Understanding Quadrilaterals

Polygons

A simple closed curve made up of only line segments is called a polygon.

Curves that are polygons



Curves that are not polygons

Classification of polygons

Polygons can be classified by the number of sides they have:

Polygon	Graphic	Sides	Angles	Vertices	Diagonals	Number Triangles
Triangle		3	3	3	0	1
Quadrilateral		4	4	4	2	2
Pentagon		5	5	5	5	3
Hexagon		6	6	6	9	4
Heptagon or Septagon		7	7	7	14	5
Octagon		8	8	8	20	б
Nonagon or Novagon		9	9	9	27	7
Decagon		10	10	10	35	8
Dodecagon	\bigcirc	12	12	12	54	10
n-gon		n	n	n	$\frac{1}{2}n(n-3)$	(n - 2)

Diagonals

A diagonal is a line segment connecting two non-consecutive vertices of a polygon.

Number of Sides	Diagram	Number of Diagonals	
3	\bigtriangleup	0	
4	\bowtie	2	
5		5	
6		9	

Interior and exterior of a closed curve

Interior region: The portion of the plane which is inside the curve.

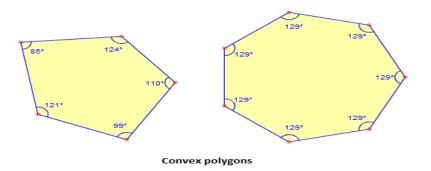
Interior

Exterior region: The portion of the plane which is outside the curve.

Exterior

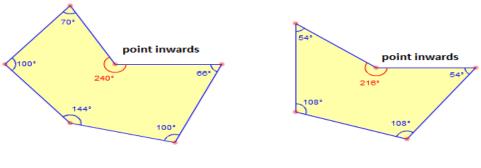
Convex and concave polygons

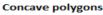
A polygon which has all the interior angles less than 180° is called convex polygon. That means all the vertices of the convex polygon point outwards.



A polygon which has one or more interior angles greater than 180° is called concave polygon.

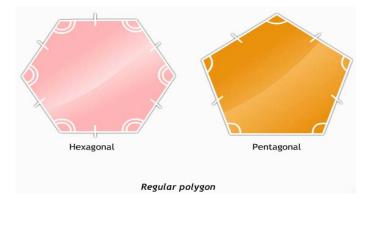
That means at least one vertex of the concave polygon point inwards.



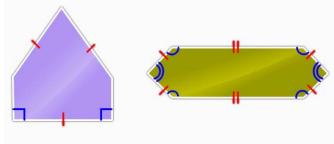


Regular and irregular polygons

Regular polygons: A polygon is said to be regular if all the angles are equal and all the sides are equal.



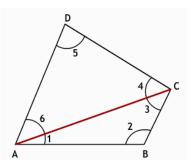
Irregular polygons: A polygon is said to be irregular if all the angles are not equal and all the sides are not equal.



Polygons that are not regular

Angle sum property

Theorem: The sum of four angles of a quadrilateral is 360°.



Proof: In $\triangle ABC$,

 $\angle 1 + \angle 2 + \angle 3 = 180^{\circ}$ (1) (From the angle sum property of the triangle)

In ∆ACD,

 $\angle 4 + \angle 5 + \angle 6 = 180^{\circ}$ (2) (From the angle sum property of the triangle)

From (1) and (2)

 $\angle 1 + \angle 2 + \angle 3 + \angle 4 + \angle 5 + \angle 6 = 360^{\circ}$

It can be written as:

(∠1 + ∠6) + ∠2 + (∠3 + ∠4) + (∠5) = 360°

 $\Rightarrow \angle A + \angle B + \angle C + \angle D = 360^{\circ}$ Hence Proved.

For a regular n-sided polygon,

Each interior angle = $\{[(2n - 4) \times 90]/n\}^\circ$

Example:

Find the sum of the interior angles of a nonagon?

Solution:

For a nonagon, the number of sides, n = 9.

Sum of interior angles = $(2n - 4) \times 90^{\circ}$

- = (2 × 9 4) × 90°
- = 14 × 90°
- = 1260°

C 9 Sides D E F Nonagon

Sum of the Measures of the Exterior Angles of a Polygon

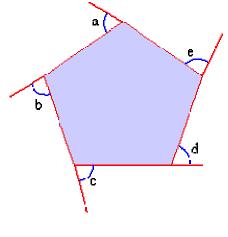


Figure shows a pentagon. Its external angles are named from 'a' to e. The aim is to find the sum of these five angles.

It is known that the sum of internal angles of a Pentagon

= (5 - 2) × 180° = 3 × 180° = 540°

 $\therefore Each$ interior angle of the pentagon measures

The interior and exterior angles form linear pairs and hence are supplementary.

 \therefore Each exterior angle measures 180° - 108° = 72°

 \therefore Sum of five exterior angles = 5 × 72° = 360°

It can be proved that the sum of the exterior angles for any polygon is 360⁰.

Sum of interior angles of an n sided polygon = $(n - 2) 180^{\circ}$.

$$\frac{(n-2)180^0}{n}$$

∴ Measure of each internal angle =

 $-\frac{180 - \frac{(n-2)180^0}{n}}{n}$

 \therefore Each exterior angle = $\frac{1}{2}$

$$n\left[180-\frac{(n-2)180}{n}\right]^{0}$$

 \therefore Sum of n exterior angles =

 $= 180n - 180n + 360^{\circ}$

=360⁰

Conclusion: The sum of interior angles of a polygon is dependent on the number of sides but the sum of the exterior angles is always 360°.

Example: One exterior angle of a regular polygon is 60°. How many sides does it have?

Solution:

Let the number of sides be n.

The polygon is regular so one exterior = $360^{\circ}/n$

 $360^{\circ}/n = 60^{\circ}$

It gives n = 6.

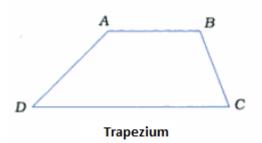
So the polygon has 6 sides and it is hexagon.

Kinds of Quadrilaterals

Based on the nature of the sides or angles of a quadrilateral, it gets special names.

Trapezium

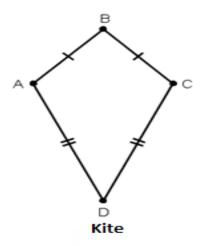
A trapezium is a quadrilateral in which only one pair of opposite sides is parallel and the other two sides are non-parallel.



In the given figure, ABCD is a trapezium in which AB II CD, but AD is not parallel to BC.

Kite

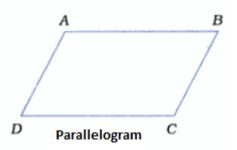
A kite is a quadrilateral which has two pairs of equal adjacent sides, but unequal opposite sides.



In the given figure, ABCD is a kite in which AB = BC, AD = CD, $AD \neq BC$ and $CD \neq AB$.

Parallelogram

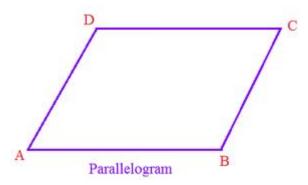
A parallelogram is a quadrilateral in which each pair of opposite sides is parallel.



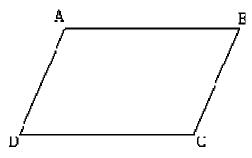
In the given figure, ABCD is a parallelogram in which AB II DC and AD II BC.

Elements of a parallelogram

- There are four sides in a parallelogram that are AB, BC, CD and DA.
- Four angles are $\angle A$, $\angle B$, $\angle C$ and $\angle D$.
- There are two pairs of opposite sides that are AB and DC, DA and CB.
- AB and BC, BC and CD, CD and DA, DA and AB are the adjacent sides.
- The opposite sides of a parallelogram have equal length.
- ($\angle A$ and $\angle B$) and ($\angle B$ and $\angle C$) are adjacent angles. They are at the ends of the same side.



Property: In a parallelogram, the opposite sides are of equal length.



Given: AB || CD and AD || BC

To prove: AB = CD, AD = BC

Construction: Draw in the diagonal AC.

Proof: consider $\triangle ABC$ and $\triangle CDA$,

AB II CD (given)

AD II BC (given)

 $\angle BAC = \angle DCA$ (alternate interior angles)

 $\angle DAC = \angle BCA$ (alternate interior angles)

And AC = AC (common side)

So, $\triangle ABC \cong \triangle CDA$ (by ASA congruent rule)

Hence, AB = CD (CPCT)

And AD = BC (CPCT)

Angles of a parallelogram

Property: The adjacent angles in a parallelogram are supplementary.

Given: ABCD is a parallelogram.

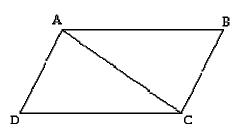
To Prove: $\angle A + \angle B = \angle B + \angle C = \angle C + \angle D = \angle D + \angle A = 180^{\circ}$

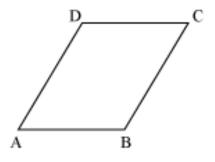
Proof: ABCD is a parallelogram

: AD||BC (Opposite sides of parallelogram are parallel)

 $\Rightarrow \angle DAB + \angle ABC = 180^{\circ}$ (Sum of consecutive interior angles is supplementary)

Similarly, $\angle B + \angle C = 180^{\circ}$, $\angle C + \angle D = 180^{\circ}$ and $\angle D + \angle A = 180^{\circ}$.





Thus, the adjacent angles of a parallelogram are supplementary. Diagonals of a parallelogram

Property: The diagonals of a parallelogram bisect each other.

Given: ABCD is a parallelogram.	A				
To Prove: OB = OD and OA = OC					
Proof: consider two triangles AOB and COB					
Then, \angle (AOB) = \angle (COD) (vertically opposite angles)	в				
Side AB = side CD (since, opposite sides of parallelogram are equal)	Parallelogram				
And $(ABO) = (CDO)$ (since AB parallel to CD and transversal BD intersects them					

And, \angle (ABO) = \angle (CDO) (since, AB parallel to CD and transversal BD intersects them

So, \angle (ABO) = \angle (CDO) [alternate angles]

Therefore, triangles AOB and COB are congruent (By AAS rule)

Therefore OB = OD (By CPCT)

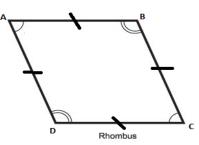
And OA = OC (By CPCT)

Therefore, diagonals of a parallelogram bisect each other.

Some Special Parallelograms

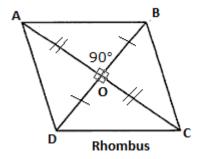
Rhombus

- A rhombus is a quadrilateral with all sides having equal length.
- The opposite sides of a rhombus are of equal length i.e., AB = DC, AD = BC.
- The opposite angles are also equal i.e., $\angle A = \angle C$, $\angle B = \angle D$ so it has all the properties of a parallelogram and of a kite.



Property: Diagonals of a Rhombus bisect each other at right angles

In the given rhombus, ABCD, AC and BD are the diagonals that meet at point O.

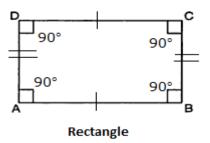


It is observed that AO = CO, BO = DO and \angle DOC = \angle COB = \angle BOA = \angle AOD = 90°.

Hence, Diagonals of a Rhombus bisect each other at right angles.

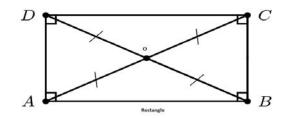
A rectangle

A quadrilateral with opposite sides equal that are AB = DC, AD = BC and all the four angles equal to right angle that are $\angle A = \angle B = \angle C = \angle D = 90^\circ$ is called rectangle.



Property: Diagonals of a rectangle are equal and bisect each other.

In the given rectangle ABCD,

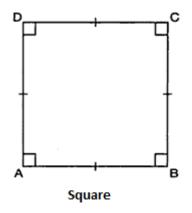


It can be observed that AO = CO, BO = DO, And AC = BD.

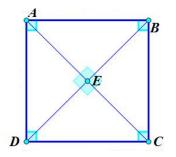
So that diagonals of a rectangle are equal and bisect each other.

A square

A quadrilateral with all its four sides equal that are AB = BC = CD = DA and each of its four angles a right angle that are $\angle A = \angle B = \angle C = \angle D = 90^\circ$ is called a square.



Property: The diagonals of a square are perpendicular bisectors of each other.



Diagonals of a square are equal i.e. AC = BD, and perpendicular to each other i.e. AC \perp BD and bisects each other."

