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Lecture 0:3/10/06

0 Introduction

0.1 What is vector analysis

In analysis differentiation and integration were mostly considered on R or on rectangles
(between points a and b). However a function on a circle is as valid as on a straight line.
Vector analysis generalises these results onto curves, surfaces and volumes in Rn

Example 0.1. The normal way to calculate an integral is to find an anti-derivative of
the function and use the fundamental theorem of calculus (FTC)

f(x) + F (1)(x) −→
∫ b

a

f(x)dx =

∫ b

a

F (x)dx = F (b)− F (a) (0.1)

The value of
∫ b
a
f(x)dx can be computed by looking at the boundary points, a and b.

This can be generalised to Rn, by Gauss’ Theorem. Gauss’ Theorem says that we can
find the area with just the boundary lines.

0.2 Notation

There are many different notations you may use, especially in Physics/Engeneering 1

0.2.1 Vectors

x ∈ Rn, x = (x1, x2, . . . , xn)

alternatives x̄, ~x, x, x I normally use x, physicists generally use ~r = (x, y, z) where

r =
√
x2 + y2 + z2, however this is no good with n dimensions as you soon run out of

letters!

0.2.2 Functions

f : Rm → Rn with component functions f1, . . . , fn Rm → R, alternate ways of showing

functions are
−→
f , f , . . .

0.2.3 Inner Product

〈x, y〉 =
n∑
i=1

xiyi for x, y ∈ Rn 2 (0.2)

alternate (xy), x · y, xTy
1The biggest challenge is getting LaTeX to write them all... ;)
2In this case this is actually the scalar (dot) product
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Figure 1: Graph showing a peak

0.2.4 Partial derivatives

for f : Rn → R, x ∈ Rn

d

dx
f(x) = lim

h→0

f(x+ hei) + f(x)

h

alternates, ∂f(x), ∂f
∂xi

(x), dxi , . . .

ft(t, x) =
∂

∂t
f(t, x)

fx(t, x) =
∂

∂x
f(t, x)

1 Lecture 1 The real thing

1.1 Gradients and Directional derivatives

How does a function f : Rn → R change when we move from a point x ∈ Rn in some
direction y ∈ Rn? This can be seen in figure 1 We can reduce the problem to one
dimension. Consider ϕ : R→ R, ϕ 7→ f(x+λy) the change of f at a point x in direction
of y equals the change of ϕ at point λ = 0 and thus is ϕ(0).

Definition 1.1 (The directional derivative). f : Rn → R at x ∈ Rn in the direction of
y ∈ Rn

Dyf(x) = lim
λ→0

f(x+ λy)

λ
(1.1)
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Figure 2: Graph showing how the directional derivative varies

Example 1.1.
f : R2 → R2, f(x) = x2

1 + x2
2

f(x+ λy) = (x1 + λy1)2 + (x1 + λy2)2

= x2
1 + x2

2 + 2λx1y1 + 2λx2y2 + λ2y2
1 + λ2y2

2 −→ Dyf(x) = 2x1y1 + 2x2y2 = 〈2x, y〉

This is shown in figure 2. 3 In this case this gives:

ϕ′(λ) =
n∑
i=1

δif(xi + λyi)

→ Dyf(x) = ϕ′(0) =
n∑
i=1

δif(x)yi

where δif(x) is the gradient part (of ∇f).

1.2 Directional Derivatives

Dyf(x) = lim
λ→0

f(x+ λy)− f(x)

λ

Do you really need to calculate this for every Dyf(x) for all directions y?

3It’s probably worth looking over section 1.2 first as thats the order we did it in lectures.
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We have to calculate the derivative of ϕ : λ 7→ x+ λy 7→ f(x+ λy)

R −→g Rn −→f R

In general this is shown in the next two subsections.

1.2.1 Generally in one dimension(
f(g(λ)

)′
= f ′

(
g(λ)

)
· g′(λ)

1.2.2 Generally in n dimensions(
f(g(λ)

)′
=

n∑
i=1

δif
′(g(λ)

)
· g′i(λ)

Definition 1.2. For Rn → R the vector ∇f = (δif, . . . , δnf) is called the gradient of f .
Alternative notations include gradf, . . .∇f

Definition 1.3 (Cauchy-Schwarz inequality). If x, y ∈ C then

|〈x, y〉|2 ≤ 〈x, x〉 · 〈y, y〉 [1] (1.2)

Another form of this, which we use here is:

|〈x, y〉| ≤ ‖x‖ · ‖y‖ (1.3)

Remark 1.1. From the Cauchy Schwarz inequality (equation 1.3) we get:

|Dyf(x)| = |〈∇f(x), y〉| ≤ ‖∇f(x)‖‖y‖ (1.4)

Where ||y|| = 1 we get:

||∇f(x)|| ≤ ||Dyf(x)|| ≤ ||∇f(x)||

And for: y = ∇f(x)
||∇f(x)|| we get

||Dyf(x)| =
〈
∇f(x),

∇f(x)

‖∇f(x)‖

〉
This then implies that y is maximal if y points in direction of the gradient.

2 Visualisation of a function f : Rn → Rn

Graphs of scalar fields.

Definition 2.1. f : D → R where D ⊂ Rm

Example 2.1. m = n = 1 as in Analysis I, f(x) = sin(x), this is shown in figure 3
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Figure 3: Graph of f(x) = sin x

Figure 4: Graph of the function: z =
sin(x2+3y2)

0.1+r2
+ (x2 + 5y2) · exp(1−r2)

2
, r =

√
x2 + y2
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Figure 5: This graph is the original Grapher example, it is included because it looks cool,
and not a boring uniform orange, if it confuses you ignore it, it adds nothing to figure
4 in terms of vector analysis. In the image the colour gradient represents the height (z
value, on x, y, z axis), but could be use to represent some extra criteria.
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Example 2.2. For m=2,n=1 we can draw something as shown in figure 4 4

For m ≥ 3, n = 1 it is difficult, colour coding could be used to represent a variable,
in a similar way to how figure 5 does for the z direction. Applications of this include
temperatures distributions on 3D bodies or pressure in a liquid.

f−1(c) = {x ∈ Rn | f(x) = 0}5

f(x, y) = x2 + y2

2.1 Curves

These can be described in two ways:

1. Implicitly giving the graph C ⊆ Rn

2. Explicitly as parametric curves ϕ : R→ Rn

Example 2.3.
1 = x2 + y2 (2.1)

Then equation 2.1 can be written parametrically as:

ϕ(t) =

(
cos t
sin t

)
(2.2)

For a curve ϕ : R→ Rn where ϕt is the position at ”time” t.

ϕ′(t) = lim
h→0

ϕ(t+ h)− ϕ(t)

h

If ϕ 6= 0 then ϕ′(t) is a tangent vector and the tangent line is given by λ 7→ ϕ(t) + ϕ′(t)

Definition 2.2. A vector x ∈ Rn is orthogonal to a curve ϕ : R→ Rn at the point ϕ(t)
if 〈x, ϕ(t)〉 = 0 i.e. if it is orthogonal to the tangent line.

Lemma 2.1. Let f : Rn → R be a scalar function, a ∈ Rn. Then ∇f(a) : ⊥{x ∈
Rn|f(x)− f(a)} this means the gradient is orthogonal to the tangent lines.

Proof. Let ϕ : R→ {x | f(x) = f(a)} be a curve with ϕ(0) = a.

= 〈∇f(ϕ(t), ϕ′(t)〉
∣∣
t=0

= 〈∇f(a), ϕ′(t)〉

=
m∑
i=1

ϕ′i(t)δif
′(ϕ(t))

Then

0 =
d

dt
f(ϕ(t))

∣∣
t=0

4Sorry for the excessively complex example. Blame Apple for making such a cool graph.[/ apple/maths
geek]

5It seems something is missing here
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3 Line Integrals

We want to take integrals along a curve C ∈ Rn, there are two methods of integrating
line integrals.

3.1 Integrating by scalar fields

Definition 3.1 (Length of curve). Let γ : [a, b]→ Rn be a curve, then the scalar line of
u : Rn → R is: ∫

γ

u =

∫ b

a

u
(
γ(t)

)
||γ′(t)||dt

other forms of line integrals
∫
γ
uds the6 has no useful role.

3.2 Integrating vector fields

Definition 3.2. Ley γ be a curve and f a vector field the tangent line integral of f along
γ[a, b]→ Rn a vector field. Then the tangent line integral of f along γ is given by:∫

γ

f =

∫ b

a

〈
f
(
γ(t)

)
, γ′(t)

〉
dt

alternative notations are: ∫
γ

f · T̂
−→
ds,

∫
γ

−→
f
−→
ds,

∫
C

f
−→
ds

Lecture 5: 16/10/06

Example 3.1. Length of the circle line, let

γ(t) =

(
cos t
sin t

)
∀t ∈ [0, 2π]

⇒ γ′(t) =

(
− sin t
cos t

)
∀t ∈ [0, 2π]

||γ′(t)|| =
√

(− sin t)2 + (cos t)2 =
√

1 = 1∫
C

1 =

∫ 2π

0

1 · 1dt = 2π

This answer is the same as you get from the old fashioned method of finding the circum-
ference using circumference = 2πr

Remark 3.1. The tangent line integral can be written as:∫
C

f =

∫ b

a

〈
f
(
γ(t)

)
,
γ′(t)

||γ′(t)||

〉
||γ′(t)||dt

with an inner product.7
∫
C
f is the scalar line integral of the component of f along the

tangent line.

6a piece of LaTeX is missing here check original notes
7doesn’t make much sense to me now, maybe I was distracted ;)
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Example 3.2. Work done when moving a mass along the line − cosx

γ(t) =

(
t

− cos t

)

f(x, y) =

(
0
−mg

)
−
∫
γ

f = −
∫ π

0

〈(
0
−mg

)
,

(
1

sin t

)〉
dt =

∫ π

0

mg sin tdt =

[
−mg cos t

]π
0

= mg+mg = 2mg

(3.1)
This example is continued as example 4.1 in the next chapter.

4 Gradient Vector Fields

Definition 4.1. A gradient vector field is a vector field f : Rn → Rn with f = ∇V for
some V : Rn → R, V is called the potential of f .

Remark 4.1. 1. ∇V is not unique as ∇V = ∇(V + C), ∀c ∈ R, this means the
potential is not unique.

2. Not every vector field is a gradient vector field

Theorem 4.1 (Fundamental Theorem of Calculus for gradient vector field). Let V : R→
R? be a scalar field f = ∇V ? and γ : [a, b]→ Rn? a curve then∫

γ

f = V
(
γ(b)

)
− V

(
γ(a)

)
Proof. The ??? 7→ V

(
γ(t)

)
has R→ R derivative.

(
V
(
γ(t)

))′
=

n∑
i=1

δiV
′(γ(t)

)
γ′(t) =

〈
∇V

(
γ(t)

)
, γ′(t)

〉
(4.1)

Therefore 8∫
γ

f =

∫ b

a

〈
f
(
γ(t)

)
, γ′(t)

〉
dt =

∫ b

a

(
V
(
γ(t)

))′
dt = V

(
γ(b)

)
− V

(
γ(a)

)
(4.2)

As we now know: ∫
γ

f = V
(
γ(b)

)
− V

(
γ(a)

)
8More destractedness I think ;)
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Figure 6: Diagram showing routes between two points a and b, and a loop about a point
a

Example 4.1.

f =

(
0
−mg

)
can be written as ∇Vγ and V = −mgy ⇒ for every curve, γ(t) = (x(t), y(t)) we get:

−
∫
γ

f = −V (γ(b)) + V (γ(a)) = mgy(b)−mgy(a)

but in this case y(b) = 1, y(a) = −1 = mg+mg = 2mg 9 f is a vector field. γ is a curve.
⇒
∫
γ
f which is the integral of f over the curve γ.

⇒
∫
γ

f = V
(
γ(b)

)
− V

(
γ(a)

)
Remark 4.2. If f 10 is a vector field and γ is a line then

∫
γ
f does not depend on the

path γ but only the two end points.

Remark 4.3. If f = ∇V then figure 6 implies that∫
γ1

f = V (b)− V (a) and

∫
γ2

f = V (a)− V (b)

this means that
∫
γ1
f = −

∫
γ2
f .

Definition 4.2. A loop is where the end point is the start point as shown in figure 6.

Example 4.2.

f(x, y) =

(
y
x

)
γ(t) =

(
cos t
sin t

)
∀ t ∈ [0, 2π] =⇒

∫
γ

f =

∫ 2π

0

〈(
− sin t
cos t

)
,

(
− sin t
cos t

)〉
dt∫ 2π

0

sin2 t+ cos2 tdt =

∫ 2π

0

1 dt = 2π

this means that f is not a gradient vector field.

92mg is what we got before
10not 100% on whether this is f
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Figure 7: Graph of a vector field

V (x) = V (0) +

∫
γx

f

where γx is the straight line from 0 to x for every potential V . If V1 and V2 are two
different potentials, then:

V1(x)− V2(x) = V1(0) +
�

�
��

∫
γ

f − V2(0)−
�

�
��

∫
γ

f

Is then constant.

Example 4.3 (Finding a potential). Let f(x, y) = 1
2

(
−x
y

)
(this vector field is shown

in figure 7) Suppose f = ∇V then this implies that

∂V

∂x
= −1

2
x⇔ V = −x

2

4
+ C1

∂V

∂y
=

1

2
y ⇔ V = −y

2

4
+ C2

These two equations imply that:

V =
y2

4
− x2

4
+ C

so V (x, y) = y2

4
− x2

4
is a valid solution.
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Figure 8: Graph of a vector field

Example 4.4. Let f(x, y) =

(
2y
x+ y

)
(this vector field is shown in figure 8) Suppose

f = ∇V then
∂V

∂x
= 2y ⇔ V = 2xy + C1(y)

∂V

∂y
= x+ y ⇔ V = xy +

1

2
y2 + C2(x)

This has no solution which implies that f cannot be a gradient field.

Definition 4.3. f : R→ R is called a radial vector field if

f(x) =

{
g(‖x‖) x

‖x‖ if x 6= 0

0 x = 0

19/10/06 ∫
γ

f =

∫
γ

∇V = V (γ(b))− V (γ(a))

(if f is a gradient)

Example 4.5. Radial vector fields: Let:

f(x) =

{
g(‖x‖) x

‖x‖ if x 6= 0

0 x = 0

, where g : (0,∞) → R We always find φ(0,∞) → R with φ′ = g. Let v(x) = φ(‖x‖) =

φ
(√

x2
1 + · · ·+ x2

n

)
We then get:

∂

∂x
v(x) = φ(‖x‖) =

1

2
√
x2

1 + · · ·+ x2
n

2xi = φ′(‖x‖) xi
‖x‖

= g
xi
‖x‖

15



= fi(x)→ ∇V = f

Thus we now know that radial vector fields are always gradients.

5 Surface Integrals

There are two methods of describing a surface in R3

1. Level set of f : R3 → R

2. Parameterisation r : A→ R3 where A ⊆ R3

r(s, t) =

 r1(s, t)
r2(s, t)
r3(s, t)


Find the surface C’s normal vectors for level sets:

∇f ⊥ C ⇒ N̂ =
∇f
‖∇f‖

for parameterisations 11 A plane is defined by two vectors and a point. Or a point and
a vector orthogonal to the plane. At r(s, t) the vectors ∂r

∂s
and ∂r

∂t
are tangent vectors of

the surface:

C ⇒ N =
∂r

∂s
× ∂r

∂t
is therefore normal to C this implies that

N̂ =
∂r
∂s
× ∂r

∂t∥∥∂r
∂s
× ∂r

∂t

∥∥
12  x1

x2

x3

×
 y1

y2

y3

 =

 x2y3 − x3y2

x3y1 − x1y3

x1y2 − x2y1


Definition 5.1. Let r : A→ R3, A ⊆ R2 be a parameterisation of some surface C. Then
the scalar surface integral of f : R3 → R is:∫

r

f =

∫∫
A

f
(
r(s, t)

) ∥∥∥∥∂r∂s × ∂r

∂t

∥∥∥∥ dsdt
Remark 5.1.

∫
r

1 is the surface area of C.

Remark 5.2. Alternative notations
∫
C
f1,
∫
C
fds,

∫
C
fdA (some diagrams I’m not copy-

ing) ∫
r

f ≈
∑
s,t

f
(
r(s, t)

) ∥∥∥∥∂r∂s × ∂r

∂t

∥∥∥∥ dsdt
11(see paper notes)
12next bit unclear
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Figure 9: Diagram showing how the area of a parallelogram is found.

Figure 10: Diagram showing a sphere.

23/10/06 ∫
γ

f =

∫∫
A

f
(
r(s, t)

) ∥∥∥∥∂r∂s × ∂r

∂t

∥∥∥∥ dsdt (5.1)

Properties of x, let z = xy then:

1. z ⊥ x and z ⊥ y

2. ‖z‖ is the area of the parallelogram spanned by x and y (shown if figure ??.

3. The orientation of z is given by the right hand rule.13

Example 5.1 (Spherical Cap). First we parameterise it.

r(s, t) =

 cos s cos t
cos s sin t

sin s


∂r

∂s
=

 − sin s cos t
− sin s sin t

cos s


13http://en.wikipedia.org/wiki/Right_hand_rule
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Figure 11: Diagram showing a y = cosx for x ∈ [−π, π]

So therefore∥∥∥∥∂r∂s × ∂r

∂t

∥∥∥∥ =
√

cos4 s+ cos2 s sin2 s = cos s
√

cos2 s+ sin2 s = cos s (5.2)

Therefore the area of the cap with radius 1, is:∫
γ

1 =

∫ π

−π

∫ π
2

0

1 · cos sdsdt

=

∫ π
2

0

2π cos sds

= [2π sin s]
π
2
0

= 2π − 2π sin θ

= 2π
(
1− sin θ

)
If θ = −π

2
, sin θ = −1 So therefore

2π(1−−1) = 4π (5.3)

Which is the surface area of a sphere of radius 1.

Example 5.2 (Newton’s kissing problem). An example of this in one and two dimesions
is shown in figure 12 For R3 how many simultaneously touching balls can touch a given
ball? 14 To find an upper bound by calculating the area ”shadowed” surface area taken
by each ball, this is shown in figure 13.

1

2
= sinα, as we can define

π

2
− α = θ

14J Leech proved that the correct number is 12, in Math Gazette 40 (1956) p22/23
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Figure 12: Diagram showing Newton’s kissing problem in one and two dimensions.

Figure 13: Diagram showing the ”shadowed area in Newton’s kissing problem

19



1

2
= cos θ ⇒ θ =

π

3

Shadowed surface has area 2π(1− sin θ) as we found in example 5.1.

2π
(

1− sin
π

3

)
= 2π

(
1−
√

3

2

)
= 2π − �2π

√
3

�2
=
(
2−
√

3
)
π

This therefore gives an upper bound of

4�π(
2−
√

3
)
�π

= 14.93 (2dp)

This gives between 12 and 14 balls. Below are the results for various values of n
n=1 2
n=2 6
n=3 12
n=4 24*
n=8 240
n=24 196560

For n = 4 the answer is probably 24 but a strict upper bound of 25 is

as far as we know for sure. [2]15

24/10/06 ∫
γ

∇V = V (γ(b))− V (γ(a))

6 Divergence of Vector Fields

Definition 6.1. Let S ⊆ R3 be a surface with unit normals N̂ : S → R3 then the flux

of f : R3 → R3 across S in the direction of N̂ is
∫
S
〈f, N̂〉. The inner product tells you

how much of f is pointing in the direction N̂ and this is shown in figure 14. Alternative
notations include

∫
S
f · N̂ and

∫
S
fd−→s .

Example 6.1 (Flux out of a box). If we take the box Ω = [ax, bx]× [ay, by]× [az, bz], this
is shown in figure 15

The flux through the top
Using the parameterisation

rt = (x, y) =

 x
y
tz

 , x ∈ [ax, bx], y ∈ [ay, by]

〈f, N̂〉 =

∫ bx

ax

∫ by

ay

f3

∥∥∥∥∂r∂x × ∂r

∂y

∥∥∥∥ dydx
15For this citation the ability to open .ps and .gz files required, i.e. Linux/Mac OS X, if you use

Windows you’re basically screwed, you can use a command line tool to open the .gz but then you need
a copy of ghostscript or Acrobat Professional (well for the cost of that you might as well buy a Mac ;)
), drop me an email and I can send you a copy.
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Figure 14: Diagram showing how the inner product works

Figure 15: Flux Box

21



∥∥∥∥∂r∂x × ∂r

∂x
× ∂r

∂y

∥∥∥∥ =

∥∥∥∥∥∥
 1

0
0

×
 0

1
0

∥∥∥∥∥∥ =

∥∥∥∥∥∥
 0

0
1

∥∥∥∥∥∥ = 1 (6.1)

∫
st

〈f, N̂〉 =

∫ bx

ax

∫ by

ay

f3(x, y, tz)dydx

The flux through the bottom

N̂ =

 0
0
−1


〈f, N̂〉 = f3 b2 changed a2∫

Sbottom

〈f, N̂〉 = −
∫ bx

ax

∫ by

ay

f3(x, y, tz)dydx

Top+Bottom ∫ bx

ax

∫ by

ay

f3(x, y, b2)− f3(x, y, a2)dydx

=

∫ bx

ax

∫ by

ay

∫ bz

az

∂f3

∂z
(x, y, z)dz︸ ︷︷ ︸

by FTC

dydx (6.2)

Similarly ∫
Sleft∪Sright

〈f, N̂〉 =

∫ bx

ax

∫ by

ay

∫ bz

az

∂f1

∂x
(x, y, z)dzdydx (6.3)∫

Sfront∪Sback

〈f, N̂〉 =

∫ bx

ax

∫ by

ay

∫ bz

az

∂f2

∂y
dxdydz (6.4)

Taking the sum of equations 6.2, 6.3 and 6.4 we then get the total flux which is:∫
δΩ

〈f, N̂〉 =

∫ bx

ax

∫ by

ay

∫ bz

az

∂f1

∂x
+
∂f2

∂y

∂f3

∂z
dzdydx (6.5)

Definition 6.2 (Divergence). The divergence of a vector field f : Rn → Rn is divf :
Rn → R

divf =
n∑
i=0

∂fi
∂x

Alternative notations: ∇ · V , ∇
−→
V and ∇ · V

Remark 6.1. Scalar field to vector field

V : Rn → R→ gradV : Rn → Rn

f : Rn → Rn ⇔ f : Rn → R
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Figure 16: Diagram showing f(x)× ε

Definition 6.3. Let V : Rn → R be a scalar field. The Laplacian of V is ∆V = div gradV
(Scalar field)

gradV =

(
∂V
∂x1
∂V
∂xn

)
⇒ div gradV =

n∑
i=1

∂Vi
∂ki

Alternative notations include: ∇ · ∇V , ∆V , ∇2V .

26/10/06

divf(x) =
∑ ∂f

∂x
(x)

Ω = [a1, b1]× [a2, b2]× [a3, b3] ∫
Ω

〈f, N̂〉 =

∫
divf(x)dx (6.6)

Remark 6.2. If Ω is a small box around a ∈ R3 then Ω = [a1 − ε, a1 + ε]× [a2 − ε, a2 +
ε]× [a3 − ε, a3 + ε] Then ∫

Ω

div(x)dx ≈ divf(α)− Va(Ω)

⇒ divf(a) ∼=
∫
δΩ
〈f, N̂〉
V0(Ω)

Thus the divergence gives the outward flux per unit volume.

Remembering that divf(x) = ∇ · f

7 Gauss Divergence Theorem

Definition 7.1 (Divergence). The divergence of a C1 vector field f ⊆ R3 is:

divV = ∇ · V =
3∑
i=1

∂fi
∂xi

(7.1)
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Figure 17: Positive Divergence

Figure 18: Zero Divergence

Figure 19: Negative Divergence
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Theorem 7.1 (Divergence Theorem). Let Ω ⊆ R3 be a bounded with a surface δΩ and
outward unit normals N̂ . Let V : Ω ∪ δΩ→ R3 be continuously differentiable, then:∫

δΩ

〈V, N̂〉 =

∫
Ω

divV (x)dx (7.2)

Remark 7.1. The theorem also works for n 6= 3 but one has to define the surface integral,
n = 2δΩ is a line and

∫
δΩ

is a (scalar) line integral.

Remark 7.2. divf(x)dx is just an iterated integral, alternative notation is:
∫

Ω
divfdV (n =

3),
∫

Ω
divfdA (n = 2).

Example 7.1. Box in R3 already done in example 6.1

Example 7.2. Ball of radius R in Rn

Ω = B(0, R) ⊆ Rn

δΩ = Shell of Sphere, N̂(x) =
x

R
Let:

f(x) = x⇒ divf(x) =
∂x1

∂x1

+ · · ·+ ∂xn
∂xn

= 1 + · · ·+ 1 = n

⇒
∫
B(0,R)

ndx =

∫
δB(0, R)

〈
x,
x

R

〉
∫
δB(0,R)

R⇒ n× Volume of Ball = R× Surface Area of Ball

For n = 2 then VolB(0, R) = πR2 This means that the length of δB(0, R) = 2πR, for
n = 3 the volume of the ball is 4

3
πR3 And the surface area is 3

R
times that.

30/10/06

Sketch Proof of Divergence theorem.

1. As we covered in example 6.1, it is already true for boxes.

2. Therefore we can use the fact that it holds for boxes to suppose the theorem holds
for Ω1,Ω2 as shown in figure 20, what about the region Ω1 ∪ Ω2? Then:∫

δΩ

〈
V, N̂

〉
=

∫
δΩ1

〈
V, N̂

〉
+

∫
δΩ2

〈
V, N̂

〉
Since the contribution form the shared boundary cancels as they are in opposite
directions, this is equal to:

=

∫
Ω1

∇V +

∫
Ω2

∇V =

∫
Ω1∪Ω2

∇V

16

16I’m using nabla instead of div here as its easier
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Figure 20: Diagram of 2 boxes for sketch proof of divergence theorem

3. For simple regions (in R2)

Ω is simple⇔ Ω =
{

(x, y)
∣∣f(y) ≤ x ≤ g(y) ∀ y ∈ [a, b]

}
=
{

(x, y)
∣∣f̃(x) ≤ y ≤ g̃(x) ∀x ∈ [c, d]

}
So a circle with a hole in the middle of it (like a wheel with a missing axle) isn’t
simple but if you cut it in half into a semi circle then it would be simple.17.

4. If we show Ω is simple then:∫
Ω

∂V1

∂x
dA =

∫ b

a

∫ g(y)

f(y)

∂V

∂x1

(x, y)dxdy =

∫ b

a

V1(f(y), y)−
∫
V1

(
f(y), y)

)
dy (7.3)

Flux of

(
V1

0

)
through the boundary, the region is shown in figure 21 The flux

γk(ψ) =

(
g(y)
y

)
for y ∈ [a, b]

γ′k(ψ) =

(
g′(y)

1

)
Generally we know that

(
x
y

)
⊥
(
−y
x

)

N̂ =
1

‖γR‖

(
g′(y)

1

)
=

1√
1 +

(
g′(y)

)2

(
g′(y)

1

)
∫
γk

〈(
V1

0

)
, N̂

〉
17In metric spaces language it is simple if it is topologically equivalent to a square
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Figure 21: Diagram showing the region Ω with two boundary functions and two flux
functions.

1

‖γ′(y)‖

〈(
V1

0

)
,

(
1

−g′(y)

)〉
∫ b

a

V1
1

�����‖γ′R(y)‖�
����‖γ′R(y)‖dy

=

∫ b

a

V1

(
g(y), y

)
dy

Similarly for the LHS:∫
γL

〈(
V1

0

)
, N̂

〉
= −

∫ b

a

V1

(
f(y), y

)
dy

As ∫
γT

〈(
V1

0

)
, N̂

〉
=

∫
γB

〈(
V1

0

)
, N̂

〉
= 0

⇒
∫ b

a

V1

(
g(y), y

)
− V1

(
f(y), y

)
dy

=

∫
Ω

∇
(
V1

0

)
dA

This then shows that the theorem holds for V =

(
V1

0

)
. If we then use f̃ and g̃

instead of f and g, and if we interchange x and y we get that:∫
δΩ

〈(
0
V2

)
, N̂

〉
=

∫
Ω

∇
(

0
V2

)
dA

Adding these results together completes the proof.
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8 Integration by Parts

If the following hold:
Ω ⊂ R, Ω18 = Ω ∪ δΩ

Proposition 8.1. Then for f : Ω→ R where f is C1. Then:∫
Ω

∂f

∂x
=

∫
δΩ

f · N̂19 (8.1)

Proof. Let v = (f, 0, 0) then:

÷v =
∂f

∂x1

〈v, N̂〉 = fN̂1

⇒ If the divergence thoerem is applied to the special vector field v given in equation 8.1,
then using (0, f, 0) and (0, 0, f) we can also show it for i = 2, 3.

Remark 8.1. The full divergence theorem (theorem 7.1) can be derived from equation
8.1

Proposition 8.2. Integration by parts:∫ b

a

uv′dx =
[
uv
]b
a
−
∫ b

a

u′vdx (8.2)

Then applying equation 8.1 to f = gh we get:

∂f

∂xi
=

∂g

∂xi
h+ g

∂h

∂xi

⇒
∫

Ω

∂g

∂xi
= −

∫
Ω

g
∂h

∂xi
+

∫
δΩ

ghN̂i

Proposition 8.3. Let g : Ω→ R be twice continuously differentiable, i.e. apply proposi-
tion 8.1to f = ∂g

∂xi

⇒
∫

Ω

∂2g

∂x2
i

=

∫
δΩ

∂y

∂xi
N̂i

Summing up over i then gives ∫
Ω

∆g =

∫
δΩ

〈∇g, N̂〉 (8.3)

Proposition 8.4. Applying proposition 8.2 with g = ∂f
∂xi

and sum over i we get:∫
Ω

∆fh = −
∫

Ω

〈∇f,∇h〉+

∫
δΩ

g〈∇f, N̂〉

〈÷gradf, h〉 − 〈gradf, gradh〉 (8.4)

18This means the closure of Ω as in metric spaces
19in the lectures described as N̂i for i = 1, 2, 3.
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(a, c) (b, c)

(b, d)(a, d)

Ω γR

γT

γL

γB

T̂

Figure 22: A rectangle Ω

8.1 Application

Temperature distribution in steady state. Ω ⊆ R3 a piece of material. Fix temperature
f(x) ∀x ∈ δΩ. In steady state the temperature solves:{

∆T (x) = 0 ∀x ∈ Ω
T (x) = f(x) ∀x ∈ δΩ

The existence of a solution s of this is a difficult question.

8.2 Uniqueness

Assume T and T̃ are solutions, then D = T − T̃ solves

∆D = ∆T −∆T̃ = 0− 0 = 0 ∀x ∈ δΩ

D(x) = T (x)− T̃ (x) = f(x)− f(x) = 0 ∀x ∈ δΩ

Using proposition 8.4 we get:∫
Ω

∆D︸ ︷︷ ︸
=0

= −
∫

Ω

〈∇D,∇D〉+

∫
δΩ

D〈∇D, N̂〉

∫
Ω

‖∇D‖2 = 0

⇒ ∇D(x) = 0 ∀x ∈ Ω

⇒ D is constant and D = 0 at the boundary, therefore T = T̃ so T is a unqiue solution.

9 Green’s Theorem

20

20This section is done by Matthew Pusey
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Consider a function f : R2 → R2 and a rectangle Ω = [a, b]× [c, d] with boundary unit
tangent vectors T̂ in the anticlockwise (positive) direction. This is shown in Figure 22.

On the right side, γR. which is the line segment from (b, c) to (b, d):∫
γR

〈
f, T̂

〉
=

∫ d

c

〈
f(b, y),

(
0
1

)〉
dy =

∫ d

c

f2(b, y)dy

The remaining sides, γL, γB, γT are similar (but take care with signs):∫
γL

〈
f, T̂

〉
= −

∫ d

c

f2(a, y)dy

∫
γB

〈
f, T̂

〉
=

∫ b

a

f1(x, c)dx∫
γT

〈
f, T̂

〉
= −

∫ b

a

f1(x, d)dx

Summing these gives:∫
∂Ω

〈
f, T̂

〉
=

∫ d

c

f2(b, y)− f2(a, y)dy +

∫ b

a

f1(x, c)− f1(x, d)dx

The Fundamental Theorem of Calculus then gives:

=

∫ d

c

∫ b

a

∂f2

∂x
(x, y)dxdy −

∫ b

a

∫ d

c

∂f1

∂y
(x, y)dydx

=

∫ d

c

∫ b

a

∂f2

∂x
− ∂f1

∂y
dydx

Definition 9.1 (2-D curl). For f : R2 → R2, the curl of f is given by:

curl f(x) =
∂f2

∂x
− ∂f1

∂y

Remark 9.1.
∫
∂Ω

〈
f, T̂

〉
is the circulation around Ω. By talking small boxes we find that

curl f(x) is the circulation of f around x.

Sometimes you can see what the curl is:

Example 9.1.

v(x, y) =

(
−y
x

)
This is shown in figure 23.

curl v(x, y) = 1− (−1) = 2
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Figure 23: Diagram showing a vector field.

Figure 24: Diagram showing a vector field.
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Figure 25: Diagram showing a vector field.

Example 9.2.

v(x, y) =

(
−x
−y

)
This is shown in figure 24.

curl v(x, y) = 0− 0 = 0

Example 9.3.

v(x, y) =

(
0
x

)
This is shown in figure 25.

curl v(x, y) = 1− 0 = 1

Theorem 9.1 (Green’s Theorem or Stokes’ Theorem in R2). Let Ω be a bounded region
in R2, and T̂ be positively oriented tangent vectors for ∂Ω. If f : Ω̄→ R2 is continously
differentiable then: ∫

∂Ω

〈
f, T̂

〉
=

∫
Ω

curl f

Proof. Define g =

(
f2

−f1

)
.

By the Divergence Theorem: ∫
∂Ω

〈
g, N̂

〉
=

∫
Ω

div g

By considering the relationship between N̂ and T̂ , and the definition of div g this
becomes: ∫

∂Ω

〈
f, T̂

〉
=

∫
Ω

curl f
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10 Stokes Theorem (curls in R3)

6/11/06

Theorem 10.1. Let S ∈ R3 be a bounded surface with N̂ as unit normals of S, and
T̂ unit tangent vectors to the boundary line δS. Let f : S ∪ δS → R3 be continuously

differentiable. If
〈
N̂ , T̂

〉
is positively oriented, then:∫

S

〈
curlf, N̂

〉
−
∫
δS
〈f, T̂ 〉 = 0

Remark 10.1. Positive oriented means that if N̂ points upwards, the tangent vectors
are anti-clockwise,and if N̂ points downwards, the tangent vectors are clockwise. (i.e. the
right hand rule applies).

Remark 10.2. In R3, curl = ∇× f ∂2f3 − ∂3f2

∂3f1 − ∂1f3

∂1f2 − ∂2f1


Remark 10.3. In R2 curlg = ∂1g2 − ∂2g1

Example 10.1. For g : R2 → R2 and f : R3 → R3

f(x, y, z) =

 g1(x, y)
g2(x, y)

0



curlf =

 0− 0
0− 0
curl g

 = curl g

For Ω ⊆ R× R× {0} and Ω′ ⊂ R2 (the x-y plane), we then get

∫
Ω′

curl g =

∫
Ω

〈
curl f,

 0
0
1

〉

And so by Stoke’s theorem

=

∫
δΩ

〈
f, T̂

〉
=

∫
δΩ′

〈
g, T̂

〉
Example 10.2. S = {(x, y, z)

∣∣z = x2 + y2, z ≤ 4} This is then of the form

r(x, y) =

 x
y

x2 + y2


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Figure 26: Graph showing a hemispherical bowl, the top should be smooth at the point
of the peaks, but grapher can’t draw it correctly.

N(x, y, z) = ∇(2− x2 − y2) =

 −2x
−2y

1

 = δS

Is then parameterised by:

γ(t) =

 2 cos t
2 sin t

4

 , t ∈ [0, 2π]

A diagram is shown in figure 26 Now let

f :=

 y
x2

3z2


∫
δS

〈
f, T̂ ,=

〉∫ 2π

0

〈 2 sin t
4 cos2 t
3 · 16

 ·
 −2 sin t
−2 cos t

0

〉 = −4π

curl f =

 0− 0
0− 0

2x− 1


∫
S
〈curl f, N̂〉 =

∫∫  0
0

2x− 1

 ·
 −2x
−2y

1

 dsdt =

∫∫
2x− 1dsdt

∫∫
B(0,2)

2x− 1dxdy∫∫
B(0,2)

2xdxdy −
∫∫

B(0,2)

1dxdy
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Figure 27: Graph showing region being ”lifted” to R3

0− 4π = −4π (as we got before!)∫
S

〈
curl f, N̂

〉
=

∫
δS

〈
f, T̂

〉
Proof of theorem 10.1. We ”lift” Green’s theorem from R2 to R3, this is shown in figure
27. Now we parameterise δΩ by γ : [a, b] → R2. ⇒ δS is parameterised by r

(
γ(u)

)
=

u ∈ [a, b]. Tangent TS

(
r
(
γ(u)

))′
∂r

∂s

∂γ1

∂u
+
∂r

∂t

∂γ2

∂u

⇒
∫
∂S
〈f, T̂ 〉

=

∫ b

a

〈
f
(
γ(u)

)
,
∂r

∂s

∂γ1

∂u
+
∂r

∂t

∂γ2

∂u

〉
=

∫ b

a

〈( 〈
f, ∂r

∂s

〉〈
f, ∂r

∂t

〉 ) , γ′(u)

〉
du∫

δΩ

〈( 〈
f, ∂r

∂s

〉〈
f, ∂r

∂t

〉 ) , T̂Ω

〉
(10.1)

Similarly ∫
S

〈
curl f, N̂

〉
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=

〈
curl f

(
r(s, t)

)
,
∂r

∂s
× ∂r

∂t

〉
dsdt

Omitting the middle (Chain rule + hard work)

=

∫∫
Ω

curl

( 〈
f, ∂r

∂s

〉〈
f, ∂r

∂t

〉 ) (10.2)

By Green’s theorem equations 10.1 and 10.2 are equal. When showing the equality of
10.2 we have to keep track of many (about 48) terms, in later courses we find differential
forms useful for this.

Remark 10.4. If f : R3 → R3 is a gradient then:∫
S

〈
curl f, N̂

〉
=︸︷︷︸

Stokes

∫
δΩ

〈
f, T̂

〉
= 0

∫
γ

〈
f, T̂

〉
= V (b)− V (a)

by the FTC for gradient vector fields.

curl grad v =

 ∂
∂x
∂
∂y
∂
∂z

×
 ∂v

∂x
∂v
∂y
∂v
∂z

 =

(
∂2v

∂y∂z
− ∂2v

∂z∂y

)
= 0

Curl of gradient vector fields is always zero. Similarly f : R3 → R3 with f = curl v we

get
∫
δΩ

〈
f, N̂

〉
=
∫

Ω
div f , div curl v = · · · = 0

11 Spherical Coordinates

Skipped, will be a PDF of most of this topic included later.

12 Complex Differentation

21

The aim of this section is to understand calculus for functions f : C→ C, and its link
to vector analysis.

Definition 12.1 (Complex Numbers). The complex numbers are defined by:

C =
{
x+ iy

∣∣ x, y ∈ R, i2 = −1
}

Clearly, there is a one-to-one correspondence between C→ C functions and R2 → R2

functions:
{f : C→ C} ↔ {(u, v) : R2 → R2}

Where f(x+ iy) = u(x, y) + iv(x, y).
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Re

Im

z

r
x

y

φ

1

Figure 28: Planar representation of a real number z

12.1 Basic properties of Complex Numbers

z = x+ iy

z = r cosφ+ ir sinφ

r =
√
x2 + y2 = |z|

φ = arctan
(y
x

)
= arg(z)

Addition

(x1 + iy1) + (x2 + iy2) = (x1 + x2) + i(y1 + y2)

Multiplication

(x1 + iy1)(x2 + iy2) = (x1x2 − y1y2) + i(y1x2 + x1y2)

The meaning of this is clearer in polars, for example if z = r cosφ + ir sinφ and w =
s cosψ + is sinψ then:

zw = rs cos(φ+ ψ) + irs sin(φ+ ψ)

Complex conjugation

z = x+ iy ⇐⇒ z̄ = x− iy

12.2 Limits

Definition 12.2 (Limits). For zn, z ∈ C:

zn → z ⇐⇒ |zn − z| → 0

21The next two sections are done by Matthew Pusey
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By the definition of |z|:

zn → z ⇐⇒
√

(xn − x)2 + (yn − y)2 → 0 ⇐⇒ xn → x and yn → y

Lemma 12.1. If zn → z and wn → w then:

zn + wn → z + w

znwn → zw
zn
zw
→ z

w
if w 6= 0

Sketch proof. Exactly as for R, but need to avoid inequalities in C, which make no sense.
Still have that:

|zw| = |z||w|

|z + w| ≤ |z|+ |w|

And can define an open ball:

B(z, ε) = z′ ∈ C : |z − z′| ≤ ε

So that:
zn → z ⇐⇒ ∀ε > 0∃N ∈ N such that ∀n ≥ N, zn ∈ B(z, ε)

12.3 Continuity & Differentiation

Definition 12.3 (Continuity). A function f : D → C for D ⊂ C is continuous at z ∈ D
if: B(z, ε) ⊆ D for some ε > 0 and:

zn → z =⇒ f(zn)→ f(z)

Note: This must hold for all sequences (zn) with zn → z. We say f is continuous on D
if f is continuous at every z ∈ D.

Remark 12.1. f is continuous at z ⇐⇒ ∀ε > 0, ∃δ > 0 such that:

|zn − z| < δ =⇒ |f(zn)− f(z)| < ε

Definition 12.4 (Differentiation). A function f : D → C with D ⊂ C is differentiable
at z ∈ D if

f ′(z) = lim
h→0

f(z + h)− f(z)

h

exists. Note that this means

f ′(z) = lim
n→∞

f(z + hn)− f(z)

hn

exists for any hz → 0.
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Example 12.1.
f(z) = z

It’s clear that
zn → z =⇒ f(zn)→ f(z)

So f is continuous.

f(z + h)− f(z)

h
=
z + h− z

h
= 1→ 1 =⇒ f ′(z) ≡ 1

Example 12.2.
f(z) = z̄

zn → z =⇒ xn → x, yn → y

=⇒ xn → x,−yn → −y
=⇒ f(zn)→ f(z)

So f is continuous. But it is not differentiable, since the limit

lim
h→0

f(z + h)− f(z)

h
= lim

h→0

h̄

h

does not exist. For example, with hn = 1
n

it tends to 1 but with hn = i
n

it tends to -1.

Lemma 12.2. Let f, g : D → C, with D ⊆ C, be continuous (and differentiable) at z.
Then f + g, fg and f

g
(g 6= 0) are also continuous (and differentiable).

Let f(x+ iy) = u(x, y) + iv(x, y). Then certainly:

f continuous ⇐⇒ uv continuous

But:
f differentiable ⇐⇒ uv differentiable

does not hold in general.

13 Complex power series

Definition 13.1.
∑∞

n=0 cn converges (to c) if:

SN =
N∑
n=0

cn

converges (to c).

As in R, we have the Cauchy criterion for a sequence (zn):

∀ε > 0,∃N ∈ N such that ∀m,n ≥ N, |zm − zn| < ε

Loosely speaking, a sequence is Cauchy if “|zm − zn| → 0 as m,n → ∞”. It is easy
to show that if (zn) is Cauchy its real and imaginary parts are Cauchy, so the sequence
converges in C since the parts must converge in R.
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Lemma 13.1. If |fn(z)| ≤Mn∀z ∈ D and
∑∞

n=0Mn <∞ then

f(z) =
∞∑
n=0

fn(z)

converges for all z ∈ D. Also, if all the fn are continuous then so is f .

Proof. Let SN =
∑N

k=0 fk(z). Then, assuming without loss of generality that m > n:

|Sm(z)− Sn(z)| =

∣∣∣∣∣
m∑

k=n+1

fk(z)

∣∣∣∣∣
≤

∣∣∣∣∣
m∑

k=n+1

Mk

∣∣∣∣∣
≤

∣∣∣∣∣
∞∑

k=n+1

Mk

∣∣∣∣∣→ 0 as n→∞

Theorem 13.2 (Power series). Let (cn) be a sequence in C, and define:

f(z) =
∞∑
n=0

cnz
n

Then there exists some R ∈ [0,∞] such that f(z) converges if |z| < R, and doesn’t
converge if |z| > R.

Notes:

1. f may or may not converge when |z| = R.

2. A similar theorem holds in R and the proof carries over.

3. The theorem can be applied repeatedly.

4. f is C∞ on B(0, R), with:

∂k

∂zk
f(z) =

∞∑
n=k

n(n− 1) · · · (n− k + 1)cnz
n−k

5. If f(z) converges on B(0, R) then g(z) =
∑∞

n=0 cn(z − a)n converges on B(a,R).

To calculate R we can use the ratio test.

Lemma 13.3 (Ratio test). If

|zn+1|
|zn|

→ L ∈ [0,∞]

then
∑∞

n=0 zn converges if L < 1 and diverges if L > 1.
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Sketch proof. Observe that ∣∣∣∣∣
m∑

k=n+2

zk

∣∣∣∣∣ ≤
m∑

k=n+1

|zk|

and use the result on R + Cauchy

Example 13.1.

f(z) =
∞∑
n=0

(3 + i)(2i)n︸ ︷︷ ︸
cn

(z + i)n

|zn+1|
|zn|

=

∣∣∣∣(2i)n+1(z + i)n+i

(2i)n(z + i)n

∣∣∣∣ = |2i(z + i)| = |2i||z + i|

= 2|z + i| → 2|z + i| = L

So when |z + i| < 1
2
, f(z) converges, and when |z + i| > 1

2
, f(z) doesn’t converge. This

gives R = 1
2
.

Example 13.2.

f(z) =
∞∑
n=1

zn

n

|zn+1|
|zn|

=

∣∣∣∣ zn+1n

(n+ 1)zn

∣∣∣∣ =
n

n+ 1
|z| → |z| = L

This gives R = 1.
What about when |z| = 1? f(1) diverges, f(−1) converges to log 2. In general this is

a hard problem.

Definition 13.2 (Common power series).

ez = exp(z) =
∞∑
n=0

zn

n!

cos(z) =
∞∑
n=0

1

(2n)!
z2n(−1)n

cosh(z) =
∞∑
n=0

1

(2n)!
z2n

sin(z) =
∞∑
n=0

1

(2n+ 1)!
z2n+1(−1)n

sinh(z) =
∞∑
n=0

1

(2n+ 1)!
z2n+1

Lemma 13.4.

sin(z) =
eiz − e−iz

2i
cos(z) =

eiz + e−iz

2

sinh(z) =
ez − e−z

2
cosh(z) =

ez + e−z

2
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Proof. Use the power series. For example, to prove the one for cos(z):

eiz + e−iz

2
=

1

2

∞∑
n=0

(
(iz)n

n!
+

(−iz)n

n!

)

=
1

2

∞∑
n=0

zn((i)n + (−i)n)

n!

The numerator here is 2in if n is even, and 0 is n is odd. Therefore it equals:

∞∑
k=0

z2k

2k!
(−1)k = cos(z)

Example 13.3.

sin(iy) =
e−y − ey

2i
= i

ey − e−y

2
= i sinh(y)

14 Holomorphic Functions

Let f(x+ iy) = u(x, y) + iv(x, y), for h = ε+ i · 0

lim
ε→0

u(x+ ε, y)− u(x, y)

ε
+ i lim

ε→0

v(x+ ε, y)− v(x, y)

ε
=
∂u

∂x
+ i

∂v

∂x

For h = 0 + iε.

f ′(z) = (−i) lim
ε→0

u(x, y + ε)− u(x, y)

(−i)ε
+ �i lim

ε→0

v(x, y + ε)− v(x, y)

�iε

f is only differentiable if
∂u

∂x
+ i

∂v

∂x
= −i∂u

∂y
+
∂v

∂y

Definition 14.1 (The Cauchy Riemann equations). A complex function f(x + iy) =
u(x, y) + iv(x, y) is differentiable if and only if:

∂u

∂x
=
∂v

∂y

∂v

∂x
= −∂u

∂y

Theorem 14.1. Consider f : D → C, D ⊆ C with:

f(x+ iy) = u(x, y) + iv(x, y)

1. If f is differentiable at (x0, y0) then∂u
∂x
, ∂u
∂y
, ∂v
∂x
, ∂v
∂y

exist at (x0, y0) and the Cauchy

Riemann equations (definition 14.1) hold at (x0, y0).
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2. If ∂u
∂x
, ∂u

∂y
, ∂v

∂x
, ∂v

∂y
and are continuous in a small Ball around (x0, y0) then f is

differentiable at (x0, y0) with z0 = x0 + iy0 with

f ′(z0) =
∂u

∂x
+ i

∂v

∂x
=
∂v

∂y
− i∂u

∂y

Example 14.1 (Example to show the difference between points 1 and 2). f(z) = z3

must be differentiable everywhere.

f(x+ iy) = (x+ iy)3

= x3 + 3x(iy)2 + 3x2(iy) + (iy)3

= x3 − 3xy2︸ ︷︷ ︸
u(x,y)

+i (3yx2 − y3)︸ ︷︷ ︸
v(x,y)

∂u

∂x
= 3x2 − 3y2 (14.1)

∂v

∂y
= 3x2 − 3y2 (14.2)

As you can see equations 14.1 and 14.2 are the same.

∂u

∂y
= −6xy (14.3)

plv

∂x
= 6xy (14.4)

As you can see equations 14.3 and 14.4 are the same.

21/11/06

Example 14.2 (Hard example).

f(x+ iy) = x2 + iy2

∂u
∂x

= 2x, ∂v
∂y

= 2y, (these are in general not equal so the function isn’t differentiable.
∂v
∂x

= 0, ∂u
∂y

= 0 (these are equal and have to be equal for differentiability.)
Therefore f is only differentiable if x = y.

Definition 14.2. If a function f : D → C where D ⊆ C is holomorphic at z0 ∈ D if
f is differentiable for all z ∈ B(z0, ε) for some ε > 0. f is holomorphic on D if it is
holomorphic ∀ z ∈ D.

Remark 14.1. The aim is to apply Vector Analysis to this problem.
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If f(x+ iy) = u+ iv is holomorphic then we define:

f(x, y) =

(
u(x, y)
−v(x, y)

)
For R2 → R2, then

∇ · F (x, y) =
∂u

∂x
− ∂v

∂y
=︸︷︷︸

by Cauchy Riemann

0

and

curl F (x, y) = −∂u
∂y
− ∂v

∂x
= 0

∂F2

∂x
− ∂F

∂y
22

15 Complex Integration

Theorem 15.1. Consider a parameterised curve γ[a, b]→ C

γ(t) = x(t) + iy(t)

⇒ γ′(t) = x′(t) + iy′(t)

Remark 15.1. The Divergence theorem and Green’s theorem might be useful here.

Definition 15.1. For F : D → C:∫
γ

f =

∫ b

a

f
(
γ(t)

)
γ′(t)dt

=

∫ b

a

Re
(
f
(
γ(t)

)
γ′(t)

)
dt+ i

∫ b

a

Im
(
f
(
γ(t)

)
γ′(t)

)
dt

Example 15.1.
f(x+ iy) = x2 + iy

γ(t) = t(1 + i) for t ∈ [0, 1]∫
γ

f =

∫ 1

0

t2 + it2(1 + i)dt

=

∫ 1

0
��t2 + it2 + it2 − ��t2dt∫ 1

0

2it2dt

= 2i

∫ 1

0

t2dt

= 2i

[
t3

3

]1

0

=
2i

3
22I don’t understand this.
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Remark 15.2. If γ and γ̃ parameterise the same path in the same direction, then if:∫
γ
f =

∫
γ̃
f . If the direction is reversed then

∫
γ
f = −

∫
γ̃
f .

Example 15.2. Integrate f(z) = z̄ around δB(i, 2). Since eit = cos t+ i sin t, we can use
γ(t) = 2eit + i to parameterise δB(i, 2).∫

γ

f =

∫ (
2eit + i

)
2ieitdt

∫ 2π

0

(��−i+ 2e−it + �i)2ie
itdt

=

∫ 2π

0

2eit + 4idt

=

[
2eit

i

]2π

0

+ 8πi

= 8πi

∫
γ

f =

∫ b

a

f
(
γ(t)

)
γ′(t)dt

∫ 2π

0

eitdt =

[
eit

i

]t=2π

t=0

23

Theorem 15.2 (Fundamental Theorem of Calculus for Complex Integrals). Let f : D →
C be holomorphic for D ⊆ C, γ : [a, b]→ C then∫

γ

f ′ = f
(
γ(b)

)
− f

(
γ(a)

)
Proof. ∫

γ

∂f

∂z
=

∫ b

a

∂f

∂z

(
γ(t)

)∂γ
∂t

(t)dt∫ b

a

∂

∂t

(
f
(
γ(t)

))
dt = f

(
γ(b)

)
− f

(
γ(a)

)
This last statement is true by applying the real Fundamental theorem of calculus to

Re
(
f(γ(t)

)
and Im

(
f
(
γ(t)

))
Remark 15.3. If f ′ = 0 and f is over a connected region24, then f is constant.

23This doesn’t make much sense tbh
24As in metric spaces

45



16 Cauchy’s theorem

For γ : [a, b]→ C
γ(t) = x(t) + iy(t)

f(x+ iy) = u(x, y) + iv(x, y)

We get that ∫
γ

f =

∫ b

a

u
(
x(t), y(t)

)
+ iv

(
x(t), y(t)

)(
x′(t) + iy′(t)

)
dt

=

∫ b

a

(ux′ − vy′)dt+ i

∫ b

a

(uy′ + vx′)dt

=

∫ b

a

(
u
−v

)
·
(
x′

y′

)
dt+ i

∫ b

a

(
u
−v

)
·
(

y′

−x′
)
dt

=

∫
γ

〈
F, T̂

〉
+ i

∫
γ?????

〈
F, N̂

〉
where F (x, y) =

(
u(x, y)
−v(x, y)

)
Now by using Green’s theorem (9.1) and the divergence

theorem (7.1)

Theorem 16.1 (Cauchy). Let a function f : D → C, D ⊆ C be holomorphic and Ω ⊆ D
a region with a boundary of δΩ. If γ is a parameterisation of δΩ then:∫

γ

f = 025

Proof. ∫
γ

f︸︷︷︸
C

=

∫
γ

〈
F, T̂

〉
︸ ︷︷ ︸

R2

+i

∫
γ

〈
F, N̂

〉
︸ ︷︷ ︸

R2∫
γ

〈
F, T̂

〉
=︸︷︷︸

Green

±
∫

Ω

curl F =︸︷︷︸
Cauchy-Riemann

0

∫
γ?????

〈
F, N̂

〉
=︸︷︷︸

Divergence

±
∫

Ω

div F =︸︷︷︸
Cauchy-Riemann

0

Remark 16.1. The theorem holds for more general curves so as the curve in figure 29
and in this case ∫

γ

f =

∫
γ1

f +

∫
γ2

f = 0

However the curve has to be simple, i.e. it must be possible to contract the curve to a
point, so for example it wouldn’t apply to the curve in figure 30, as Ω * D

25This is the main result of the Complex Analysis part if the course
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Figure 29: A more general curve to which Cauchy’s theorem applies.

Figure 30: A region and domain which it doesn’t apply
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Figure 31: Complex circle of radius π.

Example 16.1.

f(z) =
1

z
, γ(t) = Reit t ∈ [0, 2π]

⇒
∫
γ

f =

∫ 2π

0

1

�
��Reit
i���Reitdt = i

∫ 2π

0

1dt = 2πi 6= 0

27/11/06

Proposition 16.2. We have seen that:∫
δB(0,R)

1

1 + ez
dz = 0 ∀Real numbers

Proof.
1 + ez = 0⇔ ez = −1

This is shown in figure 31. Now we know that |ez| = ex and arg(ez) = y and ez = −1
which implies that x = 0, y = (2n+1)π, ∀n ∈ Z. This means that for a ball of radius less
than π, i.e R ∈ [0, π) then the value of the integral is zero. This means f is holomorphic
on any complex circle with R < π.

17 Cauchy Integral Formula

Let γ be the boundary of a connected region Ω ⊆ C with positive orientation.

Remark 17.1 (Idea 1). 26 We can deform γ without changing the integral
∫
γ
f . As we

26These are really ideas but I using remarks instead
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Figure 32: Diagram showing the region bounded by a curve γ, and a second curve γ̃
splitting it into two pieces.

can see in figure 32 if there are a few points in the region bounded by gamma which aren’t
holomorphic we can split the region into two pieces without changing the integral with a
split off region, bounded by the curve γ̃. If f is holomprohic on and between γ and γ̃,
then if κ is the part of γ and γ̃ bounding this new region then∫

κ

f = 0

Also ∫
γ

f −
∫
γ̃

f =

∫
f −

∫
f

27 ∫
simple loop

f = 0

Remark 17.2 (Idea 2). If f is holomorphic on and inside γ except for a finite number
of points z1, . . . , zn, this is shown in figure 33 and leads to what is shown in 34.∫

γ

f =
n∑
i=1

∫
δB(zi,ε)

f

∀ ε > 0 small enough so that the balls don’t overlap.

27check original notes
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Figure 33: Diagram showing the integral inside a curve γ

Figure 34: Integrals around the non homomorphic points.

50



Remark 17.3 (Idea 3). If:

f(z) =
∞∑
n=0

anz
n

converges on B(0, R), R > 0, then:∫
δB(0,ε)

f(z)

z
dz =

∫
δB(0,ε)

a0

z
+ a1 + a2z + · · ·︸ ︷︷ ︸

Holomorphic

dz

= a0 2πi︸︷︷︸
As in example

+ 0︸︷︷︸
Cauchy

Similarly ∫
δB(0,ε)

f(z)

zn
dz =

∫
a0

zn
+ · · ·︸ ︷︷ ︸

zero as primitive by FTC

+
an−1

z
+ an + an+1z + · · ·︸ ︷︷ ︸

Holomorphic

∂

∂z
z1−k = (1− k)zk (except for k = 1)

⇒
∫

a0

zn
+ · · ·+ an−2

z2
dz =︸︷︷︸

by the FTC

0

⇒
∫
δB(0,R)

f(z)

zn
= 0︸︷︷︸

FTC

+an−12πi+ 0︸︷︷︸
Cauchy

28/11/06

Theorem 17.1 (Cauchy Integral Formula). Let γ be the boundary of a connected region.
Let f be holomorphic on and inside γ.∫

γ

f(z)

z − z0

= 2πif(z0) ∀ z0 inside γ

Remark 17.4. Holomorphic functions are special, the values of f along γ completely
determine the values of f inside γ.

Lemma 17.2. ∣∣∣∣∫ b

a

x(t) + iy(t)dt

∣∣∣∣ ≤ ∫ b

a

|x(t) + y(t)|dt

Proof. If: ∫ b

a

x(t) + iy(t)dt ∈ R∣∣∣∣∫ b

a

x(t) + iy(t)

∣∣∣∣ dt =

∣∣∣∣∫ b

a

x(t)+

∣∣∣∣ dt ≤︸︷︷︸
by Analysis 3

∫ b

a

|x(t)|dt ≤
∫ b

a

|x(t) + iy(t)|dt
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Generally ∫ b

a

x(t) + iy(t)dt = reiθ forr,∈ R, θ ∈ [0, 2π]

r = e−iθ
∫ b

a

x(t) + iy(t)dt =

∫ b

a

eiθ
(
x(t) + iy(t)

)
dt

=

∣∣∣∣∫ b

a

eiθ
(
x(t) + iy(t)

)
dt

∣∣∣∣ ≤ ∫ b

a

∣∣eiθ∣∣ ∣∣x(t) + iy(t)
∣∣dt =

∫ b

a

1 ·
∣∣x(t) + iy(t)

∣∣dt
Remark 17.5. If |f(z) ≤M on a curve γ then:∣∣∣∣∫

γ

f

∣∣∣∣ =

∣∣∣∣∫ b

a

(
f
(
γ(t)

)
γ′(t)

)∣∣∣∣ ≤ ∫ b

a

< M |γ′(t)|dt = M

∫ b

a

|γ′(t)|dt

Therefore this means that M is the length of γ.

Proof of theorem 17.1. By deforming γ∫
γ

f(z)

z − z0

=

∫
δB(z0,ε)

f(z)

z − z0

dz

=

∫
δB(z0,ε)

f(z0)

z + z0

dz︸ ︷︷ ︸
(a)

+

∫
δB(z0,ε)

f(z)− f(z0)

z − z0︸ ︷︷ ︸
(b)

dz (17.1)

Then part a of equation 17.1 is equal to:

(a) = f(z0)

∫
δB(0,ε)

1

z
dz = f(z0)2πi

Then the absolute value of part b of equation 17.1 is:

|(b)| ≤ max

∣∣∣∣f(z)− f(z0)

z − z0

∣∣∣∣ · 2πε ≤ (|f ′(z0)|+ 1
)
2πε (17.2)

then for small epsilon the right hand side of equation 17.2 tends to zero as ε ↓ 0, therefore
part b of equation 17.1 tends to zero. 28

Example 17.1.

∫
sin z

z − i
dz =


0 If i is outside γ

2πi sin i If i is inside γ
? If i is on the curve though we are lost.

This is shown in figure 35

29

28Not convinced complete.
29Check complete.
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Figure 35: Diagram showing the three possible cases for the curve γ
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Figure 36: Diagram showing the integral of γ split into four pieces.

18 Real Integrals

Aim to find the integral of: ∫ +∞

−∞

sinx

x
dx (18.1)

As sinx
x
→ 1 as x→ 0 (by L’Hopital as cosx

1
→ 1) So the function is defined everywhere.

A diagram of the curve γ which we will use to integrate equation 18.1 is shown in figure
36. The strategy for solving this integral is to Integrate f along γ by Cauchy’s theorem
(16.1). As we known that f is holomorphic in the region enclosed by γ in figure 36 then
we know that: ∫

γ1

f +

∫
γ3

f +

∫
γ2

f +

∫
γ4

f︸ ︷︷ ︸
what we want

= 0 (18.2)

30/11/06 To solve equation 18.1 we find f over γ1 and γ3.

f(z) =
eiz

z

Equation 18.2 oviously then leads to:∫
γ2

f +

∫
γ4

f =

∫ −ε
−R

eix

x
dx+

∫ R

ε

eix

x
dx
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=

∫ −ε
−R

cosx+ i sinx

x
dx+

∫ R

ε

cosx+ i sinx

x
dx

As since cos is an even function, and x is odd.

cos(−x)

−x
= −cosx

x

→
ε↓0

i

∫ R

−R

sinx

x
dx

From Cauchy’s theorem as we showed in equation 18.2∫
γ1

f +

∫
γ2

f + intγ3f +

∫
γ4

f = 0

→ i

∫ R

−R

sinx

x
dx = lim

ε↓0

(∫
γ1

f +

∫
γ3

f

)
So: ∫

γ3

f =

∫
γ3

1

z
dz︸ ︷︷ ︸

(a)

+

∫
γ3

eiz − 1

z
dz︸ ︷︷ ︸

(b)

(18.3)

Now (a) = −iπ by question 2.2 of sheet 4.

|(b)| ≤ max
γ3

∣∣∣∣eiz − 1

z

∣∣∣∣ Length of γ3

≤ Cπε where C is a constant. Which tends to zero as ε→ 0.

eiz − 1

z
= i

eiz − e0

iz
⇒ ie′(0)

30 This
∫
γ3
f → −πi as ε ↓ 0.

Now we claim that
∫
γ1
→ 0 as R → ∞ This is because γ1(t) = Reit, t ∈ [0, π]

= R(cos t+ i sin t) ∣∣∣∣∫ π

0

eiR(cos t+i sin t)

���Reit
i���Reit

∣∣∣∣
≤
∫ π

0

∣∣eiR(cos t+i sin t)
∣∣dt =

∫ π

0

e−R sin tdt (18.4)

So as sin t is positive over 0, π and it is symmetric along π
2
. Equation 18.4 then becomes:

= 2

∫ π
2

0

e−R sin tdt (18.5)

As on
[
0, π

2

]
sin t ≥ t

π
2

So therefore equation 18.5 then is less than

(18.5) ≤ 2

∫ π
2

0

e
−Rt
π/2 = 2

∫ π
2

0

e−2Rtπ

30not totally sure why last point holds
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=
−π
�2R
· �2

(
e
− �2R�π/�2

�π − e
−2R·0
π

)
= − π

R

(
e−R − 1

)
= π

R

(
1− e−R

)
→ 0 as R→∞ By Cauchy’s Theorem as R→∞

i

∫ +∞

−∞

sinx

x
dx︸ ︷︷ ︸

γ2,γ4

+ 0︸︷︷︸
γ1

− iπ︸︷︷︸
γ3

= 0

19 Power Series for holomorphic functions

Theorem 19.1. Suppose f : D → C and D ⊆ C is holomorphic, then:

f =
∞∑
r=0

arz
r

where
∑∞

r=0 ar is a convergent power series on any ball B(a,R) ⊆ D

Remark 19.1. If f is holomorphic implies that f is a power series so f is C∞

Theorem 19.2. ∫
γ

f(z)

z
dz = 2πf(0)

This is assuming that f : D → C is holomorphic, B(a,R) ⊆ D (An image of this is
shown in figure 37). Together they imply that f is equal to a power series on B(a,R)

Proof. We can assume (without loss of generality) that a = 0 by shifting everything to
the origin. Then for every 0 < r < R

f(0) =
1

2πi

∫
δB(0,r)

f(z)

z
dz ∀z0 ∈ B(0, R) (19.1)

If z0 ∈ δB(0, r) then: ∣∣∣z0

z

∣∣∣ < 1⇒ 1

z − z0

=
1

z

1

1− z0
z

=
1

z

∞∑
n=0

(z0

z

)n

⇒ f(z0) =
1

2πi

∫
δB(0,R)

f(z)
1

z

∞∑
n=0

(z0

z

)n
=
∞∑
n=0

(
1

2πi

∫
δB(0,r)

f(z)
1

zn+1
dz

)
zn0

Thus f equals a power series on B(0, r) for all r < R, this implies the radius of convergence
is greater than or equal to R.

56



Figure 37: A region containing a ball

Remark 19.2. Let f be holomorphic and g ∈ D. By the theorem, f(z) =
∑∞

n=0 cn(z−a)n

⇒ f ′(z) =
∞∑
n=1

ncn(z − a)n−1

⇒ ∂k

∂zk
f(z) =

∞∑
n=k

n(n− 1) · · · (n− k)cn(z − a)n−k

∂k

∂zk
f(a) = k!ck(0

0 + 01 + · · · )

Thus we get:

f(z) =
∞∑
n=0

∂n

∂zn
f(a0

(z − a)n

n!

Remark 19.3 (Taylor’s formula).

f(x) = f(a) + f ′(a)(x− n) +
1

2
f ′′(a)(x− a)2 + · · · (19.2)

Corollary 19.3. If γ is a simple loop, f is holomorphic on and inside γ then:∫
γ

f(z)

(z − a)n+1
dz = 2πicn =

2πi

n!

∂n

∂zn
f(a)
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Figure 38: As you can see the black function is C1, the blue function is the differential
of it.

f(z)

zn+1
=

c0

zn+1
+ · · ·︸ ︷︷ ︸

=0 by FTC

+
cn
z

+ cn+1 + · · ·︸ ︷︷ ︸
=0 by Cauchy

(19.3)

For n = 0, this is the Cauchy Integral formula (CIF).

Definition 19.1. A function is called Analytic if it can be expanded into a power se-
ries everywhere, around every point. We have just seen that analytic ⇔ holomorphic in
complex analysis.

Lecture 28 31 In C f is C1 ⇒ f is C∞ f is C∞ ⇒ f can be expanded as a power
series. In R if f is C1 it doesn’t imply that f is C∞. e.g:

f(x) :=

{
x3 x > 0
x2

is C1 as you can see in figure 38 In R if f is C∞ this doesn’t imply that f can be expanded
as a power series.

31As (well it seems like usual), I have borrowed Jack Heal’s notes for this lecture, I was very very tired
so I missed it
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Figure 39: f(x) = e−
1
x , x > 0 and f(x) = 0, x ≤ 0.

Figure 40: A diagram shown the sequence zi tending to a point z∗.

Example 19.1.

f(x) =

{
0 x ≤ 0

e−
1
x x > 0

f is drawn in figure 39. There is no power series for this function because ∂nf
∂xn

(0) = 032

Proposition 19.4. Let (zn) ⊂ D be a sequence, such that limn→∞ zn = z∗ ∈ D If f and
g are holomorphic, and f(zn) = g(zn) for every n then f = g. This is shown in figure
40.

Proof. Let h = f − g, since h is holomorphic, one has:

h(z) = a0 + a1(z − z∗) + a2(z − z∗)2 + · · ·

Take limits as n→∞, this implies that a0 = 0. If you then divide by z − z∗ then:

h(z)

z − z∗
= a1 + a2(z − z∗) + · · ·

32As x→ 0, f(x)→ 0 faster than any polynomial
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If you evaluate at z = zn and take limits as n → ∞ we get a1 = 0. By induction, you
then get ak = 0 ∀k.

Remark 19.4. If (zn) doesn’t converge the above doesn’t hold. e.g. f(x) = sin x, g(x) = 0
[(zn) = kπk ∈ Z] e.g. f(x) = sin2 x+cos2 x g(x) = 1 One has sin2 x+cos2 x = 1 ∀x ∈ C.

Theorem 19.5. Let f : C → C be holomorphic, if their exists M such that |f(z)| < M
∀z ∈ C then f is constant.

Proof. We have:

f(z) =
∞∑
n=0

anz
n

with

an =
1

2πi

∫
B(0,R)

f(z)

zn+1
dz

|an| =
1

2π

∣∣∣∣∫
B(0,R)

f(z)

zn+1
dz

∣∣∣∣ ≤ 1

2π

∫
B(0,R)

∣∣∣∣f(z)

zn+1

∣∣∣∣ dz
≤ 1

2π

∫
B(0,R)

M

Rn+1
dz

|an| ≤
1

2π

M

Rn+�1
2π��R =

M

Rn

This holds for every R > 0, therefore an = 0 for n ≥ 1. This means that

f(z) =
∞∑
n=0

anz
n = a0

(i.e. f(z) is constant.)

Theorem 19.6. Every non-constant polynomial P on C has at least one root. (∃ z ∈ C
s.t P (z) = 0)

Proof. Suppose f has no root. Then f(z) = 1
P (z)

is holomorphic in C. P = a0 + a1 +

· · · + anz
n There exists an R > 0 and C > 0 s.t. |P (t)| ≥ C|z|n for |z| > R. Therefore

|f(z)| ≤ 1
CRn

for |z| > R. Since P has no root, f has no C pole (i.e. 1/0 is undefined)[3],
this means that their exists M s.t |f(z)| < M for |z| < R, by the previous theorem f
must be constant, which implies that P is also constant. If P is a polynomial of degree
n and P (a) = 0, then P (z) = (z − a)P̂ (z) where P̂ is a polynomial of degree n− 1.

20 Real Sums

The aim is to find the solution of:
∞∑

k=−∞

(20.1)
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Figure 41: A diagram of the box γN
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Idea: calculate ∫
γN

f(z)
cos(πz)

sin(πz)
dz

f is holomorphic except at z1, z2, . . . , zM .∫
γN

f(z)
cos(πz)

sin(πz)
dz (20.2)

=︸︷︷︸
CIF

M∑
k=1

∫
δB(zN ,ε)

· · ·+
N∑

k=−N

2�πi
f(k)

�π

This allows us to compute
∑N

k=−N f(k).

Remark 20.1 (Details).

sin(πz) =
eiπz − e−iπz

2i
= 0

⇒ eiπz − e−iπz ⇒ z ∈ Z
Using:

sin(z) = z − z3

3!
+
z5

5!
− · · ·

As we know that sin(a+ b) = sin a cos b+ cos a sin b

sin(πz) = sin
(
π(z − k) + πk

)
= sin

(
π(z − k)

)
cos πk + cos

(
π(z − k)

)
sin(πk)︸ ︷︷ ︸

=0

= π(z − k)

(
1− π2(z − k)2

3!
+ ·
)

︸ ︷︷ ︸
=g(z)→z as z→k

cos(πk)

⇒
∫
δB(k,ε)

f(z)
cos(πz)

sin(πz)
=

∫
1

z − k
f(z)

cos
(
πk
)

πg(z) cos(pik)

=︸︷︷︸
CIF

2πif(k)
cos(πk)

π − cos(πk)
= 2if(k)

Example 20.1.

f(z) =
1

z2 + 1
=

1

(z − i)(z + i)

At i :

∫
δB(i,ε)

f(z)
cos(πz)

sin(πz)
=︸︷︷︸
CIF

2πi
1

i+ i

cos(πi)

sin(πi)
= π

cos(πi)

sin(πi)

At − i : 2πi
1

−i− i
cos(−πi)
sin(−πi)

= π
cos(πi)

sin(πi)

, cos(πz)
sin(πz)

has poles at 1
π(z−k)

for z ∈ Z. The integral along the box γN (as shown if figure

41) as N →∞.∣∣∣∣∫
γN

f(z)
cos(πz)

sin(πz)
dz

∣∣∣∣ ≤ max
z∈γN
|· · · | · (Length of γN) ≤ C

N2
· 4(2N + 1)→ 0
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With N →∞

0 = 2π
cos(πi)

sin(πi)
+ 2i

∞∑
k=−∞

1

k2 + 1

⇒
∞∑

k=−∞

1

k2 + 1
=
−π
i

cos(πi)

sin(πi)

⇒
∞∑

k=−∞

1

k2 + 1
=
π cosh π

sinhπ
= π tanh(π) ≈ 3.15
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