frac{(b+2)}{x} + c$	(r)	3
	at minima is L then $L - 3$ is equal to		
(D)	If area of quadrilateral ABCD is greatest	(s)	7
	and co-ordinates of C are (p, q) then $2p + 4q =$		
Colun	m – I	Colun	nn – II
(A)	A rectangle is inscribed in an equilateral triangle of side 4cm.	(p)	65
	Square of maximum area of such a rectangle is		
(B)	The volume of a rectangular closed box is 72 and the base	(q)	36
	sides are in the ratio 1 : 2. The least total surface area is		
(C)	Maximum value of $(\sqrt{-3+4x-x^2}+4)^2 + (x-5)^2$	(r)	12
	(where $1 \le x \le 3$) is		
(D)	The sides of a rectangle of greatest perimeter which is inscribed	(s)	108
	in a semicircle of radius $\sqrt{5}$ are a and b. Then $a^3 + b^3 =$		

6.

APPLICATION OF DERIVATIVE

7.	Column-I		Colum	ı-II
	(A)	The slope of the curve $2y^2 = ax^2 + b$ at $(1, -1)$ is -1 , then	(p)	a - b = 2
	(B)	If (a, b) be the point on the curve $9y^2 = x^3$ where normal to	(q)	a - b = 7/2
		the curve makes equal intercepts with the axes, then		
	(C)	If the tangent at a point (1, 2) on the curve $y = ax^2 + bx + \frac{7}{2}$	(r)	a - b = 4/3
		be parallel to the normal at $(-2, 2)$ on the curve $y = x^2 + 6x + 10$, then		
	(D)	If the tangent to the curve $xy + ax + by = 0$ at (1, 1) is inclined at an angle $\tan^{-1} 2$ with x-axis, then	(s)	$\mathbf{a} - \mathbf{b} = 3$
8.	Colum	n-T	Colum	n - II
	(A)	$\sin^{-1} x - \cos^{-1} x$ is maximum at	(p)	x = -1
				1
	(B)	$(\sin^{-1}x)^2 + (\cos^{-1}x)^2$ is minimum at	(q)	$\mathbf{x} = -\frac{1}{\sqrt{2}}$
	(C)	$(\tan^{-1}x)^2 + (\cot^{-1}x)^2$ is minimum at	(r)	$\mathbf{x} = 0$
	(D)	$(\sin^{-1}x)^3 + (\cos^{-1}x)^3$ is maximum at	(s)	$\mathbf{x} = \frac{1}{\sqrt{2}}$
			(t)	$\mathbf{x} = 1$
9.	For the	function $f(x) = x^4(12 \bullet nx - 7)$ match the following :		
		Column-I	Colum	n-II
	(A)	If (a, b) is the point of inflection then $a - b$	(p)	3
		is equal to		
	(B)	If e ^t is a point of minima then 12t is equal to	(q)	1
	(C)	If graph is concave downward in (d, e) then	(r)	4
		d + 3e is equal to		
	(D)	If graph is concave upward in (p, ∞) then the	(s)	8
		least value of p is equal to		

Part # II

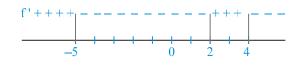
[Comprehension Type Questions]

Comprehension # 1

Consider the function $f(x) = x^2 f(1) - xf(2) + f'(3)$ such that f(0) = 21. The values of f(1) is -(A) 0 (B) 1 (C) 2 (D) 1 2. Equation of tangent to y = f(x) at x = 3 is -(A) y = x - 7 (B) $y = \frac{x}{4} - 7$ (C) y = 4x - 7 (D) none of these

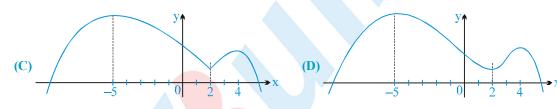
3. The angle of intersection of
$$y = f(x)$$
 and $y = 2e^{2x}$ is -
(A) $\tan^{-1}\left(\frac{3}{4}\right)$ (B) $\tan^{-1}\left(\frac{4}{3}\right)$ (C) 0 (D) $\tan^{-1}\left(\frac{6}{7}\right)$
Comprehension # 2
Let a(t) be a function of t such that $\frac{da}{dt} = 2$ for all values of t and $a = 0$ when $t = 0$. Further $y = m(t) x + c(t)$ is tangent to the curve $y = x^2 - 2ax + a^2 + a$ at the point whose abscissa is 0. Then
1. If the rate of change of distance of vertex of $y = x^2 - 2ax + a^2 + a$ from the origin with respect to t is k, then $k =$
(A) 2 (B) $2\sqrt{2}$ (C) $\sqrt{2}$ (D) $4\sqrt{2}$
2. If the rate of change of c(t) with respect to t, when $t = k$, is \bullet , then $\bullet =$
(A) $16\sqrt{2} - 2$ (B) $8\sqrt{2} + 2$ (C) $10\sqrt{2} + 2$ (D) $16\sqrt{2} + 2$
3. The rate of change of m(t), with respect to t, at $t = \bullet$ is
(A) -2 (B) 2 (C) -4 (D) 4
Comprehension # 3
Consider the cubic $f(x) = 8x^3 + 4ax^2 + 2bx + a$ where $a, b \in \mathbb{R}$.
1. For $a = 1$ if $y = f(x)$ is strictly increasing $\forall x \in \mathbb{R}$ then maximum range of values of b is
(A) $\left(-\infty, \frac{1}{3}\right)$ (B) $\left(\frac{1}{3}, \infty$) (C) $\left(\frac{1}{3}, \infty$) (D) $(-\infty, \infty)$
2. For $b = 1$, if $y = f(x)$ is non monotonic then the sum of all the integral values of $a \in [1, 100]$, is
(A) $(4950$ (B) 5049 (C) 5050 (D) 5047
3. If the sum of the base 2 logarithms of the roots of the cubic $f(x) = 0$ is 5 then the value of 'a' is
(A) -64 (B) -8 (C) -128 (D) -256
Comprehension # 4
Suppose you do not know the function $f(x)$, however some information about $f(x)$ is listed below. Read the following carefully before attempting the questions

- (i) $f(\mathbf{x})$ is continuous and defined for all real numbers
- (ii) f'(-5) = 0; f'(2) is not defined and f'(4) = 0
- (iii) (-5, 12) is a point which lies on the graph of f(x)
- (iv) f''(2) is undefined, but f''(x) is negative everywhere else.
- (v) the signs of f'(x) is given below



У

- 1. On the possible graph of y = f(x) we have
 - (A) x = -5 is a point of relative minima.
 - **(B)** x = 2 is a point of relative maxima.
 - (C) x = 4 is a point of relative minima.
 - **(D)** graph of y = f(x) must have a geometrical sharp corner.
- 2. From the possible graph of y = f(x), we can say that
 - (A) There is exactly one point of inflection on the curve.
 - (B) f(x) increases on $-5 \le x \le 2$ and $x \ge 4$ and decreases on $-\infty \le x \le -5$ and $2 \le x \le 4$.
 - (C) The curve is always concave down.
 - (D) Curve always concave up.



Comprehension # 5

Let y = f(x) be a differentiable function which satisfies $f'(x) = f^2(x)$ and $f(0) = -\frac{1}{2}$. The graph of the differentiable function y = g(x) contains the point (0, 2) and has the property that for each number 'P', the line tangent to y = g(x) at (P, g(P)) intersects x-axis at P + 2.

On the basis of above information, answer the following questions :

1.

- If the tangent is drawn to the curve y = f(x) at a point where it crosses the y-axis then its equation is -
 - (A) x 4y = 2 (B) x + 4y = 2 (C) x + 4y + 2 = 0 (D) none of these
- 2. The function y = g(x) is given by -

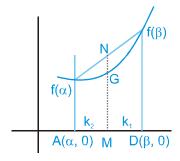
(A)
$$\frac{e^{-x/2}}{2}$$
 (B) $e^{-x/2}$ (C) 2. $e^{-x/2}$ (D) $e^{-x/2} + 2$

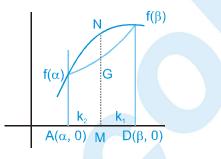
3. The number of point of intersection of y = f(x) and y = g(x) -

(A) 4 (B) 0 (C) 2 (D) 1

Comprehension # 6

For a double differentiable function f(x) if $f''(x) \ge 0$ then f(x) is concave upward and if $f''(x) \le 0$ then f(x) is concave downward





Here M
$$\left(\frac{k_1 \alpha + k_2 \beta}{k_1 + k_2}, 0\right)$$

If f(x) is a concave upward in [a, b] and $\alpha, \beta \in [a, b]$ then $\frac{k_1 f(\alpha) + k_2 f(\beta)}{k_1 + k_2} \ge f\left(\frac{k_1 \alpha + k_2 \beta}{k_1 + k_2}\right)$, where $k_1, k_2 \in \mathbb{R}^+$

If f(x) is a concave downward in [a, b] and $\alpha, \beta \in [a, b]$ then $\frac{k_1 f(\alpha) + k_2 f(\beta)}{k_1 + k_2} \le f\left(\frac{k_1 \alpha + k_2 \beta}{k_1 + k_2}\right)$, where $k_1, k_2 \in \mathbb{R}^+$ then answer the following

1. Which of the following is true

(A)
$$\frac{\sin \alpha + \sin \beta}{2} > \sin \left(\frac{\alpha + \beta}{2} \right); \alpha, \beta(0, \pi)$$
 (B) $\frac{\sin \alpha + \sin \beta}{2} < \sin \left(\frac{\alpha + \beta}{2} \right); \alpha, \beta \in (\pi, 2\pi)$

(C)
$$\frac{\sin \alpha + \sin \beta}{2} < \sin \left(\frac{\alpha + \beta}{2} \right); \alpha, \beta \in (0, \pi)$$

2. Which of the following is true

(A)
$$\frac{2^{\alpha} + 2^{\beta+1}}{3} \le 2^{\frac{\alpha+2\beta}{3}}$$

(B) $\frac{2\ln \alpha + \ln \beta}{3} \ge \ln \left(\frac{2\alpha+\beta}{3}\right)$
(C) $\frac{\tan^{-1}\alpha + \tan^{-1}\beta}{2} \le \tan^{-1}\left(\frac{\alpha+\beta}{2}\right)$ a, b $\in \mathbb{R}^{-}$
(D) $\frac{e^{\alpha} + 2e^{\beta}}{3} \ge e^{\frac{\alpha+2\beta}{3}}$

3.

Let α , β and γ are three distinct real numbers and f''(x) < 0. Also f(x) is increasing function and let $A = \frac{f^{-1}(\alpha) + f^{-1}(\beta) + f^{-1}(\gamma)}{3} \text{ and } B = f^{-1}\left(\frac{\alpha + \beta + \gamma}{3}\right), \text{ then order relation between A and B is - (given f^{-1}(x))}$ (A) A>B (B) A<B (C) A=B (D) none of these

(D) (2, 0, -1)

(D) 81

Comprehension # 7

Consider the polynomial function

 $f(x) = 3x^4 - 4x^3 - 12x^2 + 5$. This function has monotonicity as given below :

in $(-\infty, a_1)$	decreasing
in (a_1, a_2)	increasing
in (a_2, a_3)	decreasing
in (a_3, ∞)	increasing

A rectangle ABCD is formed such that

•(AB)= portion of the tangent to the curve y = f(x) at $x = a_1$, intercepted between the lines $x = a_1 \& x = a_3$. •(BC)= portion of the line $x = a_3$ intercepted between the curve & x-axis.

(C) 87

(C) (2, -1, 0)

- 1. Triplet (a_1, a_2, a_3) is given by -(A) (-1, 0, 2) (B) (0, -1, 2)
- 2. Area of rectangle ABCD -(A) 51 (B) 57
- 3. The equation f(x) = 0 has -
 - (A) 2 real, 2 imaginary roots
 - (C) 4 real & distinct roots

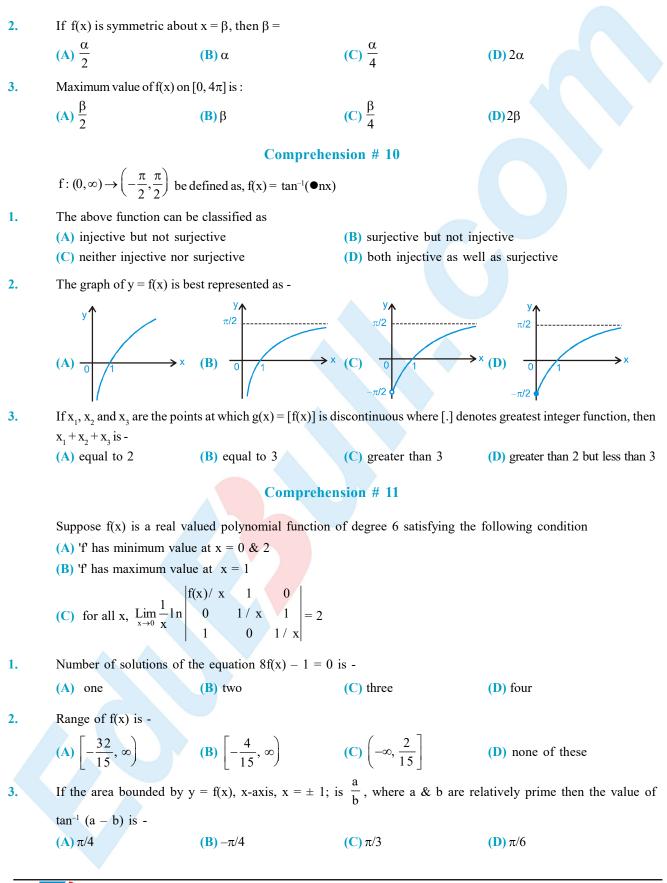
(B) 2 complex, 2 irrational roots(D) 2 real coincident roots & 2 irrational roots

Comprehension # 8

Let
$$f(x) = \left(1 + \frac{1}{x}\right)^x$$
 $(x > 0)$ and $g(x) = \begin{bmatrix} x \ln(1 + (1/x)) & \text{if } 0 < x \le 1 \\ 0 & \text{if } x = 0 \end{bmatrix}$
(A) is equal to 0 (B) is equal to 1 (C) is equal to e (D) is non existent
The function f
(A) has a maxima but no minima (B) has a minima but no maxima
(C) has both a maxima and minima (D) is monotonic

$$\lim_{n \to \infty} \left\{ f\left(\frac{1}{n}\right) \cdot f\left(\frac{2}{n}\right) \cdot f\left(\frac{3}{n}\right) \dots \int_{1}^{\sqrt{n}} equals$$
(A) $\sqrt{2} e$ (B) $\sqrt{2} e$ (C) $2\sqrt{e}$ (D) \sqrt{e}
Comprehension # 9
Consider a function f defined by $f(x) = \sin^{-1} \sin\left(\frac{x + \sin x}{2}\right)$, $\forall x \in [0, \pi]$, which satisfies $f(x) + f(2\pi - x) = \pi$, $\forall x \in [\pi, 2\pi]$ and $f(x) = f(4\pi - x)$ for all $x \in [2\pi, 4\pi]$, then
1. If α is the length of the largest interval on which $f(x)$ is increasing, then $\alpha =$
(A) $\frac{\pi}{2}$ (B) π (C) 2π (D) 4π

+2A, Ashok I alk Main, New Kontak Koad, +91-9350679141



Exercise # 4 [Subjective Type Questions]

- 1. Find the equation of the normal to the curve $y = (1 + x)^{y} + \sin^{-1}(\sin^{2}x)$ at x = 0.
- 2. Find the set of all values of the parameter 'a' for which the function $f(x) = \sin 2x - 8(a+1) \sin x + (4a^2 + 8a - 14)x \text{ increases for all } x \in R \text{ and has no critical points for all } x \in R.$
- 3. The curve $y = ax^3 + bx^2 + cx + 5$, touches the x-axis at P(-2, 0) and cuts the y axis at a point Q, where its gradient is 3. Find a, b, c.
- 4. Find the points of local maxima/minima of following functions (A) $f(x)=2x^3-21x^2+36x-20$ (B) $f(x)=-(x-1)^3(x+1)^2$

(C) $f(x) = x \bullet nx$

(D)
$$y = \frac{3x^2 + 4x + 4}{x^2 + x + 1}$$

5. A function is defined parametrically by the equations

$$\mathbf{x} = \begin{bmatrix} 2t + t^2 & \sin\frac{1}{t} & \text{if } t \neq 0\\ 0 & \text{if } t = 0 \end{bmatrix} \text{ and } \mathbf{y} = \begin{bmatrix} \frac{1}{t} & \sin t^2 & \text{if } t \neq 0\\ 0 & \text{if } t = 0 \end{bmatrix}$$

Find the equation of the tangent and normal at the point for t = 0 if they exist.

- 6. For $x \in \left(0, \frac{\pi}{2}\right)$ identify which is greater (2sinx + tanx) or (3x). Hence find $\lim_{x \to 0} \left[\frac{3x}{2\sin x + \tan x}\right]$, where [.] denote the greatest integer function.
- 7. A man 1.5 m tall walks away from a lamp post 4.5 m high at a rate of 4 km/hr.

(i) How fast is his shadow lengthening ?

- (ii) How fast is the farther end of shadow moving on the pavement ?
- 8. Find the absolute maxima/minima value of following functions

(A)
$$f(x) = 4x - \frac{x^2}{2}$$
; $x \in \left[-2, \frac{9}{2}\right]$
(B) $f(x) = 3x^4 - 8x^3 + 12x^2 - 48x + 25$; $x \in \left[0, 3\right]$
(C) $f(x) = \sin x + \frac{1}{2}\cos 2x$; $x \in \left[0, \frac{\pi}{2}\right]$

9. If p_1 and p_2 be the lengths of the perpendiculars from the origin on the tangent and normal respectively at any

point (x, y) on a curve, then show that $\frac{p_1 = |x \sin \Psi - y \cos \Psi|}{p_2 = |x \cos \Psi + y \sin \Psi|} \text{ where } \tan \Psi = \frac{dy}{dx}.$ If in the above case, the curve be $x^{2/3} + y^{2/3} = a^{2/3}$ then show that $: 4p_1^2 + p_2^2 = a^2$

If f, ϕ , ψ are continuous in [a,b] and derivable in]a,b[then show that there is a value of c lying between a & b such

10.

that, $\begin{vmatrix} f(a) & f(b) & f'(c) \\ \phi(a) & \phi(b) & \phi'(c) \\ \psi(a) & \psi(b) & \psi'(c) \end{vmatrix} = 0$

- 11. If $y = \frac{ax + b}{(x-1)(x-4)}$ has a turning value at (2, -1) find a & b and show that the turning value is a maximum.
- 12. Show that the angle between the tangent at any point 'A' of the curve $\oint n(x^2 + y^2) = C \tan^{-1} \frac{y}{x}$ and the line joining A to the origin is independent of the position of A on the curve.

13. Using LMVT prove that: (A)
$$\tan x > x \ln \left(0, \frac{\pi}{2}\right)$$
, (B) $\sin x < x \text{ for } x > 0$.

- 14. Show that the locus of point of inflection of the curve $y = x \sin x$ is $y^2 (4 + x^2) = 4x^2$
- 15. Suppose f(x) is a function satisfying the following conditions -

(i)
$$f(0) = 2$$
, $f(1) = 1$ (ii) If $f(x)$ has a minimum value at $x = \frac{5}{2}$ and

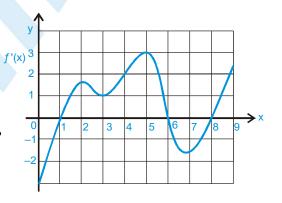
(iii) for all x f(x) =
$$\begin{vmatrix} 2ax & 2ax - 1 & 2ax + b + 1 \\ b & b + 1 & -1 \\ 2(ax + b) & 2ax + 2b + 1 & 2ax + b \end{vmatrix}$$

Where a, b are some constants. Determine the constants a, b, & the function f(x).

16. The graph of the derivative *f* ' of a continuous function *f*

is shown with f(0) = 0

- (i) On what intervals is *f* increasing or decreasing ?
- (ii) At what values of x does f have a local maximum or minimum?
- (iii) On what intervals is *f* concave upward or downward ?
- (iv) State the x-coordinate(s) of the point(s) of inflection.
- (v) Assuming that f(0) = 0, sketch a graph of f.



17. (A) Find the condition that the curves $\frac{x^2}{a} + \frac{y^2}{b} = 1$ & $\frac{x^2}{a'} + \frac{y^2}{b'} = 1$ may cut orthogonally.

(B) Show that the curves $\frac{x^2}{a^2 + K_1} + \frac{y^2}{b^2 + K_1} = 1$ & $\frac{x^2}{a^2 + K_2} + \frac{y^2}{b^2 + K_2} = 1$ intersect orthogonally $(K_1 \neq K_2)$.

18. Find the greatest & the least values of the following functions in the given interval if they exist.

(A)
$$f(x) = 12x^{4/3} - 6x^{1/3}, x \in [-1, 1]$$

(B) $y = x^5 - 5x^4 + 5x^3 + 1$ in $[-1, 2]$
(C) $y = \sin 2x - x \quad \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$
(D) $y = 2 \tan x - \tan^2 x \quad \left[0, \frac{\pi}{2} \right]$

19. A window of perimeter P(including the base of the arch) is in the form of a rectangle surmounded by a semi circle. The semi-circular portion is fitted with coloured glass while the rectangular part is fitted with clear glass. The clear glass transmits three times as much light per square meter as the coloured glass does. What is the ratio for the sides of the rectangle so that the window transmits the maximum light ?

- 20. Let f(x) and g(x) be two functions which cut each other orthogonally at their common point of intersection (x_1) . Both f(x) and g(x) are equal to 0 at $x = x_1$. Also $|f'(x_1)| = |g'(x_1)|$, then find $\lim_{x \to x_1} [f(x) \cdot g(x)]$, where [.] denotes greatest integer functions.
- 21. If $ax^2 + \frac{b}{x} \ge c$ for all positive x where a > 0 and b > 0, then show that $27ab^2 \ge 4c^3$.
- 22. Find the points on the curve $ax^2+2bxy+ay^2 = c$; c>b>a>0, whose distance from the origin is minimum.
- 23. Tangent at a point P₁ {other than (0, 0)} on the curve $y = x^3$ meets the curve again at P₂. The tangent at P₂ meets the curve at P₃, and so on. Show that the abscissae of P₁, P₂, P₃,..., P_n, form a G.P. Also find the ratio [area ($\Delta P_1 P_2 P_3$)]/[area ($\Delta P_2 P_3 P_4$)].
- 24. A swimmer S is in the sea at a distance d km from the closest point A on a straight shore. The house of the swimmer is on the shore at a distance L km from A. He can swim at a speed of u km/hr and walk at a speed of v km/hr (v > u). At what point on the shore should he land so that he reaches his house in the shortest possible time ?

25. Using monotonicity prove that
$$\frac{\tan x_2}{\tan x_1} > \frac{x_2}{x_1}$$
 for $0 < x_1 < x_2 < \frac{\pi}{2}$

- 26. Let $f(x) = \sin^3 x + \lambda \sin^2 x$, $-\frac{\pi}{2} < x < \frac{\pi}{2}$. Find the intervals in which λ should lie in order that f(x) has exactly one minimum and exactly one maximum.
- 27. John has 'x' children by his first wife and Anglina has 'x + 1' children by her first husband. They both marry and have their own children. The whole family has 24 children. It is given that the children of the same parents don't fight. Then find then maximum number of fights that can take place in the family.
- 28. Investigate the behaviour of the function $y = (x^3 + 4)/(x + 1)^3$ and construct its graph. How many solutions does the equation $(x^3 + 4)/(x + 1)^3 = c$ possess ?
- 29. Let $A(p^2, -p)$, $B(q^2, q)$, $C(r^2, -r)$ be the vertices of the triangle ABC. A parallelogram AFDE is drawn with vertices D, E and F on the line segments BC, CA and AB respectively. Using calculus, show that maximum area of such a parallelogram is $\frac{1}{4}(p+q)(q+r)(p-r)$
- **30.** What normal to the curve $y = x^2$ forms the shortest chord ?
- 31. Find the point on the curve $4x^2 + a^2y^2 = 4a^2$, $4 < a^2 < 8$ that is farthest from the point (0, -2).
- 32. If the equation $a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x = 0$ has a positive root α , prove that the equation $na_0 x^{n-1} + (n-1)a_1 x^{n-2} + \dots + a_{n-1} = 0$ also has a positive root smaller that α .
- 33. Show that $1 + x \ln \left(x + \sqrt{x^2 + 1} \right) \ge \sqrt{1 + x^2}$ for all $x \in \mathbb{R}$.
- 34. Determine the points of maxima and minima of the function $f(x) = \frac{1}{8} \ln x bx + x^2$, x > 0 where $b \ge 0$ is a constant.

- **35.** For $x \in \left(0, \frac{\pi}{2}\right)$ identify which is greater (2sinx + tanx) or (3x). Hence find $\lim_{x \to 0^+} \left\lfloor \frac{3x}{2\sin x + \tan x} \right\rfloor$ where [.] denote the GIF.
- 36. Let S be a square of unit area. Consider any quadrilateral which has one vertex on each side of S. If a, b, c and d denote the length of the sides of the quadrilateral, prove that $2 \le a^2 + b^2 + c^2 + d^2 \le 4$.
- 37. If in a triangle ABC, the side 'c' and the angle 'C' remain constant, while the remaining elements are changed

slightly, show that
$$\frac{da}{\cos A} + \frac{db}{\cos B} = 0$$

- 38. f(x) is a differentiable function and g(x) is a double differentiable function such that $|f(x)| \le 1$ and f(x) = g(x). If $f^2(0) + g^2(0) = 9$. Prove that there exists some $c \in (-3, 3)$ such that g(c). g''(c) < 0
- 39. Let f(x) be differentiable function and g(x) be twice differentiable function. Zeros of f(x), g'(x) be a, b respectively (a < b). Show that there exists at least one root of equation f'(x) g'(x) + f(x) g''(x) = 0 on (a, b).
- 40. Find the co-ordinates of all the points P on the ellipse $(x^2/a^2)+(y^2/b^2) = 1$ for which the area of the triangle PON is maximum, where O denotes the origin and N the foot of the perpendicular from O to the tangent at P.

E	xercise # 5	Part # I P	revious Year Questions] [AIEEE/JEE-N	IAINJ
1.	then $f(x) - g(x)$ at $x =$				f(2) = 3, g(2) = 9, [AIEEE-2002]
	(1) 0	(2) 2	(3) 10	(4) –5	
2.	that $p^2 = q$, then a eq	=			respectively such [AIEEE-2003]
	(1) 1/2	(2) 3	(3) 1	(4) 2	
3.	The real number x w (1)-2	when added to its inverse giv (2) 2	es the minimum value of the (3) 1	e sum at x equal to- $(4)-1$	[AIEEE-2003]
4.	If $u = \sqrt{a^2 \cos^2 \theta + b^2}$ of u^2 is given by-	$a^{2}\sin^{2}\theta + \sqrt{a^{2}\sin^{2}\theta + b^{2}\cos^{2}\theta}$	$\overline{s^2 \theta}$ then the difference betw	veen the maximum and	l minimum values [AIEEE-2004]
	(1) $2(a^2+b^2)$	(2) $2\sqrt{a^2+b^2}$	(3) $(a+b)^2$	(4) $(a-b)^2$	
5.		as a second order derivative f e graph is $y = 3x - 5$, then the (2) $(x-1)^3$		asses through the point $(4) (x+1)^2$	nt (2,1) and at that [AIEEE-2004]
6.	The normal to the $(1)(a, 0)$	arve $x = a(1 + \cos\theta)$, $y = a\sin(2)(0, a)$	$n\theta$ at ' θ ' always passes throug (3) (0, 0)	gh the fixed point- (4) (a, a)	[AIEEE-2004]
7.	A function is matched is incorrectly matched	ed below against an interval ed ?	where it is supposed to be ir	creasing. which of th	e following pairs [AIEEE-2005]
	interval fu	nction			
	$(1) (-\infty, \infty) \qquad x^3$	$-3x^2+3x+3$			
	(2) [2,∞) 25	$x^3 - 3x^2 - 12x + 6$			
	$(3)\left(-\infty,\frac{1}{3}\right] 32$	$x^2 - 2x + 1$			
	(4) $(-\infty, -4)$ x ³	$+6x^{2}+6$			
8.	The normal to the cu	arve $\mathbf{x} = \mathbf{a}(\cos\theta + \theta\sin\theta), \mathbf{y} =$		``	[AIEEE-2005]
	(1) it passes through	the origin	(2) it makes angle $\left(\frac{\pi}{2}\right)$	$(\pm +\theta)$ with the x-axis	

(3) it passes through $\left(a\frac{\pi}{2}, -a\right)$

(2) $\frac{\pi}{6}$

(4) it is a constant distance from the origin

(4) $\frac{\pi}{3}$

9. Angle between the tangents to the curve $y = x^2 - 5x + 6$ at the points (2, 0) and (3, 0) is-[AIEEE-2006]

(3) $\frac{\pi}{4}$

(1) $\frac{\pi}{2}$

10. The function
$$f(x) = \frac{x}{2} + \frac{2}{x}$$
 has a local minimum at-
(1) $x = -2$ (2) $x = 0$ (3) $x = 1$ (4) $x = 2$
11. A triangular park is enclosed on two sides by a fence and on the third side by a straight river bank. The two sides having fence are of same length x. The maximum area enclosed by the park is-
(1) $\sqrt{\frac{x^2}{8}}$ (2) $\frac{1}{2}x^2$ (3) πx^2 (4) $\frac{3}{2}x^2$
12. The function $f(x) = \tan^{-1}(\sin x + \cos x)$ is an increasing function in-
(1) (π^4, π^2) (2) $(-\pi^2, \pi^4)$ (3) $(0, \pi^2)$ (4) $(-\pi^2, \pi^2)$
13. If p and q are positive real numbers such that $p^2 + q^2 = 1$, then the maximum value of $(p + q)$ is-
(AIEEE-2007)
(1) 2 (2) $\frac{1}{2}$ (3) $\frac{1}{\sqrt{2}}$ (4) $\sqrt{2}$
14. Suppose the cubic $x^3 - px + q$ has three real roots where $p > 0$ and $q > 0$. Then which of the following holds ?
(AIEEE-2008)
(1) The cubic has minima at $\sqrt{\frac{p}{3}}$ and maxima $a - \sqrt{\frac{p}{3}}$ (2) The cubic has minima at $-\sqrt{\frac{p}{3}}$ and maxima at $\sqrt{\frac{p}{3}}$
(3) The cubic has minima at both $-\sqrt{\frac{p}{3}} \ll \sqrt{\frac{p}{3}}$ (4) The cubic has maxima at both $\sqrt{\frac{p}{3}} \ll -\sqrt{\frac{p}{3}}$
15. Given $P(x) = x^4 + ax^3 + bx^3 + cx + d$ such that $x=0$ is the only real root of $P(x) = 0$. If $P(-1) < P(1)$, then in the interval
 $[-1, 1]$.
(1) $P(-1)$ is the minimum not $P(1)$ is not the maximum of P
(3) $P(-1)$ is the minimum not $P(1)$ is the maximum of P
(4) $P(-1)$ is the minimum not $P(1)$ is the maximum of P
(5) $P(-1)$ is the minimum not $P(1)$ is the maximum of P
(6) The shortest distance between the line $y - x = 1$ and the curve $x = y^2$ is :-
(AIEEE-2009)
(1) $\frac{3\sqrt{2}}{5}$ (2) $\sqrt{\frac{3}{4}}$ (3) $\frac{3\sqrt{2}}{8}$ (4) $\frac{2\sqrt{3}}{8}$
17. Let $f: R \to R$ be a continuous function defined by $f(x) = \frac{1}{e^2 + 2e^{-x}}$
Statement-1 : $f(c) = \frac{1}{3}$, for some $c \in \mathbb{R}$.
Statement-2 : $0 < f(x) \le \frac{1}{2\sqrt{2}}$, for all $x \in \mathbb{R}$.
(4) Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for statement-1.
(2) Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanatio

+91-9350679141

APPLICATION OF DERIVATIVE

18.	The equation of the tangent to	o the curve $y = x + \frac{4}{x}$	$\frac{1}{2}$, that is parallel to the x-a	axis, is :-	[AIEEE-2010]
		y = 1	(3) $y = 2$	(4) y = 3	
19.	Let $f : R \to R$ be defined by	()			[AIEEE-2010]
	If f has a local minimum at x	= - 1, then a possible	e value of k is :		
	(1) 1 (2)	0	$(3) - \frac{1}{2}$	(4) -1	
20.	For $x \in \left(0, \frac{5\pi}{2}\right)$, define $f(x)$	$=\int_{0}^{x}\sqrt{t}\sin tdt$. Then	f has :-		[AIEEE-2011]
	 (1) local minimum at π and loc (2) local maximum at π and lo (3) local maximum at π and 2π (4) local minimum at π and 2π 	cal minimum at 2π τ			
21.	The shortest distance between	n line $y - x = 1$ and c	curve $x = y^2$ is :-		[AIEEE-2011]
	0	$\frac{4}{\sqrt{3}}$	(3) $\frac{\sqrt{3}}{4}$	(4) $\frac{3\sqrt{2}}{8}$	t j
22.	Let f be a function defined b	$y f(x) = \begin{cases} \frac{\tan x}{x}, & x \\ 1, & x \end{cases}$	$x \neq 0$ x = 0		
	 Statement - 1: x = 0 is point of Statement - 2: f(0) = 0. (1) Statement-1 is false, statement-1 is true, statement-1 is true, statement-1 	ment-2 is true. ent-2 is true; Statemen	-		[AIEEE-2011]
	(3) Statement-1 is true, statement-1 is tru		t-2 is not a correct explanation	on for statement-1.	
23.	A spherical balloon is filled w at the rate of 72π cubic meter decreases 49 minutes after th	ith 4500π cubic meters per minute, then the e leakage began is :	rate (in meters per minute)	at which the radi	
	(1) 9/2 (2)	9/7	(3) 7/9	(4) 2/9	
24.	Let a, $b \in R$ be such that t $x = -1$ and $x = 2$.			ax, $x \neq 0$ has ex	treme values at
	Statement–1 : f has local max	ximum at $x = -1$ and a	t x = 2.		
	Statement-2 : $a = \frac{1}{2}$ and b	$=\frac{-1}{4}$.			[AIEEE-2012]
	(1) Statement–1 is true, State				
	(2) Statement-1 is false, State(3) Statement-1 is true, Stater		ant 2 is a correct avalancti	on for Statement	1
	(3) Statement–1 is true, Statem(4) Statement–1 is true, Statem		-		
		,		1	

The intercepts on x-axis made by tangents to the curve, $y = \int_{0}^{n} |t| dt$, $x \in R$, which are parallel to the line 25. [JEE-MAIN 2013] y = 2x, are equal to (1) ±1 (2) ±2 $(3) \pm 3$ (4) ±4 The real number k for which the equation $2x^3 + 3x + k = 0$ has two distinct real roots in [0, 1] [JEE-MAIN 2013] 26. (2) lies between 2 and 3. (1) lies between 1 and 2. (3) lies between -1 and 0 (4) does not exist 27. The normal to the curve, $x^2 + 2xy - 3y^2 = 0$, at (1, 1): [JEE Main 2015]

(1) meets the curve again in the thrid quadrant.

(2) meets the curve again in the fourth quardant.

(3) does not meets the curve again.

(4) meets the curve again in the second quardant.

28. A wire of length 2 units is cut into two parts which are bent respectively to form a square of side = x units and a circle of radius = r units. If the sum of the areas of the square and the circle so formed is minimum, then : [JEE Main 2016]

(1) $(4-\pi) x = \pi r$	(2) $x = 2r$	(3) 2x = r	(4) $2x = (\pi + 4)r$

```
Part # II
```

[Previous Year Questions][IIT-JEE ADVANCED]

If the normal to the curve, y = f(x) at the point (3, 4) makes an angle $\frac{3\pi}{4}$ with the positive x-axis. 1. Then f(3)[**JEE 2000**] (C) $\frac{4}{3}$ (A) - 1**(D)** 1 2. (A) For all $x \in (0, 1)$: (A) $e^{x} < 1 + x$ (B) $\log_{e}(1+x) < x$ (C) $\sin x > x$ (D) $\log_e x > x$ (B) Consider the following statements S and R : [**JEE 2000**] S : Both sin x & cos x are decreasing functions in the interval $(\pi/2,\pi)$. R: If a differentiable function decreases in an interval (a, b), then its derivative also decreases in (a, b) Which of the following is true? (A) both S and R are wrong

(B) both S and R are correct, but R is not the correct explanation for S

- (C) S is correct and R is the correct explanation for S
- (D) S is correct and R is wrong.

Let $f(x) = \begin{bmatrix} |x| & \text{for } 0 < |x| \le 2\\ 1 & \text{for } x = 0 \end{bmatrix}$. Then at x = 0, 'f' has -

(A) a local maximum	(B) no local maximum
(C) a local minimum	(D) no extremum.

Add. 41-42A, Ashok Park Main, New Rohtak Road, New Delhi-110035 +91-9350679141

[**JEE 2000**]

[**JEE 2003**]

Let $f(x) = \int e^{x} (x-1)(x-2) dx$ then f decreases in the interval -**4**. [**JEE 2000**] (A) (−∞, 2) **(B)** (-2, -1)(C) (1, 2) **(D)** (2, ∞) If $f(x) = xe^{x(1-x)}$, then f(x) is -5. [**JEE 2001**] (A) increasing on $\left(-\frac{1}{2},1\right)$ (B) decreasing on R **(D)** decreasing on $\left| -\frac{1}{2}, 1 \right|$ (C) increasing on R Let $-1 \le p \le 1$. Show that the equations $4x^3 - 3x - p = 0$ has a unique root in the interval $\left|\frac{1}{2}, 1\right|$ and 6. identify it. [**JEE 2001**] The length of a longest interval in which the function $3\sin x - 4\sin^3 x$ is increasing, is -7. [**JEE 2002**] (C) $\frac{3\pi}{2}$ (A) $\frac{\pi}{3}$ (B) $\frac{\pi}{2}$ **(D)** π The point(s) on the curve $y^3+3x^2 = 12y$ where the tangent is vertical, is(are) -8. (A) $\left(\pm\frac{4}{\sqrt{3}}, -2\right)$ (B) $\left(\pm\sqrt{\frac{11}{3}}, 1\right)$ (C) (0, 0) (D) $\left(\pm\frac{4}{\sqrt{3}}, 2\right)$ [JEE 2002] (A) Using the relation $2(1 - \cos x) \le x^2$, $x \ne 0$ or otherwise, prove that $\sin(\tan x) \ge x \forall x \in [0, \frac{\pi}{4}]$. 9. **(B)** Let $f: [0, 4] \rightarrow R$ be a differentiable function. [**JEE 2003**] (i) Show that there exist a, $b \in [0, 4]$, $(f(4))^2 - (f(0))^2 = 8 f'(a) f(b)$ (ii) Show that there exist α , β with $0 < \alpha < \beta < 2$ such that $\int_{\alpha}^{4} f(t)dt = 2(\alpha f(\alpha^{2}) + \beta f(\beta^{2}))$ 10. The minimum value of $f(x) = x^2 + 2bx + 2c^2$ is more than the maximum value of $g(x) = -x^2 - 2cx + b^2$, x being real, for -[**JEE 2003**] (A) $|c| > |b|\sqrt{2}$ (B) $0 < c < b\sqrt{2}$ (C) $b\sqrt{2} < c < 0$ (D) no values of b and c For every $\alpha \in \left(0, \frac{\pi}{2}\right)$, the value of $\sqrt{x^2 + x} + \frac{\tan^2 \alpha}{\sqrt{x^2 + x}}$, x > 0 is greater than or equal to -11. [**JEE 2003**] (C) $\frac{5}{2}$ (A)2 **(B)** $2\tan\alpha$ (D) $\sec \alpha$ For a circle $x^2+y^2 = r^2$, find the value of 'r' for which the area enclosed by the tangents drawn from the point P (6, 8) 12.

B

to the circle and the chord of contact is maximum.

13.	Let $f(x) = \begin{cases} x^{\alpha} l n x, & x > 0 \\ 0, & x = 0 \end{cases}$. Ro	lle's theorem is appli	cable to f for $x \in [0, 1]$,	if $\alpha =$	[JEE 2004]
	(A)-2 (B)		(C) 0	(D) 1/2	
14.	If $p(x) = 51 x^{101} - 2323 x^{100} - $	45x + 1035, using R	olle's theorem prove th	at atleast one root of p(x)	= 0 lies between.
	$\left(45^{\frac{1}{100}}, \ 46\right).$				[JEE 2004]
15.	Prove that $\sin x + 2x \ge \frac{3x}{7}$	$\left[\frac{x+1}{t} \right] \forall x \in \left[0, \frac{2}{t} \right]$	$\left[\frac{\tau}{2}\right]$ (Justify the inequa	lity, If any used.)	[JEE 2004]
16.	If $f(x) = x^3 + bx^2 + cx + d, 0 < b$	$e^2 < c$, then f(x)			[JEE 2004]
	(A) is strictly increasing (B)	has a local maxima	(C) has a local minir	na (D) has bounded a	area
17.	If $f(x)$ is twice differentiable fu (A) $f''(x) = 2$, for atleast one in (C) $f''(x) = f(x) = 5$, for some x (C) $f''(x) = 3$, $\forall \in (2, 3)$ (D) $f''(x) = 2$, for some $x \in (1, 2)$	$x \in (1,3)$ $\in (2,3)$	4, f(3) = 9		[JEE 2005]
18.	Tangent to the curve $y = x^2 + 6$ coordinates of Q are - (A) (-6, -11) (B)				point Q. Then the [JEE 2005]
19.	$ \begin{split} & \text{If } f(x_1) - f(x_2) \leq (x_1 - x_2)^2, \\ & (1,2). \end{split} $	for all $x_1, x_2 \in \mathbb{R}$.	Find the equation of t	angent to the curve $y =$	f(x) at the point [JEE 2005]
20.	If $p(x)$ be a polynomial of degreat $x = 1$. Find the distance betw				l p'(x) has minima [JEE 2005]
21.	f(x) is cubic polynomial which l	nas local maximum at	x = -1. If $f(2) = 18$, $f(1)$	= -1 and f(x) has local mi	nima at x = 0 then [JEE 2006]
	(A) the distance between $(-1, 2)$) and (a, f(<mark>a)), wh</mark> ere :	x = a is the point of local	I minima is $2\sqrt{5}$	
	(B) $f(x)$ is increasing for $x \in C$	1,2√5]			
	(C) f(x) has local minima at x =	= 1			
	(D) the value of $f(0) = 5$				
	\mathbf{X} , $0 \le \mathbf{x} \le 1$	×			
22.	$f(x) = \begin{bmatrix} x & x \\ y \\ y \\ x - e \end{bmatrix}, 0 \le x \le 1$	and $g(x) = \underbrace{f(t)}_{0} dt$, $x \in [0, 3]$ then $g(x)$	has	
	$\mathbf{k} - \mathbf{e}$, $2 < \mathbf{x} \le 3$	U			
	(A) local maxima at $x = 1 + 1$ r	2 and local minima at	x=e		[JEE 2006]
	(B) local maxima at $x = 1$ and 1	ocal minima at $x = 2$			

(B) local maxima at x = 1 and local minima at x = 2

Z

(C) no local maxima (D) no local minima

- 23. If f(x) is a twice differentiable function such that f(a) = 0, f(b) = 2, f(c) = -1, f(d) = 2, f(e) = 0 where a < b < c < d < e then the minimum number of zeros of $g(x) = (f(x))^2 + f''(x)$ f(x) in the interval [a, e] is. [JEE 2006]
- The tangent to the curve $y = e^x$ drawn at the point (c, e^c) intersects the line joining the points 24. $(c - 1, e^{c-1})$ and $(c + 1, e^{c+1})$ -[**JEE 2007**]
 - (A) on the left of x = c(B) on the right of x = c(C) at no point
 - (D) at all points
- 25. Let $f(x) = 2 + \cos x$ for all real x.

Statement-I: For each real t, there exists a point c in $[t, t + \pi]$ such that f(c) = 0 because **Statement-II** : $f(t) = f(t + 2\pi)$ for each real t.

[**JEE 2007**]

[**JEE 2008**]

- (A) Statement-I is true, Statement-II is true; Statement-II is correct explanation for Statement-I.
- (B) Statement-I is true, Statement-II is true; Statement-II is NOT a correct explanation for statement-I.
- (C) Statement-I is true, Statement-II is false.
- (D) Statement-I is false, Statement-II is true.

Comprehension (Q. 26 to 28)

If a continuous function f defined on the real line R, assumes positive and negative values in R then the equation f(x) = 0 has a root in R. For example, if it is known that a continuous function f on R is positive at some point and its minimum value is negative then the equation f(x) = 0 has a root in R.

Consider $f(x) = ke^{x} - x$ for all real x where k is a real constant.

26.	The line $y = x$ mee	ts $y = ke^x$ for $k \le 0$ at :-		[2007]
	(A) no point	(B) one point	(C) two point	(D) more than two points
27.	The positive value	of k for which $ke^{x} - x = 0$	has only one root is :-	[2007]

27. The positive value of k for which ke^x – x = = 0 has only one root is :-

A)
$$\frac{1}{e}$$
 (B) 1 (C) e (D) $\log_{e} 2$

For k > 0, the set of all values of k for which $ke^{x} - x = 0$ has two distinct roots is :-28. [2007]

A)
$$\left(0,\frac{1}{e}\right)$$

(B) $\left(\frac{1}{e}, 1\right)$ **(C)** $\left(\frac{1}{e}, \infty\right)$ **(D)** (0, 1)

Let the function $g: (-\infty, \infty) \rightarrow \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ be given by $g(u) = 2\tan^{-1}(e^u) - \frac{\pi}{2}$. Then, g is -29.

- (A) even and is strictly increasing in $(0, \infty)$
- (B) odd and is strictly decreasing in $(-\infty, \infty)$
- (C) odd and is strictly increasing in $(-\infty, \infty)$
- (D) neither even nor odd, but is strictly increasing in $(-\infty, \infty)$

Let f(x) be a non-constant twice differentiable function defined on $(-\infty, \infty)$ such that f(x) = f(1-x) and $f'\left(\frac{1}{4}\right) = 0$. 30. Then, [**JEE 2008**]

(A) f''(x) vanishes at least twice on [0, 1]

(C) $\int_{1/2}^{1/2} f\left(x + \frac{1}{2}\right) \sin x \, dx = 0$

(**D**) $\int_{0}^{1/2} f(t) e^{\sin \pi t} dt = \int_{1/2}^{1} f(1-t) e^{\sin \pi t} dt$

(B) $f'\left(\frac{1}{2}\right) = 0$

The total number of local maxima and local minima of the function $f(x) = \begin{cases} (2+x)^3, & -3 < x \le -1 \\ x^{2/3}, & -1 < x < 2 \end{cases}$ is :-31.

				(X -	-1 < X < 2	2
	(A) 0	(B) 1	(C) 2	(D) 3		[JEE 2008]
32.	Match the	column :				[JEE 2008]
	Column I				Colum	nII
	(A)	The minimum value of $\frac{x^2 + x^2}{x}$	$\frac{-2x+4}{x+2}$ is		(p)	0
	(B)	Let A and B be 3×3 matrix	ces of real numbers, where A	is	(q)	1
		symmetric, B is skew-symmetric	etric, and $(A+B)(A-B) = (A-B)$	B)(A+B).		
		If $(AB)^{t} = (-1)^{k} AB$, where	$(AB)^{t}$ is the transpose of the	matrix		
		AB, then the possible value	e of k are			
	(C)	Let $a = \log_3 \log_3 2$. An inte	ger k satisfying		(r)	2
		$1 < 2^{(-k+3^{-a})} < 2$, must be	less than			
	(D)	If $\sin\theta = \cos\phi$, then the post	ssible values of		(s)	3
		$\frac{1}{\pi} \left(\theta \pm \phi - \frac{\pi}{2} \right)$ are				
Parag	raph for Q	uestion 33 to 35				
	Consider th	the function $f:(-\infty,\infty) \to (-\infty)$	∞ , ∞) defined by			
	$f(x) = \frac{x^2 - x^2}{x^2}$	-ax+1, $0 < a < 2$.				

 $f(\mathbf{x}) = \frac{1}{\mathbf{x}^2 + \mathbf{a}\mathbf{x} + 1}$, $0 < \mathbf{a} < 2$. Which of the following is true? [**JEE 2008**] (A) $(2 + a)^2 f''(1) + (2 - a)^2 f''(-1) = 0$ **(B)** $(2-a)^2 f''(1) - (2+a)^2 f''(-1) = 0$

(C)
$$f'(1) f'(-1) = (2-a)^2$$

(D) $f'(1) f'(-1) = -(2+a)^2$

34. Which of the following is true ?

(A) f(x) is decreasing on (-1, 1) and has a local minimum at x = 1

(B) f(x) is increasing on (-1, 1) and has a local maximum at x = 1

(C) f(x) is increasing on (-1, 1) but has neither a local maximum nor a local minimum at x = 1

(D) f(x) is decreasing on (-1, 1) but has neither a local maximum nor a local minimum at x = 1

33.

Let
$$g(x) = \int_{0}^{t} \frac{f'(t)}{1+t^2} dt$$

[**JEE 2008**]

[**JEE 2008**]

Which of the following is true ?

(A) g'(x) is positive on $(-\infty, 0)$ and negative on $(0, \infty)$ (B) g'(x) is negative on $(-\infty, 0)$ and positive on $(0, \infty)$

(C) g'(x) charges sign on both $(-\infty, 0)$ and $(0, \infty)$

(D) g'(x) does not change sign on $(-\infty, \infty)$

The maximum value of the function $f(x) = 2x^3 - 15x^2 + 36x - 48$ on the set $A = \{x \mid x^2 + 20 \le 9x\}$ is [JEE 2009] 36.

- 37. Let p(x) be a polynomial of degree 4 having extremum at x=1, 2 and $\lim_{x \to 0} \left(1 + \frac{p(x)}{x^2}\right) = 2$, then the value of p(2) is [JEE 2009]
- 38. For the function $f(x) = x \cos \frac{1}{x}$, $x \ge 1$,

(A) for at least one x in the interval $[1,\infty)$, f(x+2) - f(x) < 2

- **(B)** $\lim_{x \to \infty} f'(x) = 1$
- (C) for all x in the interval $[1, \infty)$, f(x+2)-f(x) > 2
- (D) f'(x) is strictly decreasing in the interval $[1,\infty)$
- 39. Let $f(x) = (1+b^2)x^2+2bx+1$ and let m (B) the minimum value of f(x). As b varies, the range of m(b) is -

[**JEE 2010**]

[**JEE 2009**]

- (A) [0,1] (B) $\left(0,\frac{1}{2}\right]$ (C) $\left[\frac{1}{2},1\right]$ (D) $\left(0,1\right]$
- 40.A straight line L with negative slope passes through the point (8,2) and cuts the positive coordinates axes at points
P and Q. Find the absolute minimum value of OP + OQ, as L varies, where O is the origin.[JEE 2010]

41. Let f be a real-valued function defined on the interval $(0, \infty)$ by $f(x) = \ln x + \int_{0}^{x} \sqrt{1 + \sin t} dt$. Then which of the following statement(s) is (are) true ? [JEE 2010]

- (A) f''(x) exists for all $x \in (0, \infty)$
- (B) f(x) exists for all $x \in (0, \infty)$ and f is continuous on $(0, \infty)$, but not differentiable on $(0, \infty)$
- (C) there exists $\alpha > 1$ such that $|f(x)| \le |f(x)|$ for all $x \in (\alpha, \infty)$
- (D) there exists $\beta > 0$ such that $|f(x)| + |f(x)| \le \beta$ for all $x \in (0, \infty)$
- 42. Let f, g and h be real-valued functions defined on the interval [0, 1] by $f(x) = e^{x^2} + e^{-x^2}$, $g(x) = xe^{x^2} + e^{-x^2}$ and $h(x) = x^2 e^{x^2} + e^{-x^2}$. If a, b and c denote, respectively, the absolute maximum of f, g and h on [0, 1], then [JEE 2010]

(A) a = b and $c \neq b$ (B) a = c and $a \neq b$ (C) $a \neq b$ and $c \neq b$ (D) a = b = c

43. Let f be a function defined on R (the set of all real numbers) such that $f(x) = 2010 (x-2009) (x-2010)^2 (x-2011)^3 (x-2012)^4$, for all $x \in R$.

If g is a function defined on R with values in the interval $(0,\infty)$ such that

 $f(\mathbf{x}) = \mathbf{\bullet}\mathbf{n} (\mathbf{g}(\mathbf{x})), \text{ for all } \mathbf{x} \in \mathbf{R},$

then the number of points in R at which g has a local maximum is -

[JEE 2010]

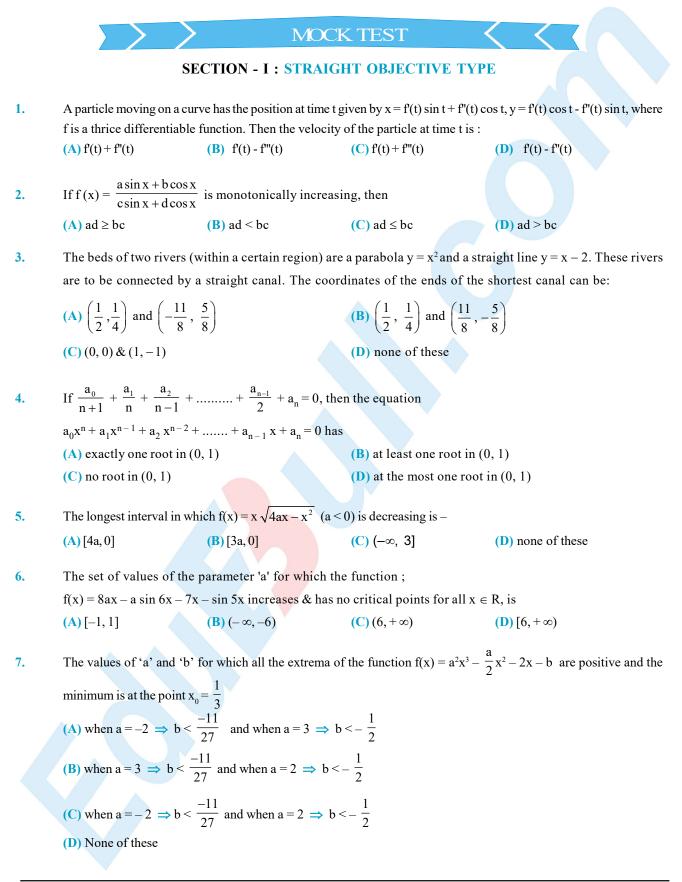
44.	Let $f: (0,1) \to \mathbb{R}$ be defined by $f(x) = \frac{b-x}{1-bx}$,		[JEE 2011]
	where b is a constant such that $0 < b < 1$. The	m	
	(A) f is not invertible on (0,1)	(B) $f \neq f^{-1}$ on (0,1) and $f'(b) = \frac{1}{f'(0)}$	
	(C) $f = f^{-1}$ on (0,1) and $f'(b) = \frac{1}{f'(0)}$	(D) f^{-1} is differentiable on (0,1)	
45.	The number of distinct real roots of $x^4 - 4x^3 + 12x^2 - 4x^3 + 12x^3 + 12x^$	+x-1=0 is	[JEE 2011]
Parag	graph for Question 46 and 47		
	Let $f(x) = (1-x)^2 \sin^2 x + x^2$ for all $x \in \mathbb{R}$, and let $g(x)$	$f(t) = \int_{1}^{x} \left(\frac{2(t-1)}{t+1} - \ln t \right) f(t) dt \text{ for all } x \in (1,\infty).$	
46.	Consider the statements :		
	P : There exists some $x \in \mathbb{R}$ such that $f(x) + 2x = 2($	$1 + x^2$)	
	Q : There exists some $x \in \mathbb{R}$ such that $2f(x) + 1 = 2x$	x(1+x)	
	Then		[JEE 2012]
	(A) both P and Q are true	(B) P is true and Q is false	
	(C) P is false and Q is true	(D) both P and Q are false	
47.	Which of the following is true ?		[JEE 2012]
	(A) g is increasing on $(1,\infty)$		
	(B) g is decreasing on $(1,\infty)$		
	(C) g is increasing on $(1,2)$ and decreasing on $(2,\infty)$)	
	(D) g is decreasing on $(1,2)$ and increasing on $(2,\infty)$)	
48.	If $f(\mathbf{x}) = \int_{0}^{\mathbf{x}} e^{t^2} (t-2)(t-3) dt$ for all $\mathbf{x} \in (0,\infty)$, then	n -	[JEE 2012]
	(A) f has a local maximum at $x = 2$		
	(B) f is decreasing on (2,3)		
	(C) there exists some $c \in (0,\infty)$ such that $f''(c) = 0$		
	(D) f has a local minimum at $x = 3$		
49.	Let $f : \mathbb{R} \to \mathbb{R}$ be defined as $f(\mathbf{x}) = \mathbf{x} + \mathbf{x}^2 - 1 $. The term a local minimum is	otal number of points at which <i>f</i> attains either a loc	al maximum or [JEE 2012]
50.	Let $p(x)$ be a real polynomial of least degree which If $p(1) = 6$ and $p(3) = 2$, then $p'(0)$ is	ch has a local maximum at $x = 1$ and a local min	imum at x = 3. [JEE 2012]
51		a having their longths in the ratio of 9, 15 is	commented into

51. A rectangular sheet of fixed perimeter with sides having their lengths in the ratio of 8 : 15 is converted into an open rectangular box by folding after removing squares of equal area from all four corners. If the total area of removed squares is 100, the resulting box has maximum volume. Then the lengths of the sides of the rectangular sheet are [JEE 2013]

(A) 24 **(B)** 32 **(C)** 45 **(C)** 60

APPLICATION OF DERIVATIVE

52.	The function $f(x) = 2 x + x + 2 - x + 2 - 2 x $ has a local minimum or a local maximum at $x = $ [JEE 2013]
	(A) -2 (B) $\frac{-2}{3}$ (C) 2 (D) $\frac{2}{3}$
53.	The number of points in $(-\infty, \infty)$, for which $x^2 - x\sin x - \cos x = 0$, is [JEE 2013] (A) 6 (B) 4 (C) 2 (D) 0
54.	Let $f(x) = x \sin \pi x$, $x > 0$. Then for all natural numbers n, $f'(x)$ vanishes at - [JEE 2013]
	(A) a unique point in the interval $\left(n, n + \frac{1}{2}\right)$
	(B) a unique point in the interval $\left(n+\frac{1}{2},n+1\right)$
	 (C) a unique point in the interval (n, n + 1) (D) two points in the interval (n, n + 1)
55.	Let $f: (0, \infty) \to R$ be given by $f(x) = \int_{\frac{1}{2}}^{x} e^{-\left(t+\frac{1}{t}\right)} \frac{dt}{t}$ Then [JEE Ad. 2014]
	(A) $f(x)$ is monotonically increasing on $[1, \infty]$ (B) $f(x)$ is monotonically decreasing on $(0, 1)$
	(C) $f(x) + f\left(\frac{1}{x}\right) = 0$, for all $x \in (0, \infty)$ (D) $f(2^x)$ is an odd function of x on R
56.	The slope of the tangent to the curve $(y - x^5)^2 = x (1 + x^2)^2$ at point (1, 3) is [JEE Ad. 2014]
57.	A cylindrical container is to be made from certain solid material with the following constraints : It has a fixed inner volume of V mm3, has a 2 mm thick solid wall and is open at the top. The bottom of the container is a solid circular dise of thickness 2 mm and is of radius equal to the outer radius of the container.
	If the volume of the material used to make the container is minimum when the inner radius of the container is 10 mm,
	then the value of $\frac{V}{250\pi}$ is [JEE Ad. 2015]
58.	Let $f:(0, \infty) \to R$ be a differentiable function such that $f'(x) = 2 - \frac{f(x)}{x}$ for all $x \in (0, \infty)$ and $f(1) \neq 1$. Then
	(A) $\lim_{x \to 0^+} f'\left(\frac{1}{x}\right) = 1$ (B) $\lim_{x \to 0^+} f\left(\frac{1}{x}\right) = 2$ (C) $\lim_{x \to 0^+} x^2 f'(x) = 0$ (D) $ f(x) \le \text{ for all } x \in (0, 2)$



- 8. A truck is to be driven 300 km on a highway at a constant speed of x kmph. Speed rules of the highway required that $30 \le x \le 60$. The fuel costs Rs. 10 per litre and is consumed at the rate of $2 + \frac{x^2}{600}$ liters per hour. The wages of the driver are Rs. 200 per hour. The most economical speed to drive the truck, in kmph, is (A) 30 (B) 60 (C) $30\sqrt{3.3}$ (D) $20\sqrt{3.3}$
- 9. The equation $x^3 3x + [a] = 0$, where [.] denotes the greatest integer function, will have three real and distinct roots if (A) $a \in (-\infty, 2)$ (B) $a \in (0, 2)$ (C) $a \in (\infty, -2) \cup (0, \infty)$ (D) $a \in [-1, 2)$

10.
$$\mathbf{S}_1$$
: $\mathbf{f}(\mathbf{x}) = \mathbf{x} e^{\mathbf{x}(1-\mathbf{x})}$ is increasing on $\begin{bmatrix} -\frac{1}{2}, 1 \end{bmatrix}$

S₂: Critical points for
$$f(x) = (x-2)^{2/3}(2x+1)$$
 are $x = 1$ & $x = 2$.

- S₃: $f(x) = 2x + \cot^{-1}x + \log(\sqrt{1 + x^2} x)$, then f(x) is monotonic for $x \in \mathbb{R}$.
- S₄: Let f is a real valued differentiable function such that f(x). f'(x) < 0 for all real x. Then $f^2(x)$ is decreasing function.
- (A) TTTT (B) TFFT (C) FTFT (D) FFTT

SECTION - II : MULTIPLE CORRECT ANSWER TYPE

- 11.Let g'(x) > 0 and f'(x) < 0, $\forall x \in \mathbb{R}$, then(A) g(f(x+1)) > g(f(x-1))(B) f(g(x-1)) > f(g(x+1))(C) g(f(x+1)) < g(f(x-1))(D) g(g(x+1)) < g(g(x-1))
- 12. If p, q, r be real, then the intervals in which, $f(x) = \begin{vmatrix} x + p^2 & pq & pr \\ pq & x + q^2 & qr \\ pr & qr & x + r^2 \end{vmatrix}$, (A) increase is $x < -\frac{2}{3} (p^2 + q^2 + r^2), x > 0$ (B) decrease is $(-\frac{2}{3} (p^2 + q^2 + r^2), 0)$ (C) decrease is $x < -\frac{2}{3} (p^2 + q^2 + r^2), x > 0$ (D) increase is $(-\frac{2}{3} (p^2 + q^2 + r^2), 0)$
- 13. If $f(x) = x^3 x^2 + 100x + 1001$, then

(A)
$$f(2000) > f(2001)$$
 (B) $f\left(\frac{1}{1999}\right) > f\left(\frac{1}{2000}\right)$ (C) $f(x+1) > f(x-1)$ (D) $f(3x-5) > f(3x)$

(B) $|\tan^{-1} x - \tan^{-1} y| \ge |x - y|$

(D) $|\sin x - \sin y| \ge |x - y|$

- 14. Which of the following inequalities are valid (A) $|\tan^{-1} x - \tan^{-1} y| \le |x - y| \forall x, y \in \mathbb{R}$ (C) $|\sin x - \sin y| \le |x - y|$
- 15.Let $f(x) = (x-1)^4 (x-2)^n$, $n \in N$. f(x) has
(A) Local minimum at x = 2 if n is even
(C) Local maximum at x = 1 if n is odd(B) Local minimum at x = 1 if n is odd(D) Local minimum at x = 1 if n is odd(D) Local minimum at x = 1 if n is even

SECTION - III : ASSERTION AND REASON TYPE

16. Statement-I: The ratio of length of tangent to length of normal is inversely proportional to numerical value of the ordinate of the point of tangency at the curve $y^2 = 4ax$.

Statement-II: Length of normal & tangent to a curve y = f(x) is $\left| y\sqrt{1+m^2} \right|$ and $\left| \frac{y\sqrt{1+m^2}}{m} \right|$, where $m = \frac{dy}{dx}$

- (A) Statement-I is True, Statement-II is True; Statement-II is a correct explanation for Statement-I
- (B) Statement-I is True, Statement-II is True; Statement-II is NOT a correct explanation for Statement-I
- (C) Statement-I is True, Statement-II is False
- (D) Statement-I is False, Statement-II is True

17. Statement-I:
$$\frac{2e^{x_1} + e^{x_2}}{3} > e^{\left(\frac{2x_1 + x_2}{3}\right)}$$
, where e is Napier's constant.

Statement-II : If $f \diamond (x)$ and $f \diamond \diamond (x)$ is positive $\forall x \in R$, then f(x) increases with concavity up $\forall x \in R$ and any chord lies above the curve.

- (A) Statement-I is True, Statement-II is True; Statement-II is a correct explanation for Statement-I
- (B) Statement-I is True, Statement-II is True; Statement-II is NOT a correct explanation for Statement-I
- (C) Statement-I is True, Statement-II is False
- (D) Statement-I is False, Statement-II is True
- 18. Statement-I: If f(x) is increasing function with concavity upwards, then concavity of $f^{-1}(x)$ is also upwards. Statement-II: If f(x) is decreasing function with concavity upwards, then concavity of $f^{-1}(x)$ is also upwards.
 - (A) Statement-I is True, Statement-II is True; Statement-II is a correct explanation for Statement-I
 - (B) Statement-I is True, Statement-II is True; Statement-II is NOT a correct explanation for Statement-I
 - (C) Statement-I is True, Statement-II is False
 - (D) Statement-I is False, Statement-II is True
- 19. Statement-I: Let $f(x) = 5 4 (x 2)^{2/3}$, then at x = 2 the function f(x) attains neither least value nor greatest value. Statement-II: x = 2 is the only critical point of f(x).
 - (A) Statement-I is True, Statement-II is True; Statement-II is a correct explanation for Statement-I
 - (B) Statement-I is True, Statement-II is True; Statement-II is NOT a correct explanation for Statement-I
 - (C) Statement-I is True, Statement-II is False
 - (D) Statement-I is False, Statement-II is True
- 20. Statement-I: The largest term in the sequence $a_n = \frac{n^2}{n^3 + 200}$, $n \in N$ is $\frac{(400)^{2/3}}{600}$.

Statement-II:
$$f(x) = \frac{x^2}{x^3 + 200}$$
, $x > 0$, then at $x = (400)^{1/3}$, $f(x)$ is maximum.

- (A) Statement-I is True, Statement-II is True; Statement-II is a correct explanation for Statement-I
- (B) Statement-I is True, Statement-II is True; Statement-II is NOT a correct explanation for Statement-I
- (C) Statement-I is True, Statement-II is False
- (D) Statement-I is False, Statement-II is True

	SECTION - IV : MATRIA - MATCH TYPE		
Colum	n–I	Colun	nn – II
(A)	If portion of the tangent at any point on the curve $x = at^3$, $y=at^4$ between the axes is divided by the point of contact in the ratio m : n externally, then $ n + m $ is equal to (m and n are coprime)	(p)	1
(B)	The area of triangle formed by normal at the point $(1, 0)$ on the	(q)	$\frac{1}{2}$
	curve $x = e^{\sin y}$ with axes is		
(C)	If the angle between curves $x^2y = 1$ and $y = e^{2(1-x)}$ at the point (1, 1) is θ then tan θ is equal to	(r)	7
(D)	The length of sub-tangent at any point on the curve $y = be^{x/3}$ is equal to	(s)	3
		(t)	0
Colum	n–I	Colun	nn – II
(A)	Number of points which are local extrema	(p)	1
	of f(x) = $\begin{cases} (2+x)^3 & ; & -3 \le x \le -1 \\ x^{2/3} & ; & -1 < x < 2 \end{cases}$		
(B)	If $a + b = 1$; $a > 0$, $b > 0$, then the minimum	(q)	2
	value of $\sqrt{\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)}$ is		
(C)	The maximum value attained by $y = 10 - x - 10 $,	(r)	3
	$-1 \le x \le 3$, is		
(D)	If P(t ² , 2t), t $\in [0, 2]$ is an arbitrary point on parabola	(s)	4
	$y^2 = 4x$ and Q is foot of perpendicular from focus S on the		
	$y^2 = 4x$ and Q is 1000 of perpendicular from focus S on the		
	tangent at P, then maximum area of triangle PQS is		

SECTION - IV : MATRIX - MATCH TYPE

SECTION - V : COMPREHENSION TYPE

23. Read the following comprehension carefully and answer the questions.

If a continuous function f defined on the real line R, assumes positive and negative values in R then the zequation f(x) = 0 has a root in R. For example, if it is known that a continuous function f on R is positive at some point and its minimum value is negative then the equation f(x) = 0 has a root in R.

Consider $f(x) = ke^{x} - x$ for all real x where k is a real constant.

1.	The line $y = x$ meets $y = ke^x$ for $k \le 0$ at					
	(A)no point	(B) one point	(C) two points	(D) more than two points		
2.	The positive value of k for which $ke^{x} - x = 0$ has only one root is					
	(A) $\frac{1}{e}$	(B) 1	(C) e	(D) $\log_{e} 2$		

21.

22.

3.	For $k > 0$, the set of all values of 'k' for which $ke^{x} - x = 0$ has two distinct roots is									
	$(\mathbf{A})\left(0,\frac{1}{e}\right) \qquad \qquad (\mathbf{B})\left(\frac{1}{e},1\right)$	$(\mathbf{C})\left(\frac{1}{\mathbf{e}},\infty\right)$	(D) (0, 1)							
24.	Read the following comprehension carefully and answer the questions.									
	Let f and g are two functions such that $f(x) \& g(x)$ are continuous in [a, b] and differentiable in (a, b)									
	Then at least one $c \in (a, b)$ such that $f'(c) = \frac{f(b) - f(a)}{b - a}$									
	(i) If $f(a) = f(b)$, then $f'(c) = 0$ (RMVT)									
	(ii) If $f(a) \neq f(b)$ and $a \neq b$, (LM)	VT)								
	(iii) If $g'(x) \neq 0$, then $\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}$ (ca	uchy theorem)								
1.	The set of values of k, for which equation $x^3 - 3x^{-3}$	+ k = 0 has two distinct roots	s in (0, 1) is							
	(A) $(1,4)$ (B) $(0,\infty)$	(C) (0,1)	(D) (
2.	Which of the following is true ?									
	(A) $ \tan^{-1}x - \tan^{-1}y \le x - y \forall x, y \in \mathbb{R}$	(B) $ \tan^{-1}x - \tan^{-1}y \ge x $	$-\mathbf{y} \mid \forall \mathbf{x}, \mathbf{y} \in \mathbf{R}$							
	(C) $ \sin x - \sin y \ge x - y \forall x, y \in \mathbb{R}$	(D) none of these (D)								
3.	Let $0 < \alpha < \theta < \beta < \frac{\pi}{2}$, then $\frac{\sin \alpha - \sin \beta}{\cos \alpha - \cos \beta}$ is equa	l to								
	(A) $\tan \theta$ (B) $-\tan \theta$	(C) $\cot \theta$	(D) – cot θ							
25.	Read the following comprehension carefully and	answer the questions.								
	A function f(x) having the following properties;									
	(i) $f(x)$ is continuous except at $x = 3$									
	(ii) $f(x)$ is differentiable except at $x = -2$ and	$\mathbf{x} = 3$								
	(iii) $f(0)=0, \lim_{x\to 3} f(x) \to -\infty, \lim_{x\to\infty} f(x)=3, \lim_{x\to\infty} f(x)=0$									
	(iv) $f'(x) > 0 \forall x \in (-\infty, -2) \cup (3, \infty) \text{ and } f'(x) = 0$									
	(v) $f''(x) > 0 \forall x \in (-\infty, -2) \cup (-2, 0) \text{ and } f$	$''(\mathbf{x}) < 0 \ \forall \ \mathbf{x} \in (0,3) \cup (3,\infty)$)							
	then answer the following questions									
1.	Maximum possible number of solutions of $f(x) = $	x is								
	(A)2 (B)1	(C) 3	(D) 4							
2.	Graph of function $y = f(- x)$ is									
	(A) differentiable for all x, if $f'(0) = 0$									
(B) continuous but not differentiable at two points, if $f'(0) = 0$										
	(C) continuous but not differentiable at one points	s, if $f'(0) = 0$								
	(D) discontinuous at two points, if $f'(0) = 0$									
3.	f(x) + 3x = 0 has five solutions if									
	(A) $f(-2) > 6$	(B) $f'(0) < -3$ and $f(-2)$	2)>6							
	(C) $f'(0) > -3$	(D) $f'(0) > -3$ and $f(-2)$	2) > 6							

B

SECTION - VI : INTEGER TYPE

- 26. The chord of the parabola $y = -a^2x^2 + 5ax 4$ touches the curve $y = \frac{1}{1-x}$ at the point x = 2 and is bisected by that point . Find 'a'.
- 27. Let α be the angle in radians between $\frac{x^2}{36} + \frac{y^2}{4} = 1$ and the circle $x^2 + y^2 = 12$ at their points of intersection.

If
$$\alpha = \tan^{-1} \frac{k}{2\sqrt{3}}$$
, then find the value of k^2 .

- 28. Find positive real numbers 'a' and 'b' such that $f(x) = ax bx^3$ has four extrema on [-1, 1] at each of which |f(x)| = 1
- 29. A cubic f(x) vanishes at x = -2 and has relative minimum/maximum at x = -1 and $x = \frac{1}{3}$.

If
$$\int_{-1}^{1} f(x) dx = \frac{14}{3}$$
, the cubic $f(x) = \lambda_1 x^3 + \lambda_2 x^2 - x + 2$, then find $(\lambda_1 + \lambda_2)$

30. For any acute angled $\triangle ABC$, find the maximum value of $\frac{\sin A}{A} + \frac{\sin B}{B} + \frac{\sin C}{C}$

ANSWER KEY

EXERCISE - 1

11. C 12. B 13. C 1. C 2. A 3. A 4. B 5. C 6. A 7. B 8. A 9. A 10. D 14. C 15. D 16. B 17. D 18. D 19. B 20. B **21.** C **22.** B 23. B 24. B 25. A 26. A 27. A 28. D 31. D 32. C 33. D **36.** B **37.** B 38. D 39. D 29. D **30.** A **34.** B 35. B **43.** C 41. A 42. B **44.** B 45. C 46. D **47.** B 48. D **49.** B **40.** C 50. D 51. A 52. D 59. C 53. A 54. A 55. B 56. B 57. B 58. C **60.** B 61. A 62. C 63. A 64. C 65. A 69. B 70. B 71. C 72. B 73. A 74. C 66. A 67. C 68. D 75. D

EXERCISE - 2 : PART # I

2. AC **1.** ACD **3.** ACD 4. CD 5. BD 6. BC 7. BD 8. BD 9. AD 10. BCD 11. AB 12. ABD **13.** AB 14. AB 15. ABD 16. ACD 17. AB 18. AD 20. ACD 19. BD 21. ABD **22.** ABC 23. AB 24. AD 25. ABCD 26. AD 27. AD 28. CD **29.** AC **30.** ABCD **31.** ABD 32. AB 33. AD 34. AD 35. BC 36. ABCD 37. BC 38. AD **39.** ABC 41. ACD **42.** ABC 44. ABCD 45. BCD **40.** BC 43. BD 46. BCD **47.** AB 48. ACD 49. BCD 50. ABC

PART - II

1. A 2. A 3. A 4. B 5. A 6. D 7. A 8. D 9. D 10. A 11. C 12. C 13. C 14. A 15. C 16. C 17. A 18. A

EXERCISE - 3 : PART # I

1. $A \rightarrow r B \rightarrow q C \rightarrow p D \rightarrow s$ 4. $A \rightarrow p, q B \rightarrow r, s C \rightarrow r, s D \rightarrow r, s$ 7. $A \rightarrow p B \rightarrow r C \rightarrow q D \rightarrow r$ 8. $A \rightarrow r B \rightarrow s C \rightarrow q D \rightarrow p$ 9. $A \rightarrow s B \rightarrow r C \rightarrow p D \rightarrow q$

PART - II

С	3.	D		Comprehension #2: 1.	В	2.	D	3.	С	
В	3.	D		Comprehension #4: 1.	D	2.	С	3.	С	
С	3.	D		Comprehension #6: 1.	С	2.	D	3.	А	
D	3.	D		Comprehension #8: 1.	А	2.	D	3.	D	
В	3.	А		Comprehension #10:	1.	D	2.	С	3.	С
2.	А	3.	В							
	B C D B	 B 3. C 3. D 3. B 3. 	 C 3. D B 3. D C 3. D D 3. D B 3. A 2. A 3. 	B 3. D C 3. D D 3. D	B 3. D Comprehension #4: 1. C 3. D Comprehension #6: 1. D 3. D Comprehension #8: 1. B 3. A Comprehension #10:	B 3. D Comprehension #4: 1. D C 3. D Comprehension #6: 1. C D 3. D Comprehension #8: 1. A B 3. A Comprehension #10: 1.	B 3. D Comprehension #4: 1. D 2. C 3. D Comprehension #6: 1. C 2. D 3. D Comprehension #8: 1. A 2. B 3. A Comprehension #10: 1. D	B 3. D Comprehension #4: 1. D 2. C C 3. D Comprehension #6: 1. C 2. D D 3. D Comprehension #8: 1. A 2. D B 3. A Comprehension #10: 1. D 2. C	B 3. D Comprehension #4: 1. D 2. C 3. C 3. D Comprehension #6: 1. C 2. D 3. D 3. D Comprehension #8: 1. A 2. D 3. B 3. A Comprehension #10: 1. D 2. C	B 3. D Comprehension #4: 1. D 2. C 3. C C 3. D Comprehension #6: 1. C 2. D 3. A D 3. D Comprehension #8: 1. A 2. D 3. D B 3. A Comprehension #10: 1. D 2. C 3. D

EXERCISE - 5 : PART # I

1.	4	2. 4	3.	3 4	4	5. 2	6. 1	7. 3	8. 2	2,4 9. 1	10. 4	11. 2	12. 2	13. 4
14.	1	15. 4	16.	3 1	7.1	18. 4	19. 4	20. 2	21. 4	4 22. 3	23. 4	24. 3	25. 1	26. 4
27.	2	28. 2												

PART - II									
1. D	2. (A) B	(B) D	3. A	4. C	5. A	6. $\cos\left(\frac{1}{3}c\right)$	$os^{-1} p$	7. A	
8. D	10. A	11. B	12. 5	13. D	16. A	17. A	18. D	19. $y - 2 = 0$	
20. Distanc	e between (–1	, 10) and (3, -	-22) is $4\sqrt{65}$	units	21. BC	22. A	23. 6	24. A	
25. B	26. B	27. A	28. A	29. C	30. ABCD	31. C			
32. A \rightarrow	$\mathbf{B} \rightarrow \mathbf{q}, \mathbf{s}$	$C \rightarrow r, s D$	\rightarrow p, r	33. A	34. A	35. B	36. 7	37. 0	
38. BCD	39. D	40. 18	41. BC	42. D	43. 1	44. A	45. 2	46. C	
47. B	48. ABCD	49. 5	50. 9	51. AC	52. AB	53. C	54. BC	55. ACD	
56. 8	57. 4	58. A							
MOCK TEST									

1. C	2. A	3. B	4. B 5.	D 6. D	7. A	8. B 9. D
10. A	11. BC	12. AB	13. BC 14.	AC 15. ACD	16. D	17. A 18. D
19. D	20. D	21. $A \rightarrow r$	$B \rightarrow q C \rightarrow t$	$D \rightarrow s$	22. $A \rightarrow q$	$B \rightarrow r C \rightarrow r D \rightarrow t$
23. 1. B	2. A 3.	А	24. 1. D 2.	A 3. D	25. 1. C	2. B 3. D
26 - 1	27 16 29	a = 2 h = 4	20 2 20 9	3		

26. a = 1 **27.** 16 **28.** a = 3, b = 4 **29.** 2 **30.** $\frac{9\sqrt{3}}{2\pi}$

