
Tokens and Keywords

C++ Tokens

A token is the smallest element of a C++ program that is meaningful to the compiler. The C++ parser
recognizes these kinds of tokens: identifiers, keywords, literals, operators, punctuators, and other
separators. A stream of these tokens makes up a translation unit.

Tokens are usually separated by “white space.” White space can be one or more:

Blanks

Horizontal or vertical tabs

New lines

Formfeeds

Comments

Syntax

token:

keyword
identifier
constant
operator
punctuator

preprocessing-token:

header-name
identifier
pp-number
character-constant
string-literal
operator
punctuator

each nonwhite-space character that cannot be one of the above

The parser separates tokens from the input stream by creating the longest token possible using the
input characters in a left-to-right scan. Consider this code fragment:

a = i+++j;

The programmer who wrote the code might have intended either of these two statements:

a = i + (++j)
or
a = (i++) + j

Because the parser creates the longest token possible from the input stream, it chooses the second
interpretation, making the tokens i++, +, and j.

Keywords:

Keywords implement specific C++ language features. They cannot be used as names for variables or
other user-defined program elements. Most of the keywords are common to both C and C++, but
some are specific to C++.

Computer programming languages, such as C++, reserve a set of words for use within the language.
These words, which are called keywords, tell the compiler what your program is supposed to do.
Keywords cannot be used for other purposes, such as variable names, tags, or function names.

C++ Keywords:

asm auto break case catch

char class const continue default

delete do double else enum

extern float for friend goto

if inline int long new

operator private protected public register

return short signed sizeof static

struct switch template this throw

try typedef union unsigned virtual

void volatile while

