Outline

QR Decomposition QR Iterations Conceptual Basis of QR Method* QR Algorithm with Shift*

QR Decomposition Method

QR Decomposition QR Iterations Conceptual Basis of QR Method* QR Algorithm with Shift*

QR Decomposition

Decomposition (or factorization) $\boldsymbol{A} = \boldsymbol{Q}\boldsymbol{R}$ into two factors, orthogonal \boldsymbol{Q} and upper-triangular \boldsymbol{R} :

- (a) It always exists.
- (b) Performing this decomposition is pretty straightforward.
- (c) It has a number of properties useful in the solution of the eigenvalue problem.

$$[\mathbf{a}_1 \quad \cdots \quad \mathbf{a}_n] = [\mathbf{q}_1 \quad \cdots \quad \mathbf{q}_n] \begin{bmatrix} r_{11} \quad \cdots \quad r_{1n} \\ & \ddots & \vdots \\ & & & r_{nn} \end{bmatrix}$$

A simple method based on Gram-Schmidt orthogonalization: Considering columnwise equality $\mathbf{a}_j = \sum_{i=1}^j r_{ij} \mathbf{q}_i$, for $j = 1, 2, 3, \cdots, n$;

$$r_{ij} = \mathbf{q}_i^T \mathbf{a}_j \quad \forall i < j, \quad \mathbf{a}_j' = \mathbf{a}_j - \sum_{i=1}^{j-1} r_{ij} \mathbf{q}_i, \quad r_{jj} = \|\mathbf{a}_j'\|;$$

 $\mathbf{q}_j = \begin{cases} \mathbf{a}'_j/r_{jj}, & \text{if } r_{jj} \neq 0; \\ \text{any vector satisfying } \mathbf{q}_i^T \mathbf{q}_j = \delta_{ij} & \text{for } 1 \leq i \leq j, & \text{if } r_{jj} = 0. \end{cases}$

QR Decomposition

QR Decomposition QR Iterations Conceptual Basis of QR Method* QR Algorithm with Shift* **transformations**,

Practical method: one-sided Householder transformations, starting with

$$\mathbf{u}_0 = \mathbf{a}_1, \ \mathbf{v}_0 = \|\mathbf{u}_0\|\mathbf{e}_1 \in R^n$$
 and $\mathbf{w}_0 = rac{\mathbf{u}_0 - \mathbf{v}_0}{\|\mathbf{u}_0 - \mathbf{v}_0\|}$

and $\mathbf{P}_0 = \mathbf{H}_n = \mathbf{I}_n - 2\mathbf{w}_0\mathbf{w}_0^T$.

$$\mathbf{P}_{n-2}\mathbf{P}_{n-3}\cdots\mathbf{P}_{2}\mathbf{P}_{1}\mathbf{P}_{0}\mathbf{A} = \mathbf{P}_{n-2}\mathbf{P}_{n-3}\cdots\mathbf{P}_{2}\mathbf{P}_{1}\begin{bmatrix} \|\mathbf{a}_{1}\| & **\\ \mathbf{0} & \mathbf{A}_{0} \end{bmatrix}$$
$$= \mathbf{P}_{n-2}\mathbf{P}_{n-3}\cdots\mathbf{P}_{2}\begin{bmatrix} r_{11} & *& **\\ & r_{22} & **\\ & & \mathbf{A}_{1} \end{bmatrix} = \cdots = \mathbf{R}$$

With

$$\mathbf{Q} = (\mathbf{P}_{n-2}\mathbf{P}_{n-3}\cdots\mathbf{P}_{2}\mathbf{P}_{1}\mathbf{P}_{0})^{T} = \mathbf{P}_{0}\mathbf{P}_{1}\mathbf{P}_{2}\cdots\mathbf{P}_{n-3}\mathbf{P}_{n-2},$$

we have $\mathbf{Q}^{T}\mathbf{A} = \mathbf{R} \Rightarrow \mathbf{A} = \mathbf{Q}\mathbf{R}.$

QR Decomposition

QR Iterations Conceptual Basis of QR Method* QR Algorithm with Shift*

Alternative method useful for tridiagonal and Hessenberg matrices: One-sided plane rotations

• rotations \mathbf{P}_{12} , \mathbf{P}_{23} etc to annihilate a_{21} , a_{32} etc in that sequence

Givens rotation matrices!

Application in solution of a linear system: Q and R factors of a matrix **A** come handy in the solution of $\mathbf{A}\mathbf{x} = \mathbf{b}$

$$\mathbf{Q}\mathbf{R}\mathbf{x} = \mathbf{b} \Rightarrow \mathbf{R}\mathbf{x} = \mathbf{Q}^T\mathbf{b}$$

needs only a sequence of back-substitutions.

QR Iterations

118.

QR Decomposition QR Iterations Conceptual Basis of QR Method* QR Algorithm with Shift*

Multiplying **Q** and **R** factors in reverse,

$$\mathbf{A}' = \mathbf{R}\mathbf{Q} = \mathbf{Q}^{\mathsf{T}}\mathbf{A}\mathbf{Q},$$

an orthogonal similarity transformation.

- 1. If **A** is symmetric, then so is \mathbf{A}' .
- 2. If **A** is in upper Hessenberg form, then so is \mathbf{A}' .
- 3. If **A** is symmetric tridiagonal, then so is \mathbf{A}' .

Complexity of QR iteration: $\mathcal{O}(n)$ for a symmetric tridiagonal matrix, $\mathcal{O}(n^2)$ operation for an upper Hessenberg matrix and $\mathcal{O}(n^3)$ for the general case.

Algorithm: Set $A_1 = A$ and for $k = 1, 2, 3, \cdots$,

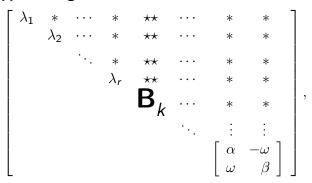
- decompose $\mathbf{A}_k = \mathbf{Q}_k \mathbf{R}_k$,
- \blacktriangleright reassemble $\mathbf{A}_{k+1} = \mathbf{R}_k \mathbf{Q}_k$.

As $k \to \infty$, **A**_k approaches the quasi-upper-triangular form.

QR Iterations

Quasi-upper-triangular form:

QR Decomposition QR Iterations Conceptual Basis of QR Method* QR Algorithm with Shift*



with $|\lambda_1| > |\lambda_2| > \cdots$.

- Diagonal blocks B_k correspond to eigenspaces of equal/close (magnitude) eigenvalues.
- ► 2 × 2 diagonal blocks often correspond to pairs of complex eigenvalues (for non-symmetric matrices).
- For symmetric matrices, the quasi-upper-triangular form reduces to quasi-diagonal form.

120.

Conceptual Basis of QR Method*

QR Decomposition QR Iterations Conceptual Basis of QR Method* QR Algorithm with Shift*

QR decomposition algorithm operates on the basis of the *relative magnitudes* of eigenvalues and segregates subspaces.

With
$$k \to \infty$$
,
 $\mathbf{A}^k Range\{\mathbf{e}_1\} = Range\{\mathbf{q}_1\} \to Range\{\mathbf{v}_1\}$
and $(\mathbf{a}_1)_k \to \mathcal{Q}_k^T \mathbf{A} \mathbf{q}_1 = \lambda_1 \mathcal{Q}_k^T \mathbf{q}_1 = \lambda_1 \mathbf{e}_1$.

Further,

$$\mathbf{A}^{k} Range\{\mathbf{e}_{1}, \mathbf{e}_{2}\} = Range\{\mathbf{q}_{1}, \mathbf{q}_{2}\} \rightarrow Range\{\mathbf{v}_{1}, \mathbf{v}_{2}\}.$$

and $(\mathbf{a}_{2})_{k} \rightarrow \mathcal{Q}_{k}^{T} \mathbf{A} \mathbf{q}_{2} = \begin{bmatrix} (\lambda_{1} - \lambda_{2})\alpha_{1} \\ \lambda_{2} \\ \mathbf{0} \end{bmatrix}.$

And, so on ...

QR Algorithm with Shift*

QR Decomposition QR Iterations Conceptual Basis of QR Method* QR Algorithm with Shift*

For $\lambda_i < \lambda_j$, entry a_{ij} decays through iterations as $\left(\frac{\lambda_i}{\lambda_j}\right)^{*}$. With shift,

$$\begin{split} \bar{\mathbf{A}}_k &= \mathbf{A}_k - \mu_k \mathbf{I}; \\ \bar{\mathbf{A}}_k &= \mathbf{Q}_k \mathbf{R}_k, \quad \bar{\mathbf{A}}_{k+1} = \mathbf{R}_k \mathbf{Q}_k; \\ \mathbf{A}_{k+1} &= \bar{\mathbf{A}}_{k+1} + \mu_k \mathbf{I}. \end{split}$$

Resulting transformation is

$$\mathbf{A}_{k+1} = \mathbf{R}_k \mathbf{Q}_k + \mu_k \mathbf{I} = \mathbf{Q}_k^T \bar{\mathbf{A}}_k \mathbf{Q}_k + \mu_k \mathbf{I}$$

= $\mathbf{Q}_k^T (\mathbf{A}_k - \mu_k \mathbf{I}) \mathbf{Q}_k + \mu_k \mathbf{I} = \mathbf{Q}_k^T \mathbf{A}_k \mathbf{Q}_k.$

For the iteration,

convergence ratio
$$= \frac{\lambda_i - \mu_k}{\lambda_j - \mu_k}$$
.

Question: How to find a suitable value for μ_k ?

122.

Points to note

QR Decomposition QR Iterations Conceptual Basis of QR Method* QR Algorithm with Shift*

- ▶ QR decomposition can be effected on any square matrix.
- Practical methods of QR decomposition use Householder transformations or Givens rotations.
- A QR iteration effects a similarity transformation on a matrix, preserving symmetry, Hessenberg structure and also a symmetric tridiagonal form.
- A sequence of QR iterations converge to an almost upper-triangular form.
- Operations on symmetric tridiagonal and Hessenberg forms are computationally efficient.
- QR iterations tend to order subspaces according to the relative magnitudes of eigenvalues.
- Eigenvalue shifting is useful as an expediting strategy.

Necessary Exercises: 1,3