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Semester 11(2005/06)

1. Notations

The collection of all real numbers is denoted by R. Thus R includes the integers

.,—2,-1,0,1,2,3...,

the rational numbers, p/q, where p and g are integers (¢ # 0), and the irrational numbers, like
V2,7, e etc. members of R may be visualized as points on the real-number line as shown in
Figure 1.
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Figure 1 The Number Line

We write a € R to mean a is a member of the set R. In other words, a is a real number.
Given two real numbers a and b with a < b, the closed interval [a, b] consists of all = such that
a < x < b, and the open interval (a,b) consists of all x such that a < x < b. Similarly, we may
form the half-open intervals [a,b) and (a, b].

The absolute value of a number a € R is written as |a| and is defined as

la| = a ifa>0
| —a ifa<0.
For example, |2] = 2,| — 2| = 2. Some properties of |z| are summarized as follows:

| — 2| = |z| for all z € R.

—|z] <z < |z|, for all z € R.

For a fixed r > 0, |z| < r if and only if z € (—r,7).
Va2 = |z], z € R.

(Triangle Inequality) |z + y| < |x| + |y| for all 2,y € R.

Ol o

A function f : A — B is a rule that assigns to each a € A one specific member f(a) of B. The
fact that the function f sends a to f(a) is denoted symbolically by a — f(a). For example,
f(z) = 22 /(1 —z) assigns the number 22/(1 — ) to each x # 1 in R. We can specify a function
f by giving the rule for f(x). The set A is called the domain of f and B is the codomain of f.
The range of f is the subset of B consisting of all the values of f. That is, the range of f =
{f(x) e B|x € A}.

Given f: A — R. It means that f assigns a value f(z) in R to each z € A. Such a function
is called a real-valued function. For a real-valued function f: A — R defined on a subset A
of R, the graph of f consists of all the points (x, f(x)) in the zy-plane.
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Y
\ graph of f [
/ (z, f(x))

A = domain of f

Figure 2 The graph of f
EXERCISE 1.1. Let r > 0. Prove that |z —a| < r if and only if x € (—r + a,a + 7).

EXERCISE 1.2. Prove the triangle inequality |x + y| < |x| + |y|.

EXERCISE 1.3. Prove the for any =,y € R, ||z| — ]y|| < |z —yl.

2. Vectors in R?
2.1. The Euclidean 3-space. The Euclidean 3-space denoted by R? is the set
{(x7y7 Z) ‘ x,Y, 2 € R}

To specify the location of a point in R? geometrically, we use a right-handed rectangular
coordinate system, in which three mutually perpendicular coordinate axes meet at the origin.
It is common to use the z and y axes to represent the horizontal coordinate plane and the
z-axis for the vertical height.

Figure 3 A right-handed coordinate system
We usually denote a point P with coordinates (z,y,z) by P(z,y,z). The distance |P;Ps]
between two points Pj(x1,y1,21) and Pa(xg,ys2, 22) is given by

\/(561 —2)? + (y1 — y2)? + (21 — 22)%.
An equation in x,y, z describes a surface in R3.
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EXAMPLE 2.1. (a) z = 3 is the equation of a horizontal plane at level 3 above the zy-plane.
(b) y = 2 is the equation of a vertical plane parallel to the zz-coordinate plane. Every point of
this plane has y coordinate equal to 2. (c¢) Similarly = 2 is the equation of a vertical plane
parallel to the yz-coordinate plane.

z z z
z=3
®3

\
\
G \

y=2
/ =2
x T T

(a) (b) ()
Figure 4

EXAMPLE 2.2. An equation of a sphere with centre O(a, b, c) and radius 7 is

Figure 5 A sphere

EXERCISE 2.3. Show that 22 + y? + 22 + 42 — 6y + 22 + 6 = 0 is the equation of a sphere.
Describe its intersection with the plane z = 1.

Solution. Using the method of completing square, the given equation can be written as (z +
2)2 + (y — 3)%2 + (2 + 1)? = 8. Hence, it is the equation of a sphere centred at (—2,3, —1) with
radius v/8.

@Department of Mathematics 6



Semester 11(2005/06)

(z+2)2+(y—32%=4,2=1
is a circle

7
N

Figure 6 A circle lying on a sphere

To find the intersection with the plane z = 1, set z = 1 in the above equation. We obtain
(r+2)%2+ (y — 3)2 = 4. Therefore, it is a circle lying on the horizontal plane z = 1 with centre
at (—2,3,1) and radius 2.

2.2. Vectors. A 3-dimensional vector is an ordered triple a= (a1, az,ag) of real numbers.

a1, as,as are called the components of a. A vector a= (a1,az,a3) can be represented by an
arrow from any point P(z,y, z) to the point Q(z + a1,y + a2,z + ag) in R3. In this case, we

say that the vector a= (a1, az,az) has representation PQ.

z
/Q(x+a1,y+a2+z+a3)
qa,

P(z,y,z)

\y

x
Figure 7 Vector

Instead of using an arrow on top of PQ or a, we shall suppress the arrow but write PQ or a

in bold to denote the vector E:PQ. If P is the origin O, a is called the position vector of the
point Q.

The position vectors of (1,0,0), (0,1,0 and (0,0, 1) are denoted by 1i, j and k respectively. In
other word, i = (1,0,0), j = (0,1,0) and k = (0,0, 1). i, j and k are called the standard basis
vectors. Therefore, if Q = (z,y, 2), then q = (z,y, 2) = xi + yj + zk.

Suppose P = (z1,y1,21) and Q = (2, y2, 22). The magnitude of a vector PQ is defined to be
PQ| = /(2 —x1)%2 + (y2 — y1)? + (22 — 21)2. A vector PQ also has a direction determined
by the orientation that arrow is pointing.

The zero vector (0,0,0) is denoted by 0. Clearly |0] = 0. We say that two vectors are equal
if and only if they have the same direction and the same magnitude. This condition may be
expressed algebraically by saying that if vi = (1,91, 21) and vo = (2, Y2, 22), then v = vg if
and only if 1 = x9, y1 = y2 and z1 = 2o.

If vi = (x1,y1,21) and vo = (z2,ya2, 22), then define the sum v; + vy to be the vector (x; +
T2, Y1 + Y2, 21 + 22).

If X\ is any real number and v = (z,y, z), then define the scalar multiple Av to be the vector
(Ax, Ay, Az).
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Also —v is defined to be (—1)v. Clearly —(—v) =v,and —v+v =0. Alsou—v =u+(-1)v.
Addition of vectors can also be described by the parallelogram law: The sum vy + va is
represented by the position vector which is the diagonal of the parallelogram determined by
vi and va.

@)

Figure 8 Vector Addition

It is straightforward to check that the set of all position vectors in R? forms a vector space
over R.

EXERCISE 2.4. Prove the triangle inequality |v1 + va| < |vi| + |va|.

PROPOSITION 2.5. Properties of vectors
a+b=b+a.
a+(b+c)=(a+b)+c.
a+0=a.

a+-a=0.

ala+b) =ab+ aa.

aa = aq.

(v + B)a = ca+ fa.
(af)a = a(Ba).

9. la=a.

10. |aal = |al|al.

RS G oo~

DEFINITION 2.6. A unit vector is a vector whose length is 1.
1a_ a
) . e lal™ ol . o .
times, in order specify a vector a is of unit length, it is written as a.

For any nonzero vector a is a unit vector that has the same direction as a. Some-

ExaMPLE 2.7. Find the unit vector in the direction of the vector 2i — j — 2k.

D=

Solution. |2i —j — 2k| = (22 + (—1)? 4+ (-2)?)
5%@i—j—2k)

2.3. The Dot Product.

= /9. Therefore the required unit vector is

DEFINITION 2.8. Let a = (a1, a2,a3) and b = (by,ba,bs). The dot product or scalar product of
a and b is the number a-b = a1by + asbs + azbs.

EXAMPLE 2.9. Let a = (1,2,3) and b= (—1,0,—1). Find a- b.

Solution. a-b = (1)(—1) 4+ (2)(0) + (3)(—1) = —4.
Clearly, we have
i-j=i-k=j-k=0andi-i=j-j=k k=1.
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PROPOSITION 2.10. Properties of the Dot Product
1. a-a=|a%.

2.a-b=Db-a.

3. a-(b+c)=a-b+a-c.

. (@) -b=a(a-b)=a- (ab).

.0-a=0.

O B

Proof. Let’s prove 1. Let a = (a1, az,a3). Then a-a = a? + a3 + a3 = |a|.
THEOREM 2.11. If 6 is the angle between the vectors a and b, then a-b = |a||b|cosf, 0 < 0 < 7.

Proof Let OA = a and OB = b, where O is the origin and § = ZAOB.

Figure 9 Angle between two vectors
Applying cosine rule to AOAB, we have

la —b|*> = |a|? + |b?| — 2|a]|b| cos 6.
As|a—b?=(a—b)-(a—b)=]al?> —2a-b + |b?|, it follows that a-b = |a||b| cos f or
a-b
Tallb]

Two vectors a and b are said to be orthogonal or perpendicular if the angle between them is
90°. In other words,

cosf =

a and b are orthogonal <= a-b = 0.

EXAMPLE 2.12. 2i+ 2j — k is orthogonal to 5i — 4j + 2k because (2i+ 2j — k) - (51 — 4j + 2k) =
2)(5) + (2)(=4) + (=1)(2) = 0.

Let a=(ay, as,as) # 0. The angles a, 3, in [0, 7] that a makes with the x, y, z axes respectively

are called the direction angles of a.
z

a=(ai, az, as)

x
Figure 10 Direction Angles
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The cosines of these angles, cos a, cos 3, cosy are called the direction cosines of a. We may
express a vector a = (a1, ag, as) in terms of its magnitude and the direction cosines.

a-i <a1,a2,a3>-<1,0,0> al
cosq = ——_—- = = —.
laflil  [(a1,a2,a3)[(1,0,0)]  |a|
Similarly,
cosf3 = 22 ond cosy = .
al El
Thus,

a = |a|(cos a, cos 3, cos ).

Next, we shall discuss the projection of a vector along another vector. Let a and b be two
vectors in R3. Let’s represent a as PQ and b as PR.

2 >Q

|b| cos 6

Figure 11 Vector Projection

Then
-b
a 2 b

|b|cosf = —— =
lal |

DEFINITION 2.13.

1. The scalar projection of b onto a is |b|cos€ = ‘%;b.

2. The vector projection of b onto a is (ﬁ -b) I%l\ = %a.

Note that the scalar projection is negative if § > 90°. Moreover, in figure 11. SR = PR—-PS =
b — %a. Thus the distance from R to the line PQ is given by

a-b

RS|=|b— ——a]|.
RS| \ e

EXAMPLE 2.14. Find the scalar and vector projection of b = (1,1,2) onto a = (—2,3,1).

Solution. |a] = /(—2)2 + 3%+ 12 = V/14. Thus the scalar projection of b onto a is % =
=((=2)(1) + (3)(1) + (1)(2)) = 3/V14.

3 a 3

. . . . . 9
The vector projection of b onto a is Jiijal = 1427 (—3,

47

).

EXERCISE 2.15. Find the angle between two long diagonals of a unit cube.

ks

9

~lw
—_

[70.5°].

EXERCISE 2.16. Prove the Cauchy-Schwarz inequality: |a-b| < |a||b|. Determine when equality
holds.
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2.4. The Cross Product.

DEFINITION 2.17. If a = {(ai1,a2,a3) and b = (b1, by, bs), then the cross product or vector
product of a and b is

axb = (a2b3 — agbg,agbl — albg,albg — a2b1>
i j k
= ay ag as
b1 by b3
o a2 as i ay as ay az k
a b2 bg b1 b3 b1 bg ’
EXAMPLE 2.18. Let a = (1,3,4) and b = (2,7, —5). Find a x b.
Solution.
ij k
axb = |1 3 4
2 7 =5
3 4 |, 1 4 . 1 3
= '7 5 ‘_‘2 —5‘“‘2 7’1‘
= —43i+13j+k.

Clearly, we have
ixj=kjxk=ikxi=jandixi=jxj=kxk=0.

THEOREM 2.19. Let a = (a1, az,as3), b = (b1,be,b3) and c = (c1,ca2,c3). Then

ayp az ag
a- (b X C) = bl b2 b3
1 C2 C3

Proof Exercise.
COROLLARY 2.20. b X c is perpendicular to both b and c.

Proof
by by b3

b-(bXC): b1 b2 b3 =0.
Cl1 Cy C3
1 C2 C3
C'(bXC): b1 b2 b3 =0.

1 C2 C3

THEOREM 2.21. If 0 is the angle between a and b, 0 < 0 < , then |a x b| = |a||b|sinf.

Proof First we need the following identity
(asbs —asba)? + (agbi —a1bs)*+ (a1bo —agby)? = (ai+aj+a3)(bi +b3+b3) — (a1by +asbs +asbs)?

which can be easily verified by direct simplification of both sides.
Using this identity, we have

\a X b|2 = (agbg — a3b2)2 + (agbl — a1b3)2 + (albg — a2b1)2
= |(CL|%2|+ E% -l-(a%)(b)i—l- b% + b%) - (a1b1 + agby + a3b3)2
= lal*|b]*—(a-b
= [a]*|b]* — |a]?*|b|* cos* 6
= |a|?/b|?sin? 6.
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Since 0 < 6 <, sinf > 0, we have |a x b| = |a||b|sin 6.
It follows from this result that |a x b| = |a||b|sin @ is the area of the parallelogram determined
by a and b.

Figure 12 Area=|a||b]|sinf

a x b is a vector perpendicular to the plane spanned by a and b with magnitude |a||b]|sin6,
where 0 < 0 < 7 is the angle between a and b.

axb

a b
Figure 13 axb

There are two possible choices of such a vector. It is the one determined by the right-hand
rule: a x b is directed so that a right-hand rotation about a x b through an angle 8 will carry
a to the direction of b.

To see this, first observe that the cross product is independent of the choice of the coordinate
system. To determine the direction of a x b, choose the z-axis along the direction of a and
choose the y-axis so that the vector b lies on the zy-plane and let z be the axis perpendicular
to the zy-plane so that z,y,z form a right-handed coordinate system. With this choice of
coordinate system, a = (a1,0,0) with a; > 0, and b = (b1,b2,0). Thus, a x b = a;bok.
Therefore, the direction of a x b is along the z-axis and it is along the positive or negative
direction of k according to whether bs is positive or negative respectively. This is precisely the
right-hand rule described in the last paragraph.

COROLLARY 2.22. a and b are parallel if and only if a x b = 0.

PROPOSITION 2.23. Properties of the Cross Product
axb=-bxa

(ea) x b=a(a xb) =ax (ab)
ax(b+c)=axb+axc
(a+b)xc=axc+bxc
a-(bxc)=(axb)-c

ax (bxc)=(a-c)b—(a-b)c

S Grds Lo o~

Proof Exercise.

The relation a- (b x ¢) = (ax b) - c can be proved by direct expansion in component form. Al-
ternatively, it can be deduced by the property of the determinant: If two rows of a determinant
are switched, the determinant changes sign. Therefore,
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ar az as ar az ag c1 c2 c3
a-(bxc) = | b by by |=—|c ¢ c3|=|a1 a2 a3
cp ¢ c3 by by b3 by by b3

= c-(axb)=(axb)-c.

ar a2 as
In fact, a- (b xc) = | by by b3 | is the algebraic or sign volume of the parallelepiped
c1 C2 C3
determined by a, b, c.
bxc
£ aL___l/_l _____________ , I”I
h = |a] cos ) / / //
¢ /'/'\ Area of the base

i parallelogram = |b X c|

Figure 14 Volume = |a||b X c||cosf|= |a- (b x c)|.

COROLLARY 2.24. The vectors a,b,c are coplanar (i.e. they all lie on a plane) if and only if
a-(bxc)=0.

Figure 15 a,b,c are coplanar

EXAMPLE 2.25. Show that the vectors a = (1,4,-7), b = (2,—-1,4), ¢ = (0,—9,18) are
coplanar.

1 4 =7
Solution. Asa-(bxc)=|2 —1 4 |=0,it follows from 2.22 that a, b and ¢ are coplanar.
0 -9 18

EXAMPLE 2.26. Suppose a rigid body rotates with angular velocity w about an axis ¢ through
a point O. The angular velocity w is represented by a vector along ¢. If r is the position vector
from O of a point inside the rigid body, then the velocity at this point is given by w X r.

EXERCISE 2.27. Show that ax (b xc)+b x (cxa)+cx(axb)=0.

EXERCISE 2.28. Show that (axb) x (cxd) =(a-(cxd))b—(b-(cxd))a
=(a-(bxd))c—(b-(bxc))d.

EXERCISE 2.29. Suppose the vectors a, b,c,d are coplanar. Show that (a x b) x (¢ xd) = 0.

2.5. Lines and Planes. Let L be a line passing through a point Py(xo,yo,20) 1 the
direction of the vector v = (a, b, c). Then any point P on L has position vector r = r( + tv for
some t € R.
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Py A P

($0,y0,20> =Ty r

0

Figure 16 Vector equation of a line

Vector equation of a line:

Write r = (z,y, z). Then r = rg + tv is equivalent to (z,y, z) = (xo, Yo, 20) + t{a,b,c).
Parametric equations of a line: ’ r=z0+at,y=yo+0bt,z =2 +ct ‘

Eliminating ¢, we obtain

Symmetric equations of a line: | £=£0 = Y=Y — 2=%0
a a a

The numbers a, b, ¢ are called the direction numbers, or direction cosines of the straight line.
If a, b or c is zero, we may still write the symmetric equation of the line. For example, if a = 0,
we shall write the symmetric equations as

Y—% _ 22— %0

€T = o, = ;
a a

which is a line lying on the plane x = xy.
ExaMpPLE 2.30. Show that the lines

Litx=14+t,y=-24+3t,z2=4—1,

Lo:x=2s,y=3+s,2=—344s,
are skew, i.e. they do not intersect. Hence they do not lie in the same plane.
Solution. The lines Ly and Lo intersect if and only if the system
14+t = 25
243t = 3+s
4—t = —3+14s

has a (unique) solution in s and ¢. The first two equations give ¢t = 11/5,s = 8/5. But these
values of ¢ and s do not satisfy the last equation. Thus, L1 and Lo do not intersect.

Lo

/L1

Figure 17 Skew Lines

Consider a plane in R® passing through a point Py(zo, 0, 20) with normal vector n. Let
P(z,y, z) be a point on the plane. Let r and ry be the position vectors of P and P, respectively.
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Figure 18 n-(r—rp) =0

Then a vector equation of the plane is given by

’ n-(r—ro):O‘

If n = (a, b, ), then the above vector equation can be written as

’ a(z — x0) +b(y —yo) +c(z —20) =0 ‘

In general, a linear equation in x,y, 2, i.e. ax +by+ cz+d = 0 is an equation of a plane in R3.

ExAMPLE 2.31. Find an equation of the plane passing through the points P(1,3,2), Q(3,—1,6)
and R(5,2,0).

Solution. PQ= (3 —1,—1—3,6—2) = (2,—4,4). PR= (4,—1,—2). Thus a normal vector n
to the plane is given by

. ik
PQ x PR=|2 —4 4 |=(12,20,14).
4 -1 -2

Therefore, an equation of the plane is given by (z — 1,y — 3,z — 2) - (12,20, 14) = 0. That is
6z + 10y + 7z = 50.

EXERCISE 2.32. (a) Find the angle 6,(0 < 6 < 90°) between the planes x +y + 2z = 1 and
T—2y+3z2=1
(b) Find the symmetric equations for the line of intersection of the planes in (a).

PROPOSITION 2.33. The distance from a point Py (z1,y1,21) to the plane ax +by+cz+d =0
18

laz1 + by1 + cz1 + d|

vaz+b2+c?

Proof Pick a point Py(z, yo, z0) on the plane. Let b =PyPy= (x1 — x0, Y1 — Yo, 21 — 20)-
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Py

Py

Figure 19 Distance from a point to a plane
Then

| NP | = |projection of b along n|
[n-b|
|
la(z1—x0)+b(y1—yo)+c(z1—20)|

2102 +C2

[(az1+bys +CZ1JS— (axo+byo+czo)|
Va2 +b2+c2

|az1+by1+cz14d]

Va2 +bitc

ExAMPLE 2.34. Find the distance between the parallel planes 10z +2y—22z = 5 and S5z+y—2z =
1.

Solution. The planes are parallel because their normal vectors (10,2, —2) and (5,1, —1) are
parallel. Pick any point on the plane 10x + 2y — 2z = 5. For example, (1/2,0,0) is a point on
10z 4+ 2y — 2z = 5. Then the distance between the two planes is

5(1/2) +0(1) +0(=1) = 1] V3

VB2 4+ 12+ (-1)2 6

ExaAMPLE 2.35. Find the distance between the skew lines:

Lite=14+ty=-2+3t,z2=4—1

Lo:x=2s,y=3+s,2=—-3+14s

Solution. As L; and Lo are skew, they are contained in two parallel planes respectively. A
normal to these two parallel planes is given by

k
-1
4

= (13, -6, —5).

— Y e

i
1
2

Let s = 0 in Ly. We get the point (0,3,—3) on Lg. Therefore, an equation of the plane
containing Lo is (z — 0,y — 3,z — (=3)) - (13, -6, —5) = 0. That is 13z — 6y — 52+ 3 = 0. Let
= 01in L;. We get the point (1,—2,4) on L;. Thus, the distance between L; and Ly is give by

13(1) — 6(~2) —5(4) +3| 8

VI3Z+ (—6)2+ (=52 230
EXERCISE 2.36. Find the equation of the straight line passing through the point Py(1,5,—1)
and perpendicular to the lines L1 : x =5+t,y=—-1—t,z=2tand Ly : z = 11t,y = Tt, 2z =
—2t.
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3. Cylinders and Quadric Surfaces

A cylinder is a surface that consists of all lines (called rulings) that are parallel to a given line
and pass through a plane curve.

EXAMPLE 3.1. A parabolic cylinder z = 22.

Figure 20 A parabolic cylinder

ExaMpPLE 3.2. Circular cylinders

Figure 21 22442 =1 P +22=1

A quadric surface is the graph of a second degree equation in z,y, z:

’ Ax? + By? + C2> + Doy + BEyz + Faz + Go + Hy + 1z 4+ J = 0.

Using translation and rotation, the equation can be expressed in one of the following two
standard forms:

Ax? + By? + 02> +J =0 and Az? + By?> + 1z = 0.

EXAMPLE 3.3. The graph of the equation z? + % + % =1 is an ellipsoid.
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Figure 22 2% + % + % 1

2

+ 24 =1—k? where -1 < k < 1.
The vertical traces in y = k are ellipses: z2 + % =1- %2, where —3 < k < 3.

oS

The vertical traces (or sections) in z = k are ellipses:

The horizontal traces in z = k are also ellipses: x? + % =1- %2, where —2 < k < 2.

EXAMPLE 3.4. The graph of the equation z = 422 + 4? is an elliptical paraboloid.

x
Figure 23 z = 422 + 32
The horizontal traces in z = k are ellipses: 422 + y? = k, where k > 0.

The vertical traces in & = k are parabolas: z = y? + 4k2.
Similarly, the vertical traces in y = k are parabolas: z = 4z? + k2.

ExaMPLE 3.5. Sketch the surface %2 T

Figure 24 %—l—yQ—%:l

The traces in z = k are ellipses: % +y2 =1+ %

@Department of Mathematics 18
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The traces in x = k are hyperbolas: yj — %Z =1- %2.
The traces in y = k are hyperbolas: % — % =1 — k2.
z z z
x x x
-1<k<1 k=1 k<—-lork>1

Figure 25 Vertical Traces in y = k of % +y? - % =1
EXAMPLE 3.6. Identity and sketch the surface 422 — y? 4+ 222 +4 = 0.

The equation can be rewritten in the standard form: —ax? + % — 2 — 1. It is therefore a

2
hyperboloid of 2 sheets along the direction of the y-axis.

Figure 26 422 —y? +222 +4=0

EXAMPLE 3.7. Classify the quadric the surface 2 4+ 222 — 6z — y + 10 = 0.
z

(3,1,0)

xT

Figure 27 224222 -6z —y+10=0
By the method of completing squares, the equation can be written as y — 1 = (z — 3)% + 222
If we make a change of coordinates: '’ = x — 3,y =y — 1,2 = z so that the new origin is at
(3,1,0), then the equation becomes y’ = 2% + 222, Therefore it is an elliptic paraboloid with
vertex at (3,1,0).
EXERCISE 3.8. Describe the traces of the surface z = xy.
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EXERCISE 3.9. Sketch the surface y? + 422 = 4.

Semester 11(2005/06)

EXERCISE 3.10. Find the equation of the surface obtained by rotating the curve y = 22 about

the y-axis.

The graphs of the quadric surfaces are summarized in the following table.

2 2 2
L+ 4% + % =1. The
traces are ellipses. When
a:b:c;éo,itisa

sphere.

z_ a? + ¥2 Horizontal
c T a2 b2 "

traces are ellipses. Verti-

cal traces are parabolas.

T
Elliptic Paraboloid

y2
b2

zontal traces are hyper-

z 2

- Z_ _
c a2

Hori-

bolas. Vertical traces are

parabolas. Here ¢ < 0.

Hyperbolic Paraboloid

N/

X

Double cone

Hyperboloid of one sheet

Hyperboloid of Two sheets

Table 1

4. Cylindrical and Spherical Coordinates

22

== i—z—i—g—;. Horizontal
traces are ellipses. Verti-
cal traces in x = k and
y = k are hyperbolas for
k # 0 but pairs of lines

for k = 0.

2 2 2
y o .
> +iz — % =1. Hori-
zontal traces are ellipses.
Vertical traces are hyper-

bolas.

72—272—;+Z—§:1. Hor-
izontal traces in z = k
are ellipses if k& > ¢ or
k < —c. Vertical traces
are hyperbolas. The two
minus signs indicate two

sheets.

4.1. Polar Coordinates. Given a point P with Cartesian coordinates (z,y), we may use
its distance r from the origin and the angle § measured in the counterclockwise sense made
with the z-axis to locate its position. This gives the polar coordinates (r,6) of P.
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(z,9)

)

Figure 28 Polar coordinate

The relations between Cartesian and polar coordinates are given by the following formulas:

r? =2+ 3%, tanfd = £

xr=rcosf, y=rsinf

The convention is that 6 is positive if it is measured in the counterclockwise sense, and is
negative otherwise. If » < 0, the radius is measured at the same distance |r| from the origin,
but on opposite side of the origin. For example, for the polar coordinates of the point ) below,
we may write either (—1,%) or (1, 2F).

Figure 29 Polar coordinates of P = (1, §)

EXERCISE 4.1. Find the equation in polar coordinates of the curve 2 + y? = 2.
[Answer : 7 = 2cos6.]

4.2. Cylindrical Coordinates. Given a point P with Cartesian coordinates (z,y, z) in
3-dimensional space, we may use the polar coordinates (r, ) for the position of the foot of the
perpendicular from P onto the xy-plane. Then the triple (r, 0, z) determines the position of
P, it is called the cylindrical coordinates of P.
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Figure 30 Cylindrical coordinates

The relations between Cartesian and cylindrical coordinates are given by the following formulas:

r? =22 + 42, tanf = ¥, 2 =2

r=rcosf, y=rsinf, z =z

ExaAMPLE 4.2. The surface whose equation in cylindrical coordinates is z = r is a double cone
with the origin as the vertex.

Figure 31 A double cone
Let P be a point on this surface with cylindrical coordinates (r, 6, z). Since z = r, the triangle
OPQ in which ZOQP is a right angle is isosceles with OQ = r = z = P(Q. Thus the cone
opens up an angle of 45° with the z-axis. To convert the equation to Cartesian form, we can
square both sides of z = r, thus 22 = 22 4+ 2 is the Cartesian equation of the double cone. If
we take positive square root on both sides, the graph of the resulting equation z = /22 + 32
is the inverted cone on the upper half space z > 0.

EXERCISE 4.3. Find the equation of the ellipsoid 422 4 4y + 22 = 1 in cylindrical coordinates.
[Answer : 22 =1 — 472 ]

4.3. Spherical Coordinates. Another coordinate system in 3-dimensional space is the
spherical coordinate system. Given a point P(z,y,2) with P’ the foot of the perpendicular
from P onto the zy-plane, let p > 0 be its distance from the origin, # the angle that O P’ makes
with the z-axis and ¢ the angle that OP makes with the z-axis. Here 6 is measured in the
counterclockwise sense from the z-axis with 0 < 6 < 27, and ¢ is measured from the z-axis
with 0 < ¢ < 7. Note that OP’ = psin¢ and PP’ = pcos ¢.
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Figure 32 Spherical coordinates p > 0,0 <0 <7

The relations between Cartesian and spherical coordinates are given by the following formulas:

p=aT+y? 22,
cos6 =2, 0<o<n
ps?nq‘)

cosf =

’x = psin¢gcosf, y = psingsinb, z = pcosgb‘

EXAMPLE 4.4. The point (0,2+/3, —2) is in Cartesian coordinates. Find the spherical coordi-
nates of this point.

Solution. First, we have p = \/()2 +(2v3)2 +(-2)2 = 4. Next, cos¢ = z/p = —1/2. As
0 < ¢ < m, we have ¢ = 2rw/3. Lastly, cosf = x/(psin¢) = 0. Thus, § = 7/2 or 37/2. As
y =23 >0, 0 # 3r1/2. That is § = 7/2. Therefore the spherical coordinates of the point is
(4,7/2,27/3).

ExaMPLE 4.5. The surface whose equation in spherical coordinates is p = R, where R is
positive constant, is a sphere of radius R centred at the origin.

ExXAMPLE 4.6. Find the Cartesian equation of the surface whose equation in spherical coordi-
nates is p = sin 6 sin ¢.

Solution. 224?422 = p? = psinfsin ¢ = y. Completing squares, we have 2%+ (y — %)2 +22 =

%. Therefore, the surface is a sphere with centre (0, %, 0) and radius %

5. Vector Functions

DEFINITION 5.1. A wector function r(t) is a function whose domain is a set of real numbers
and whose range is a set of vectors.

In other word,
r(t) = (f(t),9(t),h(t)) = fF(O)i+ g()j+ h(t)k.
f, g, h are called the component functions of r.

EXAMPLE 5.2. Consider the vector function r(t) = (t3,In(3 —t), /).

For each of the component functions to be defined, we must have 3 —¢ > 0 and ¢ > 0. Thus
the domain of r is [0,3). The image of r traces out a curve in R3.

In general if r(t) = (f(t),g(t), h(t)) is a vector function, then x = f(¢t),y = g(t), z = h(t) give
the parametric equations of a curve in R3.
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z

]

/ R3
o \
r(t)

T

Figure 33 A vector function

EXAMPLE 5.3. The vector function r(¢) = (1 +¢,2 + 5¢,—1 + 6t) defines a curve which is a
straight line in R3.

EXAMPLE 5.4. Sketch the curve whose vector equation is r(¢) = (cost,sint,t).

Solution. The parametric equations of the curve are x = cost,y = sint, z = t. Consider a point
P(z,y, ) on this curve. Since the x,y and z coordinates of P satisfy the relation 2 + 32 = 1,
it lies on the cylinder 2% + y? = 1.

T
Figure 34 A helix

Moreover, P lies directly above the point (z,y,0), which moves counterclockwise around the
circle 22 + y? = 1. Since z = t, the curve spirals upward around the cylinder as ¢ increases.
The curve is a Helix.

EXAMPLE 5.5. Find the vector function that represents the curve of intersection C of the
cylinder x® + y?> = 1 and the plane y + z = 2.

Solution. Since C lies on the cylinder which projects onto the circle 22+4? = 1 on the zy-plane,
we can write x = cost,y = sint with 0 < t < 27. Since C also lies on the plane, its z,y, z
coordinates should satisfy the equation of the plane. Thus, z = 2—y = 2—sint. Consequently,
the vector equation of C' is r(t) = (cost,sint,2 — sint).
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Figure 35 An ellipse

The curve C is an ellipse with centre (0,0,2) and it inclines at an angle 45° to the horizontal
plane.
Let r(t) = (f(t),g(t), h(t)). The limit of r(¢) as ¢ tends to a is defined by:

2ym r(t) = (%Hn f(t), }im g(t), %im h(t)).

EXAMPLE 5.6. Let r(t) = (1 +¢3,te!, #2L) Find %ir% r(t).

int
Solution. limr(t) = (lim 1 4 3, lim te™?, lim g) = (1,0,1).
t—0 t—0 t—0 t—0 ¢

DEFINITION 5.7. A wvector function r is continuous at a if 2ym r(t) =r(a).

—a

That is r(t) = (f(t),g(t),h(t)) is continuous at a if and only if f(t),g(t), h(t) are continuous
at a.

5.1. Derivative of a vector function. Given a vector function r(t). Its derivative is
defines by:

de . r(t+h)—r()
U e
z z
PQ=r(t+h)—r() r'(t)
PQ P Q ML;)L_FM

\/ r(t+h) \/
/O /O

Yy Yy
X X

Figure 36 Derivative of a vector function
If v/(¢) exists and is nonzero, we call it a tangent vector to the curve defined by r(t) at the
point P. See figure 36. In this case, T(t) = r'(¢)/|r/(¢)| is called the unit tangent vector.
THEOREM 5.8. Let r(t) = (f(t),g(t), h(t)), where f, g, h are differentiable functions of t. Then
r'(t) = (f'(8),g'(t), W' (1)) = f'(D)i+ g'(D)i+ M (Dk.
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EXAMPLE 5.9. Let r(t) = (1 +t3,2t,1). Find the unit tangent vector to the curve defined by
r(t) at the point where ¢ = 0.

Solution. First we have r'(t) = (3t2,2,0). Thus, r'(0) = (0,2,0) = 2j. Therefore, T(0) = 2—2*' =
j-

ExaMPLE 5.10. Find parametric equations for the tangent line £ to the helix with parametric

equations x = 2cost,y =sint,z =t at t = 7.

Solution.

z
Figure 37 The tangent to the helix

The vector equation of the helix is r(t) = (2cost,sint,t). Thus, r/(t) = (—2sint,cost,1)

and r'(§) = (—2,0,1) is a tangent vector to the helix at ¢ = . Therefore, the parametric

equations of the tangent line £ are given by: 2 = 0+ (=2)t,y = 1+ (0)t,z = § + (1)t. That is
r==2t,y=1,2=75 +1.

Given a vector function r(t), we may compute successively r'(t), v’ (t), r”(t) etc, provided they
exist.

THEOREM 5.11. Let u and v be differentiable vector functions of t, ¢ a scalar and f a real-
valued function. Then we have the followings:

f(u(t) +v(1) =u'(t) +v'(1).
jt(cu( )) = ca'(t).
G(fu) = f'(t)ut) + ft)u' (D).
f(u(t) - v(t) =u'(t) - v(t) +ut) v'(t).
di(u(t) x v(1) = u'(t) x v(t) +u(t) x v'(t).
(Chain Rule) & (u(f(1))) = f'()u'(f(1)).

EXERCISE 5.12. Suppose |r(t)| = ¢, where c is a positive constant. Show that r(¢) is orthogonal
to r/(¢) for all ¢.

Let r(t) = f(t)i+ g(t)j + h(t)k be a continuous vector function. The definite integral of r(t)
from t =1 to t = b is defined as:

/abr(t)dt = (/abf(t)dt> i+ (/:g(t)dt>j+ (/abh(t)dt> k

EXAMPLE 5.13. Let r(t) = 2costi + sintj + 2tk. Find /5 r
0

99’*‘?\95@1‘
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z s ™ us 2
Solution. /2 r(t)dt = [2sint]¢ i— [cost]d j+ {tﬂg k=2i+j+ %k.
0

6. Functions of several variables
6.1. Functions of 2 variables.

DEFINITION 6.1. A function f of 2 wvariables is a rule that assigns to each ordered pair of
real numbers (z,y) in a set D a unique real number denoted by f(x,y). Here D is called the
domain of f. The set of values that f takes on is called the range of f. That is Range of f =

{f(z,y) | (z,y) € D}.

We usually write z = f(x,y) to indicate that z is a function of x and y. Moreover, z,y are
called the independent variables and z is called the dependent variable.
Yy

* (zy) , R

\—) ! f(z,y) (I)
D\

Figure 38 f:D — R

EXAMPLE 6.2. Find the domain of f(z,y) = zIn(y? — z).

Solution. The expression zIn(y? — x) is defined only when y? — z > 0. That is y?> > 2. The
curve y?2 = z separates the plane into two regions, one satisfying the inequality y? > z, the
other satisfying y? < x. To find out which region is determined by the inequality y? > x. Pick
any point in one of the regions and test whether it satisfies the inequality. If it does, then by
‘connectivity’, that whole region is the one satisfying y? > z, otherwise, it must be the other
region. For example, pick the point (3,2). Since 22 > 3, the region satisfying y? > z is the one
containing (3,2). Thus, domain of f is {(z,y) € R? | y* > x}.

...............

Figure 39 Domain of zIn(y? — x)

EXAMPLE 6.3. Find the domain and range of g(z,y) = v/9 — 22 — y2.

Solution. The domain of g is {(z,y) € R? | 9 — 2% —y? > 0} = {(z,y) € R? | 22 4+ ¢? < 3?}
which is a circular disk of radius 3. Since 0 < g(z,y) = /9 — 22 — y? < 3, the range of g lies
in [0,3]. Clearly every number in [0,3] can be expressed as g(z,y) for certain (x,y). Therefore
the range of g is the interval [0,3].
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DEFINITION 6.4. Let f be a function of 2 variables with domain D. The graph of f is the set
of all points (x,y,z) € R such that z = f(x,y).

z

f(z,y) 1 @

(z,y, f(z,y))

_ B
x
Figure 40 The graph of f
In general, the graph of f(z,y) is a surface in R3.

EXAMPLE 6.5. The graph of f(z,y) =6 — 3x — 2y is a plane. See Figure 41.
z

(0,0,6)

(2,0,0) [/~

x

Figure 41 z=6—-3x —2y

EXAMPLE 6.6. The graph of h(x,y) = 422 + 32 is an elliptic paraboloid.
z

<— 4 +y* =k, k>0
II Yy

Figure 42 z = 422 + 32
The domain of h is R?. Since 422 + y? > 0, the range of h is [0,00). Each horizontal trace is
an ellipse with equation given by 42 + y? = k, where k > 0.

X

6.2. Level Curves.

DEFINITION 6.7. The level curves of a function of 2 variables are the curves in the xy-plane
with equation f(x,y) = K, where K is a constant. (K is in the range of f)
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T 20 ~f(z,y) =20
Figure 43 Level curves

EXAMPLE 6.8. Sketch the level curves of f(z,y) =6 — 3z — 2y for K = —6,0,6, 12.

Solution. The level curves are 6 — 3x — 2y = K which are straight lines.

K=12 K=6 K=-6

Figure 44 Level curves of f(z,y) =6 — 3z — 2y
EXAMPLE 6.9. Sketch some level curves of h(x,y) = 422 + 3.

Solution. If £ < 0, then 422 + y? = K has no solution in (z,y). Therefore, there is no level
curves for K < 0. If K = 0, then 422 + 2 = 0 has only one solution (0,0). Thus, the level
curve consists of one single point at (0,0).

JUs h(z,y) = 422 + y?

<~ 422+ =k, k>0

Figure 45 Level curves of f(z,y) = 42 + y?
If K > 0, the, 422 + y?> = K is an ellipse. We may write this equation in the standard form:

72 y2

(YEy2  (VE)?

2
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Thus, a large K gives rise to an ellipse with longer major and minor axes.

EXERCISE 6.10. Sketch the level curves of p(z,y) = —xy for K = —4,—1,0,1,4. The graph of
p is shown in figure 46.

Figure 46 p(z,y) = zy

6.3. Functions of three or more variables. Let f : D C R?> — R be a function of
three variables. We can describe f by examining the level surfaces of f. These are surfaces in
R3 given by the equations f(x,y,2) = K, where K € R.

EXAMPLE 6.11. Let f(x,y,2) = x? + 32 + 22. The level surfaces of f are concentric spheres
with equations of the form z? + y? + 22 = K for K > 0. If K = 0, then the level surface
reduces to a point at the origin of R3. For K < 0, there is no level surface for f.

Figure 47 Level surfaces of f(z,y,2) = 22 + y? + 22

EXERCISE 6.12. Sketch the level surfaces of q(z,y, z) = 2% + y? — 2% for K = —4,-1,0,1,4.

7. Limits and Continuity

DEFINITION 7.1. Let f be a function of two variables whose domain D includes points arbitrar-
ily close to (a,b). We say that the limit of f(x,y) as (z,y) approaches (a,b) is L and we write

( l)mr% . f(z,y) = L if for any positive number €, there is a corresponding positive number &
z?y - a7
such that

(x,y) € D and0<\/(x—a)2+(y—b)2<52]f(x,y)—L| < e.
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L+e

L—e¢

\
1
5[ %, o radius of the disc
(@,9) el 0= centred at (a,b)

Figure 48 lim z,y) =1L
8 (z,y)ﬂ(ayb)f( v)

Note that f is not required to be defined at (a,b). The idea is that as (x,y) approaches (a,b),

f(x,y) approaches L. In other words, f(x,y) can be made as close to the number L as we

wish by requiring (x,y) sufficiently close to (a,b). This is the meaning of the above definition.
Y

Figure 49 lim z,y) =1L
g ($7y)_)(a7b)f( y)

The implication in definition 7.1 says that all points (x,y) which are inside the disc centred at
(a,b) with radius § are mapped by f into the interval (L — ¢, L + €). See Figure 49.

X

Figure 50 f(x,y) approaches L along different paths

It can be proved from the definition that if ( 1)1m( ) f(x,y) = L exists, then
x7y - a’
(i) its value L is unique, and

(ii) L is independent of the choice of any path approaching (a,b).
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PROPOSITION 7.2. Let x = a(t),y = B(t) be the parametric equations of a path in R? such that
(a(t), B(t)) lies in the domain of f(x,y) for allt in a certain open interval containing t, and
tlingl a(t) =a and tlir? B(t) =0b. Suppose lim  f(x,y) = L. Then tlir? fla(t),5(t)) = L.

z,y)—(a,b)

Proof Let € any positive number. Since ( I)mr% . f(z,y) = L, there exists a positive number §
z?y - a’

such that |f(z,y) — L| < e whenever 0 < /(x —a)2 + (y — b)2 < 6.

Now because tli_glo a(t) = a and 1tli_}r% B(t) = b, there exists a positive 1 such that |a(t) —a| < /2
and |B(t) —b| < /2 for all ¢ satisfying 0 < |t —t,| < .

Thus for all ¢ satisfying 0 < |t — t,| < 1, we have

0 < \/(alt) — a)? + (B(t) —b)2 < \/62/4 +62/4 < 6

so that
| f(e(t), B(t) — L| <e.
This shows that th_{? fla(t),B(t)) = L.

EXERCISE 7.3. Prove that if ( l)lm( b)f(a;,y) exists, then there its value is unique. That is
a:’y - a/7
there is only one number L satisfying the definition 7.1.

2 2

EXAMPLE 7.4. Show that lim % does not exist.
(z,y)—(0,0) = + Yy

2 _ .2
Solution. Let f(x,y) = — el First let’s approach (0,0) along the z-axis.
T Yy
. . oz -0r
(=, y)hin(o,o) Jw,y) = lim f(2,0) = lim Z5s = lim 1 =
along y =0

Next let’s approach (0,0) along the y-axis.

fla.y) = lim £(0.9) = lim oY = lim —1 = 1.

2 2

lim
(z,y) —(0,0)
along x =0

Since f has two different limits along 2 different paths, the given limit does not exist.

EXAMPLE 7.5. Show that lim % does not exist.
(z,y)—(0,0) = +y

Solution. Let f(z,y) = 2? 5 First let’s approach (0,0) along the x-axis.
Zz Yy
. . . z-0
(x7y)h£>n(o,0)f($’y) = lim f(z,0) = i{%m = 0.
along y =0
Next let’s approach (0,0) along the y-axis.
0-y
li ) = li 07 = li =0
(x,y)lin(o,o)f(x y) = lim £(0,y) = lim = oy

along x =0
At this point, we cannot conclude anything as the limit may exist or may not exist. Now let’s
approach (0,0) along the path y = z.

(x,y)lgn(0,0) f(xay) - ilii% f($,$) = il{%m = 2

along x =y
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Since f has two different limits along 2 different paths, the given limit does not exist.
2

xy . .
EXAMPLE 7.6. Let f(x,y) = ———. Show that lim x,1y) does not exist.
fwy) =y y* et OV
Solution. Let’s approach (0,0) along the line y = ma, where m is any real number.
. . x-(mx)? . x3m? ) xm?
(z,y) m (0,0) f(@y) 200 22 + (max)? ey 22(1 + m2x?) 220 1+ m2a2

along y = ma
Thus, the limit as (x,y) approaches to the origin along any straight line is zero. However, we
still cannot conclude anything as the limit may exist or may not exist. Now let’s approach
(0,0) along the curve y = 22.
. oy ey 1

e 00T = a =y

along y = z2
Since f has two different limits along 2 different paths, the given limit does not exist.

Y

Figure 51 Approach (0,0) along y? = x

. 322y
EXAMPLE 7.7. Prove that lim -5 = 0
(z,y)—(0,0) = + Yy

Solution. Let € a positive number. We wish to find a positive number § such that

0<y/22+y’<d =

In order to obtain the ¢ that enables the above implication to hold. We begin by estimating
2

32y

m—o < €.

the expression % — O‘. Note that
re+y
ﬂ_o fgil | < 3ly| < 3¢/a2 +y2
22+ o2 x2+y2y_ Y= Y-
Thus, if we choose 0 = €/3, then
322
0</22+y’<d = TeryQ_O <322+ y?<3i=e.
32y

By the definition of limit, we have  lim 5 5 =10
(z,y)—(0,0) T= +y

REMARK 7.0.1. We remark that the usual limit theorems hold for limits of functions of two
variables. For example

lim z,y) + g(z, = lim z,y)+ lim z,Y).
(w,y)ﬂ(a,b)(f( v)+g(z.9)) (w,y)ﬂ(a,b)f( v) (wvy)ﬁ(a,b)g( v)
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DEFINITION 7.8. A function f of two variables is called continuous at (a,b) if

lim  f(z,y) = f(a,b).

(z,y)—(a,b)
f is said to be continuous on D C R? if f is continuous at each point (a,b) in D.

EXAMPLE 7.9. Every polynomial in z, is continuous on R?. Each rational function is contin-
. . . . . . 2 3 . .
uous in its domain. For instance, the rational function f(z,y) = x:# is continuous on

D={(z,y) eR* | z +y # 0}.
322y

EXERCISE 7.10. Let f(z,y) = el
T Y

Where is f continuous?

322y .
EXERCISE 7.11. Let f(x,y) =4 =°+v° ?f (,9) # (0,0) Show that f is continuous on R?.
0 if (z,y) = (0,0).
REMARK 7.0.2. One may compute limits using polar coordinates. This is especially convenient
for limits at the origin and for those expressions that are independent of #. More precisely,
one can prove that
(m,y%iiﬁo,()) flz,y) = rl—i>%l+ f(rcosf,rsind).
EXAMPLE 7.12. Find  lim  (2® + %) In(2? + ¢?).
(z,y)—(0,0)

Solution. We shall change to polar coordinates.

lim (22 4+yH)In(z?+¢*) = lim r*In(r?
(x,y)H(O,U)( ) In ) (z,y)—(0,0) )

2Inr

= ( %im(o 0 2 using L’Hopital’s rule
x?y g ) T

2(1/r)

= lim ——/—— = lim —r*=0.
(2.y)=(00) (=2)(1/r%)  (2.4)—(00)

REMARK 7.0.3. For functions of three or more variables, there are similar definition of limits
and continuity. See section 15.1 of [1]. More precisely, for functions of three variables, these
are stated as follows:

DEFINITION 7.13. ( I)Hn( , )f(x,y,z) = L if for any € > 0, there is a corresponding 6 > 0

x,y,z)—(a,0,c
such that

(x,y,2) € D and0<\/(:U—a)2+(y—b)2—l—(z—c)2<5:>|f(z,y,z)—L| <e.

DEFINITION 7.14. A function f is called continuous at (a,b,c) if

lim x,y,2) = f(a,b,c).
(wz)ﬂ(a’b’c)f( y,z) = fla,b,c)

8. Partial Derivatives

DEFINITION 8.1. Let f be a function of two variables. The partial derivative of f with respect

to x at (a,b) is
( ) . f(a+h7b)_f(a7b)
ol 0) = iy o

The partial derivative of f with respect to y at (a,b) is
f(a7b+h) _f<a7b)

fy(a:b) = }1111% h ‘
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There are different notations for the partial derivative of a function. If z = f(x,y), we write

0 0 0
0 0 0
fy(@y) = f, = ai - @) = 5

In other words, in order to find f,, we may simply regard y as constant and differentiate f(z,y)
with respect to . Similarly, to find f,, one can simply regard = as constant and differentiate

. . d d
f(x,y) with respect to y. That is f;(a,b) = @f(x,b) oy and fy(a,b) = @f(a,y)‘y:b.

EXAMPLE 8.2. Let f(z,y) = 2 4+ 2%y — 2y%. Then f, = 322 + 2zy® and f, = 322%y* — 4y.
Thus for example, f;(1,1) =5 and fy(1,1) = —1.

Geometrically, f.(a,b) measures the rate of change of f in the direction of i at the point (a,b).
If we consider the line y = b on the zy-plane parallel to the z-axis and passing through the
point (a,b), the image of this line under f is a curve C; on the surface z = f(z,y). Then
fz(a,b) is just the gradient of the tangent line to Cy at (a,b). Similarly, fy(a,b) is just the
derivative at (a,b) of the curve Cy traced out as the image of the line = a under f.

the tangent line to the tangent line to
the curve C7 has the curve C95 has
4 gradient fz(a,b) 4 gradient fy(a,b)

X

Figure 52 Partial derivatives

ExampLE 8.3. Find % and g—z if z is defined implicitly as a function of x and y by
2343+ 22 4 6ayz = 1.

Solution. Take partial derivative with respect to x on both sides:
322 + 322% + 6y(z + m%) =0.
Solving for %, we have
0z 22 + 2y
Or 22+ 2y
Similarly,
0z y? + 22
Oy 224 2xy’
For functions of more than two variables, as such w = f(z,y, z), we can similarly define

o of o5 ow ow o
Oz’ Oy’ 0z’ ox’ Oy’ 0z
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EXERCISE 8.4. Let f(z,y,2) = e Inz. Find f;, fy and f.. Show that xf, = yf,.

As in the case of function of one variable, we may also define higher order partial derivatives
of a function of several variables. Let f be a function of x and y. Then f, and f, are also
functions of x and y. Thus we may consider (fz)z, (fz)y, (fy)z and (fy)y. For convenience,
we shall simply denote them by f.., fzy, fye and fy, respectively. These are the second order
partial derivatives of f.

There are other notations for the higher order partial derivatives. Suppose z = f(x,y). Then
we also write:

P <8f> L Af 9%

T 0z \9zx) 922 a2

F _8<8f>_ *f 9%z
Yoy \ox)  oyoxr  Oyox
f _8(6]")_ 0% f B 0%z
Yr oz \oy)  0xdy  0xz0y
oo 2 () 2
W oy \oy) oy 0y?

EXAMPLE 8.5. Let f(z,y) = 23 + 2%y> — 2y%. Find fau, foy, fyz and fy,.

Solution. First f; = 32% + 22y and f, = 32%y* — dy. Thus, for = 6 +2y°, fyy = 627y — 4,
fmy = (fx)y — 6CCy2 and fyx = (fy):c = 6$y2

THEOREM 8.6. (Clairaut’s Theorem) If f is defined on an open disk containing the point (a,b).
If fzy and fy, are both continuous at (a,b), then fyy(a,b) = fyz(a,b).

As a result of the above theorem, if the function f(z,y) has continuous partial derivatives on
some open disk, then the order of partial differentiation can be changed without affecting the
result. Similar result holds for functions of 3 or more variables.

Proof. We assume f;, and f,, are defined in a small open disk D centered at (a,b). Let (z,y)
be a point in D with (z,y) # (a,b). Fix x and consider the function [f(z,y) — f(a,y)] —
[f(z,b) — f(a,b)] in y. Apply Mean Value Theorem with respect to y. We have [f(z,y) —

f(avy)] - [f(wv b) - f(a7 b)] = [fy(xa Cl) - fy(a7 Cl)](y - b) for some Cl between ) and b. NeXt?
we apply Mean Value Theorem to f,(x, (1) with respect to z. We get

[f(z,y) = fla,y)] = [f(z,b) — f(a,b)] = fyz(C2,C1)(z —a)(y — b),

for some (o between z and a. Now we can rewrite the expression [f(x,y) — f(a,y)] — [f(z,b) —
f(a,b)] as [f(xz,y) — f(z,b)] — [f(a,y) — f(a,b)]. Applying Mean Value Theorem first with
respect to x and then with respect to y, we obtain
[f(z,y) — fla,y)] = [f(z,0) — f(a,b)]= [f(z,y) — f(z,b)] = [f(a,y) — f(a,])]
= fa:y(C?n Ca)(y —b)(z — a),
where (3 is between = and a and (4 is between y and b. Thus we have fy, (2, (1) = fyz((3,Ca)-
Since fyy and fy, are continuous at (a,b), so by taking limit as (z,y) tends to (a,b), we obtain

fmy(av b) = fyx(a” b)
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EXAMPLE 8.7. Let .
Flz,y) = xy% if (z,y) # (0,0)
’ 0 if (2,y) =
On can show that

24 4x2y2 —t X
fx(x,y)—{ % if (x,y) # (0,0) ’
0 1 (x7y) = ( ,0)
and I(I4—4x2y2—y4) )
aw) = { S i (2y) £ (0,0)
0 if (z,y) = (0,0)

But f,,(0,0) = —1, while f,,(0,0) = 1.

EXERCISE 8.8. Let f(z,y,2) =sin(3z + yz). Find fizy. and fy.ye. Show that frryy = fryye-

8.1. Tangent Plane. Let f be a function of two variables. The graph of f is a surface in
R? with equation z = f(z,y). Let P(z0, 0, 20) be a point on this surface. Thus, zo = f(x0,%0)-
Assuming a tangent plane to the surface exists, we shall find its equation.

z

f (o, v0)

Figure 53 The tangent plane

Recall that the equation of a plane passing through P(zg, 3o, 20) is of the form A(z — z¢) +
B(y —yo) + C(z — z9) = 0. Assuming the plane is not vertical, we have C' is not zero. Thus
we may write the equation of the plane as

z =20 = a(x — x0) + b(y — Yo)-
The tangent line to C at P is obtained by taking y = yo in the above equation. That is
z — zop = a(z — xzp). Since fy(zo,y0) is the gradient of the tangent line C; at P, we have

a = fz(x0,y0). Similarly, b = f,(x0,yo). Consequently, the equation of the tangent plane to
the surface z = f(z,y) at P is

zZ =20 + fm(x07y0)($ - l'()) + fy(x07y0)(y - yO)

ExaMPLE 8.9. Find the equation of the tangent plane to the elliptic paraboloid z = 22% + y?
at the point (1,1, 3).

Solution. Let f(x,y) = 22 + y*. Then fy(z,y) = 4z and fy(z,y) = 2y so that f,(1,1) =4
and f,(1,1) = 2. Hence, the equation of the tangent plane at (1,1, 3) is given by z = 3+4(x —
1) +2(y —1). That is z = 4z + 2y — 3.
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8.2. Linear Approximation. Since the tangent plane to the surface z = f(x,y) at P
is very close to the surface at least when it is near P, we may use the function defining the
tangent plane as a linear approximation to f. Recall that the equation of the tangent plane to
the graph of f(z,y) at P(a,b, f(a,b)) is

z = fa,b) + fo(a,b)(z — a) + fy(a,b)(y — b).
DEFINITION 8.10. The linear function L whose graph is this tangent plane is given by
L(l’,y) = f(aa b) + fm(av b)(:L' - CL) + fy(a, b)(y - b)
L is called the linearization of f at (a,b). The approxzimation
f(xay) ~ L(xay) - f(avb) + fﬂﬁ(avb)@? - a) + fy(‘% b)(y - b)
is called the linear approximation or tangent plane approximation of f at (a,b).

EXAMPLE 8.11. Let f(z,y) = ze™. Find the linearization of f at (1,0). Use it to approximate
F(1.1,-0.1).

Solution First we have fi(z,y) = e™ + zye™ and f,(z,y) = z%¢®™. Thus f;(1,0) = 1 and
fy(1,0) = 1. Then, L(z,y) = f(1,0)+ f.(1,0)(z—1)+f,(1,0)(y—0) = x+y. The corresponding
linear approximation is xe®™ ~ x +y. Therefore, f(1.1,—0.1) ~ 1.1 4+ (—0.1) = 1. The actual
value of f(1.1,—0.1) is 0.98542 round up to 5 decimal places.

8.3. The differential. Let z = f(x,y). As in the case of functions of one variable, we
take the differentials dx and dy to be independent variables.

z
A
Nz
Z
¥ v
f(a,b)s i
— a y
i S — +(a+dz, b+ dy)
A
x (@) Ty

Figure 54 The differential

DEFINITION 8.12. The differential dz, or the total differential, is defined to be
dz = fo(,y)dz + fy(z,y)dy.

Consider the differential of f at the point (a,b). The tangent plane approximation of f at
(a,b) implies that for a small change dx of a and a small change dy of b, the actual change Az
of z is approximately equal to dz. In other words,

Az~ dz = fy(a,b)dz + fy(a,b)dy.

EXAMPLE 8.13. Let f(z,y) = 2? + 3zy — y%. Find dz. If x changes from 2 to 2.05 and y
changes from 3 to 2.96, compare the values of Az and dz.
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Solution. dz = %dw + g—;dy = (2 + 3y)dz + (3x — 2y)dy. At the point (2,3), dz = ((2)(2) +
3(3))dx + ((3)(2) — (2)(3))dy. That is dz = 13dz. Now we take dz = 2.05 — 2 = 0.05 and
dy = 2.96 — 3 = —0.04. Thus, dz = 13(0.05) = 0.65. For the actual change in z, we have
Az = £(2.05,2.96) — f(2,3) = 0.6449.

DEFINITION 8.14. Let z = f(x,y). f is said to be differentiable at (a,b) if
Nz = fola,b)Ax + fy(a,b) Ay + e1Ax + e2A\y,

where lim €1 =0 and lim e = 0.
(Az,Ay)—(0,0) (Az,Ay)—(0,0)

ExAMPLE 8.15. Prove that f(x,y) = xy is differentiable at (a,b).
Solution. First f,(x,y) = y and f,(x,y) = x. At the point (a,b), we have f,(a,b) = b and
fz(a,b) = a.

Nz = fla+ Az, b+ Ay) — f(a,b)
= (a+ Az)(b+ Ay) —ab

= bAzx+aly+ DNxlAy
= fola,b)Az+ fy(a,b)Ay + Axy.
Here ¢; = 0 and e3 = Ax. Clearly, lim €1 =0 and lim €9 = lim Az
(Lz,Ay)—(0,0) (Az,Ay)—(0,0) (L2, Ly)—(0,0)

= 0. Thus, f(x,y) = xy is differentiable at (a,b).

Note that from the definition of differentiability, if f(z,y) is differentiable at (a, b), then f,(a,b)
and fy(a,b) exist. However the converse is not necessarily true.

AL if (2,y) # (0,0)

0 if (z,y) = (0,0)
exist but f is not differentiable at (0,0).

EXERCISE 8.16. Let f(x,y) = Show that f,(0,0) and f,(0,0)
y

THEOREM 8.17. Suppose f.(x,y) and fy(x,y) exist in an open disk containing (a,b) and are
continuous at (a,b). Then f is differentiable at (a,b).

Proof. Write
Nz = fla+ Az, b+ Ay) — f(a,b)
= [fla+ Lz, b+ Ay) — f(a+ Az, b)) + [f(a+ Az, b) — f(a,b)].
By assumption, f, and f, exist near (a,b). Thus when Az and Ay are sufficiently small, we
may apply the Mean Value Theorem to each of the above differences. Then,

Az = fyla+ Az, b+ c1 Ay) Ay + fo(a+ oz, b) Az,

where c1, ¢ € (0,1). Moreover, by the assumption that both f, and f, are continuous at (a, b),
we have

fyla+ Az, b+ c1Ay) = fy(a,b) + €2,
fe(a+ c2Ax,b) = fr(a,b) + €1,

h I —0and i — 0. Thus, Az = fy(a,b)AA A
where (A$7A2r)n_>(070) €2 an. (Am,AZI)IL(o,O) €1 us, Az = frp(a,b)Ax + fy(x,y)Ay +

e1Ax + eo Ay, with both the limit of €; and €5 tend to 0 as Az and Ay tend to 0. Therefore
f is differentiable at (a,b).

That f, and f, are continuous in an open disk containing the point is only a sufficient condition
for the differentiability of f at the point. It is by no means necessary. See the following exercise.
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2 2\ o 1 if
EXERCISE 8.18. Let f(x,y) = { (():1: +y7)sin 2?4y 1f g sz; f EO 0; . Show that f is differ-

entiable at (0,0) but f, and f, are not continuous at (0,0).

THEOREM 8.19. (The chain rule, case 1) Suppose z = f(x,y) is a differentiable function of x
and y, where x = g(t), y = h(t) are both differentiable functions of t. Then z is a differentiable
functions of t and

dz  Ofdx Ofdy

dt Oz dt Oydt
Proof. Exercise. See also [1] on page 968.

d
EXAMPLE 8.20. Let z = 2%y + 3zy*, where z = sin 2t, y = cost. Find d—i
Solution.
dz _ Ozdx  Ozdy

dt " ondt | oydt

THEOREM 8.21. (The chain rule, case 2) Suppose z = f(x,y) is a differentiable function of x
and y, where © = g(s,t), y = h(s,t) are both differentiable functions of s and t. Then z is a
differentiable functions of s and t and

0z Of Ox N (lf@

ds Oz ds  Oyds’

0z Of Ox L of af Oy
ot oz ot | Oy ot

= (2zy + 3y*)(2cos 2t) + (2% + 122y3)(—sint).

0z 0
EXAMPLE 8.22. Let z = e®siny, where x = st?, y = s?t. Find 75 and a—j

Solution.

02 _0:00  0:0y _
0s Oxrds Oy0s
0z 0z0xr 020y
ot ozor oyt

EXERCISE 8.23. Suppose z = f (x y) has continuous 2nd order partial derivatives and z =

0?
r?2 + 52, y = 2rs. Find a—i and 81"2

8.4. Implicit Differentiation. Suppose F(z,y) = 0 defines y implicitly as a function of
x. That is y = f(x). Then F(z, f(z)) = 0. Now we use the chain rule(case 1) to differentiate
F with respect to z. Thus

(e®siny)t? 4 (e” cosy)(2st).

= (e®siny)(2st) + (e® cosy)(s?).

dx dy

F, F = 0.
vt Py
Therefore,
dy I
dx E,

d
EXAMPLE 8.24. Find dﬁ if 23 4+ y3 = 61y.
e
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Solution. Let F(z,y) = 2> + y* — 62y. The given equation is simply F(x,y) = 0. Therefore,

dy  F,  32° -0y

de ~ F,  3y?—6z’

Next, suppose z is given implicitly as a function of x and y by an equation F(z,y,z) = 0. In
other words, one may solve z locally in terms of z and y in the equation F(z,,y,z) = 0 to

0 0
obtain z = f(z,y). Then F(z,y, f(z,y)) = 0. We wish to find 8—2 and a—z in terms of Fy, F,
T Yy
and F,. To do so, we use the chain rule to differentiate the equation F'(z,y,2) = 0 keeping in

mind that z is regarded as a function of z and y. We thus obtain:

ox oy 0z
Fo—+F—=+F—=0
oz "o T 0
Note that % =1 and @ = 0. Thus F, + Fz% = 0. Hence,
ox ox ox
92 _ F
or  F,°
Similarly,
9z _ _Fy
oy  F.°

EXERCISE 8.25. Three ants A, B and C crawl along the positive z, y and z axes respectively.
A and B are crawling at a constant speed of 1 cm/s, C is crawling at a constant speed of 3 cm/s
and they are all travelling away from the origin. Find the rate of change of the area of triangle
ABC when A is 2 cm away from the origin while B and C are 1 cm away from the origin. [The
area of the triangle A(x,0,0)B(0,y,0)C(0,0, z) is given by %\/x2y2 + 9222 4 2222 ]

[Answer : 4cm?/s.]

8.5. Directional Derivatives and the Gradient Vector.

DEFINITION 8.26. Let f be a function of x and y. The directional derivative of f at (xo,yo)
in the direction of a unit vector u = (a,b) is

f(zo + ha,yo + hb) — f(xo,yo)
h

-Duf(x()ay()) = }llli{(l)

if this limit exists.
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Figure 52 Directional Derivative

Note that D; f(xo,y0) = fz(x0,y0) and Djf(xo,y0) = fy(xo,yo), where i and j are the standard
basis vectors in R2.

THEOREM 8.27. Let f be a differentiable function of x and y. Then f has a directional
derivative in the direction of any unit vector u = (a,b) and

Duf(x7y> = fm($>y)a + fy($7y)b = <fw(xay)7fy($>y)> - a.

Proof. Consider g(h) = f(zo + ha,yo + hb). Clearly ¢’(0) = Duf(x0,y0). By the chain
rule, ¢'(h) = %g—ﬁ + %%' At h = 0, we have ¢'(0) = fz(xo,v0)a + fy(zo,y0)b. Hence,
Duf(x0,y0) = fz(z0,90)a + fy(wo, yo)b.

EXAMPLE 8.28. Let f(z,y) = 2% — 32y + 4y®. Find D, f(1,2), where u is the unit vector
making an angle of § with the positive z-axis.

/%1: (cos &, sin &)

Solution.

Figure 53 Directional Derivative of f

First, f, = 322 — 3y, f, = —3z + 8y. Thus f,(1,2) = —3 and f,(1,2) = 13. Therefore,
Duf(1,2) = (=3,13) - (cos T,sin ) = (13 — 3v/3)/2.

DEFINITION 8.29. Let f be a differentiable function of x andy. The gradient of f is the vector
function

Vi) = ), o) = S+ 5L,
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Thus we have the following formula for the directional derivative in terms of the gradient of f.

’Duf =Vf-u, where u is a unit vector. ‘

EXAMPLE 8.30. Let f(x,y) = 2%y — 4y. Find the directional derivative of f at (2, —1) in the
direction 3i + 4j.

Solution. The unit vector along 3i+4j is u = %i—i— % j. The gradient of f is Vf = (2zy3, 32%y% —
4). Thus Vf(2,—1) = (—4,8). Consequently, Dy f(2,—1) = Vf(2,-1)-u= (—4,8)-(3,4) = 4.
DEFINITION 8.31. Let f be a function of z,y and z. The directional derivative of f at (zo, yo, 20)
in the direction of a unit vector u = {(a,b,c) in R3 is
f(zo + ha,yo + hb, 20 + he) — f(xo, Yo, 20)

h

Dy f(x0, Y0, 20) = }ng(l)

if this limit exists.
Similarly, the gradient of a differentiable function f is defined to be

0 0 0
Vf= <fac7fy7fz> = é;i‘F&lJ;j—FaJ;k.

The formula Dy f = V f - u is also valid for any function f of more than 2 variables.

EXERCISE 8.32. Let f(z,v,2) = zy2z%. Let u be the unit vector %i + %i — %i. Find
Dy f(1,1,1).

THEOREM 8.33. Let f be a differentiable function of 2 or 3 variables. Let P be a point in the
domain of f. The mazimum value of Dy f(P) is |V f(P)| and it occurs where u has the same
direction as the gradient vector V f(P).

Proof. First Dy f(P) = Vf(P)-u = |[Vf(P)||lu|cosf = |Vf(P)|cosf, where 0 is the angle
between V f(P) and u. Therefore, D, f(P) attains its maximum value |V f(P)| when 6 = 0,
i.e. when u has the same direction as the gradient vector V f(P).

EXERCISE 8.34. Let f(z,y,2) =ze¥, P = (2,0) and Q = (3,2).

(b) Find the rate of change of f at P in the direction PQ. In other words, find Dy, f(P).
(b) In which direction does f have the maximum rate of change? and what is this maximum
rate of change?

Y

Contour of f(z,y) = ze¥

Figure 54 V f is the direction of steepest ascend

Theorem 8.32 implies that f has the maximal rate of increase at a point P when P is moving
along the direction of the gradient. In other words, V f(P) is along the direction of steepest
ascend. See figure 54 for the example in the above exercise.
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8.6. Tangent Planes to Level surfaces. Let S be a surface with equation F(z,y,z) =
k, where k is a constant. That is S is a level surface of F. Let P(zg,yo,20) be a point in S.
Let’s find the equation of the tangent plane to .S at P.

F('I? y7 Z) = k“

Figure 55 Tangent plane

Take any curve r(t) = (z(t),y(t), 2(t)) on the surface S such that r(0) = (xo,y0,20). It’s
tangent vector r’(0) shall lie on the tangent plane to S at P. Now if we use the chain rule to
differentiate F'(z(t),y(t),z(t)) = k with respect to ¢, we have

dx dy dz
Fy— 4+ Fy~2 + F,— = 0.
at e T

In other words, VF - r/(t) = 0. At t = 0, we have VF(P) -r/(0) = 0. Therefore, VF(P) is
perpendicular to the tangent plane.

’Equation of tangent plane: (z — xo,y — Yo, 2 — 20) - VF(x0, Y0, 20) = 0. ‘

ExaMPLE 8.35. Find the equation of the tangent plane and the normal line at the point
(—2,1,—3) to the ellipsoid
2 2

x 9 2

— — =3.

1TV Ty
Solution. Let F(x,y,z) = %2 + 9y + %. Then VF = (z/2,2y,22/9). Thus VF(-2,1,-3) =
(—1,2,—2/3). Therefore, the equation of the tangent plane is: (x+2,y—1, 2+3)-(—1,2,—-2/3) =
0. That is 3x — 6y + 2z + 18 = 0. Also the equation of the normal line in symmetric form is
given by

r+2 y—-1 =2+3
-1 2 =i

In the special case in which the surface S is the graph of a function z = f(x,y), S can be
regarded as the level surface

F(z,y,z) = f(z,y) — 2z =0.
In other words, the graph of z = f(z,y) is simply the level surface of F(x,y,z) at level 0.
In this case, VF = (f;, fy, —1) is a normal vector to the tangent plane of S at (z,y, f(z,y)).
Therefore, if we consider a point P(xg, yo, f(zo, yo)) on the graph of z = f(x,y). The equation
of the tangent plane is given by

( — 20,y — v0, 2 — f(z0,%0)) - (fz, fy, —1) = 0.
That is
z = f(zo,y0) + fz(@0,y0)(z — z0) + fy(20,90)(y — yo)-
This is the same formula obtained in 8.1.
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9. Maximum and Minimum Values

DEFINITION 9.1. f(z,y) has a local mazimum (minimum) at (a,b) if f(z,y) < f(a,b) (
f(z,y) > f(a,b) ) for all points (x,y) in some disk with center (a,b). The number f(a,b)
is called a local maximum value (local minimum value).

X <>
AR

Figure 56 A local maximum A local minimum

THEOREM 9.2. If f has a local mazimum or a local minimum at (a,b) and f.(a,b) and f,(a,b)
exist, then fy(a,b) =0 and fy(a,b) =0. That is V f(a,b) = 0.

DEFINITION 9.3. A point (a,b) is called a critical point of f if fi(a,b) =0 and fy(a,b) =0,
or if one of these partial derivatives does not exist.

Figure 57 A critical point

Note that if f has a local minimum or a local maximum at (a,b), then (a,b) is a critical point
of f. However not all critical points of a function give rise to local maximum or local minimum.
In other words, at a critical point, a function could have a local maximum, or a local minimum
or neither.

EXAMPLE 9.4. Let f(x,y) = 2? +y? — 2o — 6y + 14. Find the local maxima and local minima

of f.

Solution. First f, = 2z — 2 and f, = 2y — 6. Thus, f, = 0 and f, = 0 if and only if
(z,y) = (1,3). Therefore f has a critical point at (1,3). So f has a possible local maximum
or local minimum at (1,3). As f(z,y) =4+ (x — 1)2 + (y — 3)? > 4, we see that f has a local
(in fact absolute) minimum at (1, 3).

EXAMPLE 9.5. Find the local extrema (i.e. local maximum or local minimum) of f(z,y) =
2 _ 2

Yo — .
Solution. First f, = —2z and f, = 2y. Therefore, the only critical point is (0,0). However, f
has neither a maximum nor a minimum at (0,0). To see this, consider the function f along
y =0, f(2,0) = —22 < 0 for 2 # 0. So f has a local maximum along y = 0. On the other
hand, if we consider f along x = 0, we have f(0,y) = y? > 0 for all y # 0. Thus f has a local
minimum along z = 0. Therefore f has neither a maximum nor a minimum at (0,0). Such a
point is called a saddle point.
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Figure 58 A saddle point

DEFINITION 9.6. f is said to have a saddle point at (a,b) if there is a disk centered at (a,b)
such that f assumes its mazimum value on one diameter of the disk only at (a,b), and assume
its minimum value on another diameter of the disk only at (a,b).

In other word, f has a saddle point at (a,b) if there are some directions along which f has a
local maximum at (a,b) and some directions along which f has a local minimum at (a, b).

EXERCISE 9.7. Let f(z,y) = 2® — 32y?. Draw the contours of f near (0,0). The point (0,0)
is called a monkey saddle.

THEOREM 9.8. (The Second Derivative Test) Suppose frz, fry, fye and fyy are continuous on
a disk with centre (a,b) and suppose fi(a,b) =0, f,(a,b) =0. Let

D = foa(a,b) fyy(a,0) = fuy(a,b)*.
(a) If D > 0 and fyz(a,b) > 0, then f has a local minimum at (a,b).
(b) If D > 0 and fy.(a,b) <0, then f has a local mazimum at (a,b).
(¢) If D <0, then f has a saddle point at (a,b).

Note that if D = 0, then no conclusion can be drawn from it. The point can be a local
maximum, a local minimum, a saddle point or neither of these. Interested readers are invited
to come up with examples for all these cases.

Before we prove this result, let’s consider the following example.

EXAMPLE 9.9. Let f(h,k) = Ah? +2Bhk + Ck?. Suppose A # 0. We may write f in the form
F(h k) = A[(h+ Bk/A) + (AC — B*)k?/A?].

Assume AC — B? > 0 and A > 0. Then f(h,k) > 0 and f(h,k) = 0 only if (h,k) = (0,0).
Thus f has a minimum at (0,0). Similarly, if AC — B? > 0 and A < 0, then f has a maximum
at (0,0). Next suppose AC — B? < 0 and A > 0, then f has a minimum along the line k = 0
at (0,0) but a maximum along the line Ah + Bk = 0, thus giving a saddle point at (0,0).

Proof of 9.8. We compute the second-order directional derivative of f in the direction of
u = (h, k). First recall the result that Dyf = Vf-u. Thus Duf = foh + fyk. Apply this
result one more time, we get
D f = Du(Duf) = F(Duf)h + £ (Duf)k
= (frzh + fyack)h + (fzyh + fyyk)k
= fuuh® + 2foyhk + fy k2. (by Clairaut’s Theorem)
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If we complete the square in this expression, we obtain

2 foy \? K 2
DAf = fuu (Bt T2%) 1 (Faf — £2)
fICL’ fa::):
(a) We are given that fy,(a,b) > 0 and D(a,b) > 0. But fo, and D = fufy, — f2, are
continuous functions, so there is a disk B with center (a,b) and radius 6 > 0 such that
fzz(x,y) > 0 and D(x,y) > 0 whenever (z,y) is in B. Therefore, by looking at the above
equation, we see that D? f(z,y) > 0 whenever (x,y) is in B. This means that if C is the curve
obtained by intersecting the graph of f with the vertical plane through the point P(a,b, f(a,b))
in the direction u, then C' is concave upward on an interval of length 2§. This is true in the
direction of every vector u, so if we restrict (x,y) to lie in B, then the graph of f lies above its
horizontal tangent plane at P. Thus f(z,y) > f(a,b) for all (x,y) in B. This shows that f has
a local minimum at (a,b). The proof of (b) is similar. The proof of (c) is left as an exercise.

ExAMPLE 9.10. Find the local maximum, local minimum and saddle points (if any) of f(x,y) =
zt + oyt —dzy + 1.

Solution. First, f, = 423 — 4y and f, = 4y® — 4. Now we proceed to solve 42> — 4y = 0 and
493 — 4z = 0 for the critical points. The two equations are equivalent to y = z and = = 3.
Substituting one into the other, we obtain #? —z = 0. That is z(z+1)(z—1)(22+1)(z*+1) = 0.
Thus the real solutions are x = 0, —1, 1. Therefore, the critical points are (0,0), (—1,—1) and
(1,1). To apply the second derivative test, we compute the second order partial derivatives.

foe = 1222, fyy, = 1292, foy = —4. Thus D(x,y) = foufyy — [2, = 14422y — 16.

At (0,0), D(0,0) = —16 < 0. Hence, f has a saddle point at (0,0). At (—1,—1), D(—1,—1) =
128 > 0 and fy,(—1,—1) = 12 > 0. Hence f has a local minimum at (—1,—1). At (1,1),
D(1,1) =128 > 0 and f,;;(1,1) =12 > 0. Hence f has a local minimum at (1,1).

DEFINITION 9.11. A bounded set in R? is one that is contained in some disk. A closed set in
R? is one that contains all its boundary points.

Bounded sets and closed sets

not bounded not closed not closed

Figure 59 Sets in R?

THEOREM 9.12. (Eztreme Value Theorem) If f is continuous on a closed, bounded set D in R2,
then f attains an absolute mazimum value f(x1,y1) and an absolute minimum value f(x2,y2)
at some points (x1,y1) and (x2,y2) in D.

The following is a procedure to find the absolute maximum and the absolute minimum value
of a function defined on a closed and bounded set.
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1. Find the values of f at the critical points.

Find the extreme values of f on the boundary of D.

3. The largest of the values from 1. and 2. is the absolute maximum value and the
smallest of the values from 1. and 2. is the absolute minimum value

N

EXAMPLE 9.13. Find the absolute maximum and minimum values of f(z,y) = 2% — 2xy + 2y
on the rectangle D = {(z,y) | 0 <2z <3,0 <y <2}

Solution. First f,(x,y) = 2z — 2y and f,(z,y) = —2x + 2. Thus f.(z,y) =0 and fy(z,y) =0
if and only if (z,y) = (1,1). That is (1,1) is the only critical point in the interior of the
rectangle.

Yy

(0,2) N L3 (3,2)

©0.0) Ly .'A"(3,0) r

Figure 60
Along L1: y = 0. That is f(x,0) = 22 for 2 € (0,3) which is increasing, thus giving no critical
point along Lj.
Along Lo: = 3. That is f(3,y) =9 — 6y + 2y = 9 — 4y for y € (0,2) which is decreasing,
thus giving no critical point along Ls.
Along L3: y = 2. That is f(x,2) = (z — 2)? for x € (0,3). It has a critical point (a local
minimum) at = 2. That is at the point (2, 2).
Along Ly: © = 0. That is f(0,y) = 2y for y € (0,2) which is increasing, thus giving no critical
point along Ly.
Now let’s compute the values of f at all the critical points (including the four vertices of the
rectangle).
f(1,1) =1, f(2,2) = 0,f(0,0) =0, f(3,0) = 9,f(3,2) =1, f(0,2) = 4. Thus the absolute

maximum value of f is 9 and the absolute minimum value is 0.

EXERCISE 9.14. Find the maximum and minimum values of f(z,y) =22 +%?> -2 —y+1on
the triangular region R with vertices (0,0), (2,0), (0,2). See Figure 61.
[Answer : Maximum value = 3, Minimum value = 1/2.]

Y

Figure 61

10. Lagrange Multipliers

In this section we consider the problem of maximizing or minimizing a function f(z,y) subject
to a constraint g(z,y) = 0.
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g(z,y) =0

Figure 62

If we confine the point (x,y) to lie on the curve g(x,y) = 0 on the zy-plane, its image under
f gives a curve on the graph of z = f(x,y). We are looking for the highest and lowest points
of this curve. Suppose the extreme value of f(z,y) subject to the constraint g(xz,y) = 0 is k
and is attained at the point (zg,yp). By examining at the contour of f, we see that at the
extreme point, the curve g(x,y) = 0 must touch the level curve f(z,y) = k, because if the curve
g(z,y) = 0 cuts across the level curve f(z,y) = k, one can still move the point along g(z,y) =0
so as to increase or decrease the value of f. In other words, the gradients of f and g must be
parallel at the extreme point (zg,%0). Consequently, we must have V f(zg,y0) = AVg(zo, y0)

if Vg(xo,y0) # 0.
Yy vf

f(:r,y) =12
f(:r,y) =11
f(:r,y) =10

f(:r,y) =9
f(z,y)

x0

Yo

9(@,y) = 0

=38
T

Figure 63 Lagrange Multiplier

The same principle applied to functions of three variables. Let’s state the method of Lagrange
Multiplier in this setting. The objective is to find the extreme values of f(x,y, z) subject to
the constraint g(z,y, z) = 0 (assuming that these extreme values exist). Below is an outline of
the procedure.

(a) Find all z,y, z and A such that

Vf(x,y,z) = )\Vg(x,y,z) (*)

and g(z,y,z) = 0. (Assuming at each of these solutions Vg # 0.)
(b) Evaluate f at all points (z,y,z) obtained in (a). The largest of these values is the
absolute maximum of f; the smallest is the absolute minimum of f.

The number A is called a Lagrange Multiplier.
The equation () is equivalent to fy = Agz, fy = Agy, f- = Ag-.
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EXAMPLE 10.1. Find the extreme values of f(z,y) = 22 + 2y? on the circle 2 + y% = 1. See
figure 62.

Solution Since the circle is a closed and bounded set and f is a continuous function, there
is always an absolute maximum and an absolute minimum of f over it. They are among
the extreme values of f defined over the circle. To find them, first Vf(z,y) = (2z,4y) and
Vg(z,y) = (2z,2y). Thus Vf(z,y) = A\Vg(x,y) is equivalent to

2¢ = Az,
dy = A2y.

Together with the constraint z2 + 32 = 1, we need to solve the following system of equations

in x,y and A:

2e(A—1) = 0,

2 492 = 1.
The first equation gives either x =0 or A = 1.
If x = 0, then the constraint equation gives y = +1. Thus we have the solutions (0, —1), (0,1).
If A =1, then the second equation gives y = 0. Thus, by the constraint equation, we have the
solutions (—1,0),(1,0).
Consequently, we have four solutions (0, 1), (0, —1), (—1,0), (1,0). Now f(0,—1) =2, f(0,—1) =
2, f(—=1,0) =1, f(1,0) = 1. Therefore, the absolute maximum value is 2 and the absolute min-
imum value is 1.

EXERCISE 10.2. Find the rectangular box with the largest volume that can be inscribed in the
ellipsoid

2 .2 2
Y z
ZTEta=!
[Answer: 82%¢]
32
2

Figure 64

EXERCISE 10.3. Find the point on the sphere 22 + y? + 22 = 4 that are closest to and farthest
from the point (3,1, —1). (Consider the line passing through (3,1, —1) and the centre of the
sphere, it intersects the sphere diametrically at two points.)

[Answer: Min = /11 — 2 at (\/%, \/%, J—%), Max = V11 + 2 at (7—1617 -2

EXAMPLE 10.4. Find the extreme values of f(z,y) = 22 + 2y? on the disk
D ={(z,y) | z* +y* < 1}.

)]

2
2

Solution. First we find the critical points of f in the interior of D. As f,(z,y) = 2z and
fy(z,y) = 4y, the only critical point in the interior of D is (0,0). Next we shall find the critical
points on the boundary of D, i.e. on the circle 2 + 2 = 1. Using the method of Lagrange
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multipliers as in example 10.1, we obtain 4 critical points (—1,0), (1,0),(0,—1),(0,1). Now,
£(0,0) = 0, f(0,—1) = 2,f(0,-1) = 2, f(=1,0) = 1, f(1,0) = 1. Therefore, the absolute

maximum value is 2 and the absolute minimum value is 0.

REMARK 10.5. If we define a new function L(x,y; \) = f(x,y) —Ag(z,y). Then g—ﬁ = fo— NGz,
% = fy—Agy and % = g. Therefore, the critical points of L correspond to the extreme points
of the original problem. The L is a called a Lagrangian.

The method of Lagrange Multipliers can be applied to the case of more than one constraints.
Consider the problem of maximizing or minimizing f(x,y, z) subject to the constraints g(z, y, z)
= 0 and h(z,y,z) = 0. If f attains an extreme value at (zg, yo, 20) , then

V f(x0,y0, 20) = AVg(xo, yo, 20) + nVh(xo, Yo, 20)-

(For this linear combination to be valid, we need to assume Vg(zo, yo, 20) # 0 and Vh(xo, yo, 20)
# 0 and that they are not parallel.)

Solving this vector equation and the constraint equations give all the possible extreme points.
Equating components, these equations are equivalent to the following system:

fo(,y,2) = Aga(z,y,2) + pha(z,y, 2)
fy(aj,y,z) = Agy($7y32)+uhy(x’yaz)
fz(xvyaz) = )\gz(xayaz)+ﬂhz(l'7yaz)
g(l'vyaz) =0
h(z,y,z) = 0

In this case, we have two multipliers.

ExAMPLE 10.6. Find the maximum value of f(z,y, z) = x+2y+3z on the curve of intersection
of the plane x — y + z = 1 and the cylinder z2 + 2 = 1.

Solution. We wish to maximize f(z,y,z) = x + 2y + 3z subject to the constraints g(x,y, z) =
r—y+2z—1and h(z,y,2) = 2> +y* — 1.

Figure 65

First we have Vf = (1,2,3), Vg = (1,—1,1) and Vh = (2z,2y,0). Thus we need to solve the
system of equations: Vf = AVg + uVh, x —y + 2z =1, 22 + y?> = 1. That is

1 = A+2zp (1)
2 = —A+2yp (2)
3 = A+0 (3)
r—y+z =1 (4)
?+y? =1 (5)
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From (3), A = 3. Substituting this into (1) and (2), we get z = —% and y = % Note that
w1 # 0 by (2) and (3).

Frorn(4),Wehavez:1—x+y:1+%+%:1+%. (6)

Using (5), we have (—%)2 + (%)2 = 1. From this, we can solve for y, giving p = +£¥22.
Thus z = —\/% or r = \/%. The7corresp07nding values of y are \/%, —\/%. Using (6), the
corresponding values of z are 1 + 755 1-— 755

2 5 7 _
~vw v Lt ym) and By =

(
(\/%,—\/%—9,1 - \/LTQ) As f(P1) = 34+ V29 and f(P) = 3 — v/29, the maximum value is

3 4+ /29 and the minimum value is 3 — v/29.

Therefore, the two possible extreme values are at P, =

11. Multiple Integrals

11.1. Volume and Double Integrals. Let f be a function of two variables defined over
a rectangle R = [a,b] X [c,d]. We would like to define the double integral of f over R as the
(algebraic) volume of the solid under the graph of z = f(x,y) over R.

z z = f(z,y)

d
Y
a
b
R = [a,b] X [c,d]
1 ={(z,y) ER? |a<ax<bc<y<d}

Figure 66
To do so, we first subdivide R into mn small rectangles R;;, each having area AA, where
i=1,---,mand j = 1,--- ,n. For each pair (4,7), pick an arbitrary point (a:;f‘j,y;‘j) inside

R;;. We then use the value f (xfj,y;}) as the height of a rectangular solid erected over R;;.

Thus its volume is f (acfj, y;-"j)AA. The sum of the volume of all these small rectangular solids
approximates the volume of the solid under the graph of z = f(x,y) over R. This sum

D> flalu)AA
i=1j=1

is called a Riemann sum of f. We define the double integral of f over R as the limit of the
Riemann sum as m and n tend to infinity. In other words,

DEFINITION 11.1. The double integral of f over R is

/RO D) Y (CR Iy

i=1j=1

if this limit exists.
THEOREM 11.2. If f(x,y) is continuous on R, then // f(x,y) dA always exists.
R
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If f(z,y) > 0, then the volume V of the solid lies above the rectangle R and below the surface

2 = f(ry) is
V= //Rf(:c,y)dA.

11.2. Iterated Integrals. Let f(z,y) be a function defined on R = [a,b] X [c,d]. We

d
write / f(z,y)dy to mean that z is regarded as a constant and f(z,y) is integrated with
C

d
respect to y from y = ¢ to y = d. Therefore, / f(z,y)dy is a function of = and we can

C
integrate it with respect to z from & = a to x = b. The resulting integral

/ b / ! flay)dydz

d b
is called an iterated integral. Similarly one can define the iterated integral / / f(z,y)dzdy.
C a

3 2 2 3
ExAMPLE 11.3. Evaluate the iterated integrals (a) / / a%y dydz, (b) / / 22y dxdy.
0 J1 1 Jo

3 2 3 [2,2]Y72 3 3,2 37]%=3
Solution. (a) / / 2y dydx = / ry dx = / L dr = | = =27/2.
0 J1 o | 2 ], o 2 2

=0
2 13 2 [ 3,173 2 921772
(b)/ / :E2ydxdy:/ Ty dy:/ 9y dy = Y = 27/2.
1 Jo 13 |, 1 v -

Consider a positive function f(z,y) defined on a rectangle R = [a,b] X [¢,d]. Let V be the
volume of the solid under the graph of f over R. We may compute V' by means of either one
of the iterated integrals:

/: /cd f(z,y)dydx, or /cd /ab f(z,y)dzdy.

Figure 67 f; fcd f(x,y)dydz Figure 68 fcd f: flz,y)dzdy

THEOREM 11.4. (Fubini’s Theorem) If f(x,y) is continuous on R = [a,b] X [c,d], then

[ [ ez = [* [ 1 v)aeay
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More generally, this is true if f is bounded on R, f is discontinuous only at a finite number of
smooth curves, and the iterated integrals exist. Furthermore, the theorem is valid for a general
closed and bounded region as discussed in the subsequent sections.

ExaMpPLE 11.5. Find the volume of the solid S that is bounded by the elliptic paraboloid
22 + 2y? 4+ z = 16, the planes z = 2, y = 2, and the 3 coordinate planes. See figure 69.

2 2
Solution. Volume = // 16 — 2% — 2y2dA = / / 16 — 2% — 2y2d:L‘dy = 48.
R o Jo

z=16 —x? — 2y?

Figure 69 [[, 16 — 22 — 2y%dA

EXAMPLE 11.6. Let R = [0, 5] x [0, §]. Evaluate // sinx cosy dA.
R

™

Solution. // sinxcosydA:/2/2sinxcosydydx:/QSinxdx/Qcosydyzlx 1=1.
R o Jo 0 0

In general, if f(z,y) = g(z)h(y), then

[ftemtnan= ([ staras) ([ ronan).

where R = [a,b] X [c,d].

11.3. Doubles Integral over General Regions. Let f(z,y) be a continuous function
defined on a closed and bounded region D in R%. The double integral / / f(z,y) dA can be
D
defined similarly as the limit of a Riemann sum.
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Z:f(.l’,y)

0

y

/

X

Figure 70 Double integral over a more general region

In particular, if D is one of the following two types of regions in R?. We may set up the
corresponding iterated integral to compute it.

If D is the region bounded by two curves y = g1(z) and y = go(x) from = = a to z = b, where
g2(z) > g1(z) for all = € [a, b], we called it a type 1 region. In this case, the double integral of
f over D can be expressed as an iterated integral as given in figure 71.

Similarly, if D is the region bounded by two curves x = hy(y) and = = ha(y) from y = ¢ to
y = d, where hao(y) > hi(y) for all y € [c,d|, we called it a type 2 region. In this case, the
double integral of f over D can be expressed as an iterated integral as given in figure 72.

Y y = g2(x)

[ remaa= [ [ st dnta

el //D f(z,y)dA = /Cd /}::j) f(z,y) dzdy

Figure 72 Type 2 region

EXAMPLE 11.7. Evaluate // (x +2y) dA, where D is the region bounded by the parabolas
D
y=2z2and y =1+ 22

Solution. The region D is a type 1 region as shown in figure 73.
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8

Figure 73

1 plta? 1 y=14a2
//(:c+2y)dA:/ / (x+2y)dyda::/ ey +9?) ) de
D —11 212 -1 y=2x
= / (=32% — 2% + 22 + x4+ 1) dv = 32/15.
—1

EXERCISE 11.8. Evaluate // xy dA, where D is the region bounded by the line y = x — 1 and
D
the parabola y? = 2x + 6. [Answer: 36]

1,1
ExXAMPLE 11.9. Evaluate the iterated integral I = / / sin(y?) dydz by interchanging the
0
order of integration. ’

Solution. The region of integration is the triangular region bounded by the lines y = z,2 =0
and y = 1.

Y
! 1,1
I:/ / sin(y?) dydx
x y=u=x 0 Jzx
x
¢ 1
Yy
1..
e >
Y y=ua I:/ / sin(y?) dxdy
0 Jo
x
v oo

Figure 74

Loy 1 NN Ly 1 2 ! 1
/ / sin(y”) dedy = / [m sin(y )} dy = / ysin(y?) dy = { cos(y )} = 5(1 —cos1).
0 Jo 0 =0 0 2 0

ExaMpPLE 11.10. Find the volume of the solid above the zy-plane and is bounded by the
cylinder 22 + 32 = 1 and the plane z = 0 and z = y. See figure 75.
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the plane
z=y

S I

Figure 75

Solution. Since the plane z = y is the top face of the solid, we may use the function defining this
plane as the height function of this solid. The function whose graph is the plane z = y is simply
f(x,y) = y. Therefore, the volume of the solid can be computed by integrating this f over the
bottom face of the solid which is the semi-circular disk D = {(z,y) | 22 +4? < 1,y > 0}.

Volume = // x,y) dA= / / ydxdy— /01 [a:y] \}%dy
:/0 2y /1 — 42 dy — [3(1 W) ]1:2/3‘
0

Properties of Double Integrals
// (z,y) +g(x,y)) dA = //fa:ydA—i—// g(z,y)d

/ cf(z,y)dA = c// f(x,y) dA, where c is a constant.
D

(3) If f(z,y) > g(x,y) for all (z,y) € D, then //D f(z,y)dA > //D g(x,y) dA.

4) //Df(sc,y)dA://Dlf(:c,y)dA—l—/D2 f(z,y)dA, where D = Dy U Dy and Dy, Ds

do not overlap except perhaps on their boundary.

Figure 76

// dA( // 1dA> (D), the area of D.

(6) If m < f(x,y) < M for all (z,y) € D, then mA( )g/ f(z,y)dA < MA(D,).
D

Njw

11.4. Double Integrals in Polar Coordinates. Consider a point (r,6) on the plane
in polar coordinates as in figure 77. An increment dr in r and df in 6 give rise to an area
dA = rdfdr. This is the area differential in polar coordinates.

@Department of Mathematics 57



Semester 11(2005/06)

Y
Y
dr b
; Area dA = rdodr R
T// rdf
AR ot 6
/’c/l&/’ (T ) B a
) T o z
Figure 77 Figure 78 A polar rectangle

Let f be a continuous function defined on a polar rectangle
R={(r0)|0<a<r<ba<f<p}

where 0 < 3 — a < 27. The double integral of f over R can be expressed in polar coordinates

as follow:
8 b
// f(x,y)dA:/ / f(rcosf,rsin@)rdrdd.
R a Ja

EXERCISE 11.11. Evaluate / / (3z 4 4y%) dA, where R is the region in the upper half-plane
R
bounded by the circles 22 4+ y? = 1 and 22 4+ y? = 4. See figure 79.

[Answer: 157/2]

R={(r6)|1<r<20<6<n}

1

1 2

X

Figure 79 A semi-circular annulus

In general, if f is continuous on a polar region of the form

D={(r,0) | « <0 <p,hi(0) <r<hy(0)},

//D f(z,y)dA = /B /hhz((?) f(rcosf,rsin@)rdrdd.

«a 1(6)

then

r = h2(0)
r = h1(0)
8

07

X

Figure 80 A general polar region
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ExXAMPLE 11.12. Find the volume of the solid that lies under the paraboloid z = z? + g2,

above the zy-plane, and inside the cylinder 22 + y? = 2x.

Solution. The cylinder x? + y? = 2z lies over the circular disk D which can be described in
polar coordinates as

Y Figure 81

The height of the solid is the z-value of the paraboloid. Hence the volume V' of the solid is

z 2cosf
Vz// (:U2+y2)dA:/2 / r2rdrdf = 3r/2.
D —z Jo

EXERCISE 11.13. Show that the volume of the solid region bounded by the three cylinders
24y’ =1,y +22=1and 22+ 22 =1is 16 — 8/2.

Solution. The object is symmetric with respect to the 3 coordinate axes. Thus, it suffices to
compute the volume of the portion £ with nonnegative x,y, z coordinates. In other words, F
lies in the first octant of the coordinate system. For this object F, it is bounded on top by the
graphs of 2 = /1 — 22 and z = /1 — 2. On its side and bottom, it is bounded by the cylinder
22 4+ %> = 1 and the three coordinate planes. Furthermore, the graphs of z = v/1 — 22 and
z = /1 — y? intersect along a curve on the plane z = y. Thus we can simply find the volume
of solid under the graph of z = v/1 — 2 over the region D = {(r,6) | 0 <r < 1,0 <6 < T}
Then the result volume is 16 times this value. Using polar coordinates in D, we have
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z =

Intersection of 3 cylinders

Volume-lG// \/1—x2dA—16/ /\/1—r200s29rdrd0

r=1
_ 2 3/2
16/ [ 3c059 (1 —r?cos? 6) L:o do

71— sin® 9
=16
/ "3cos2f

=5 tan&—secﬂ—cos@]o =16 — 8V/2.

12. Surface Area

Let f be a differentiable function of 2 variables defined on a domain D. We wish to find the
surface area of the graph of f over D. It is simply equal to [[,dS. Therefore we need to
express the differential of the surface area dS in terms of the differential dA of the domain. To
do so, take any point P'(z,y) in D and let P be the corresponding point on the graph of f.
Consider an increment dz along the z-direction and an increment dy along the y-direction at
the point P’. Thus dA = |dzdy|. These increments sweep out an increment of surface area on
the surface at P. The differential dS of this area at P is given by the corresponding area on
the tangent plane to the surface at P.
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Figure 82 Surface Area

Let P_Q} be the vector on the tangent plane at P with :E—component dx, and P—]% the vector
with y-component dy. Thus, PQ (dz, 0, fI(:p y)dzx) and PR (0,dy, fy(z,y)dy). The area of
the parallelogram spanned by PQ and PR is the magnitude of the cross product PQ X PR

PQ x PR=|dx 0 fudx |=(—fs,—fy,1)dady.
0 dy fydy

Therefore, dS = [(—fz, — fy, L)dxdy| =/ f2 + f2 + 1dA. Consequently,

Surface area = // V24 fE 4 1dA.
D

ExXAMPLE 12.1. Find the area of the part of the paraboloid z = 2% + 3? that lies under the
plane z = 9.

Solution. The paraboloid lies above the circular disk D = {(r,0) | 0 < 6 < 27,0 <r < 3}.

Surface area = [[p\/f2+ f2+1dA

[Ip V1+4(z2+y?)dA

= ¥ [3V1+4r2rdrdd  (change to polar coordinates)
= I(37V37-1).

13. Triple Integrals

Let f : B C R® — R be a continuous function, where B = [a, b] x [¢, d] x [r, 5] is a rectangular
solid. Divide [a,b], [¢,d] and [r, s] into I, m and n equal subintervals, respectively. Thus B is
divided into [ X m x n small rectangular solids. Label each small rectangular solid by Cjjx,
where 1 <i <[, 1<j<mand1<k<mn. Inside each such Cyji, pick a point (z7;., Y1, 2]jx)-
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Denote the volume of Cj;, by AV. Then we may form the Riemann sum:

Il m n
Z Z Z f(x;‘kjka yz}k, Z:]k)AV

i=1j=1 k=1

The triple integral of f over B is defined to

I m n
//Bf(xayvz) dV = lim ZZZJC mkayz]ka z]k)AV
=17=1k=1

l,m,n—o0 “ 1

= la,b] X [¢,d] X [r, s]

€T Figure 83

The limit exists if f is continuous. The triple integral of a continuous function defined on a
more general closed and bounded solid in R? can be defined in a similar way.

THEOREM 13.1. (Fubini’s Theorem for triple integrals) If f(x,y,z) is continuous on B =
[a,b] X [¢,d] X [r,s], then

// flz,y,2)dV = ///fxy, d:cdydz—///fxy, )dydxzdz = ete.

(Note that there are 3!=6 such iterated integrals involved and they are all equal.) Furthermore,
the theorem is valid for a general closed and bounded solid.

EXAMPLE 13.2. Evaluate /// xyz2dV, where B = [0,1] x [—1,2] x [0, 3].
B

3 02 (1
/// zyz? dV = / / / zyz?dzdydz = 27/4.
B 0o J-1Jo

13.1. Triple Integrals over a General Bounded Region. For each of the following
three types of solid regions, we may write down the triple integral as an iterated integral of a
double integral and a simple integral.

Solution.

Z z = uz(z,y)

- M(m 3 flx,y,z)dV = e f(z,y,2)dz| dA
| Yy E D |Jui(z,y)

o >

* Figure 84 Type 1 solid region
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/®
,
. 7
. .
/

1/;) ///fxy, ) dV = // [/myz xy,z)daz] dA
D

T = uz(y, 2)

* Figure 85 Type 2 solid region

®'yul<x,z) JJ| r@vav = [[ V“)f” Wy] a4

Flgure 86 Type 3 solid region

Note that if f(z,y,z) =1 for all (z,y,z) € E, then // 1dV is just the volume of F.
E

ExamMpPLE 13.3. Evaluate /// Va2 + 22dV, where FE is the solid region bounded by the
E
paraboloid y = 2% + 22 and the plane y = 4. See figure 87.

Solution. F is a type 3 solid region whose projection onto the xz-plane is

D={(z,2) |2+ 22 <4} ={(r,0) | 0< 0 <2m,0<r <2}

= / Va2 4 22(4 — 2% — 2%)dA
F 2
= / / r(4 —r?)rdrdf (change to polar coordinates)
0o Jo
= 1987/5
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Figure 87 A type 3 solid

EXERCISE 13.4. Evaluate / / / zdV, where F is the solid tetrahedron bounded by the planes
E
r=0,y=0,z=0andz+y+2=1.
[Answer: 1/24]

EXERCISE 13.5. Find the volume of the solid tetrahedron bounded by the planes x = 2y, z =
0,z=0and z+2y+ 2z =2.

[Answer: 1/3]

13.2. Triple Integrals in Cylindrical Coordinates. Consider a rectangle in cylindrical
coordinates as in figure 88:

E={(r0,z)| a<0<ﬂ hi1(0) <r < ha(0),ui(r,0) < z < wus(r,0)}.

The triple integral of f(z,y, z) over E can be expressed as:

uz(r,0)
// f(z,y,2)dV = // [/2 rcos@,rsinﬁ,z)dz dA

_/ / / f(TCOSG,T’SiHG,z) rdzdrdf.
h1(9) Jui(r,0)

z

T
Figure 88 A cylindrical rectangle
EXAMPLE 13.6. Let E be the solid within the cylinder 2% + y?> = 1, below the plane z = 4,

and above the paraboloid z = 1 — 22 — y2. Evaluate /// a2 +y2dV.
p ) 5 )
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Solution. The solid can be described in cylindrical coordinates as:
E={(r0,2)|0<0<2r,0<r<1,1-7?<z<4}.

z
Y
N |
E | ,_1_22_ y?
N A
x
Figure 89

Thus,

o 1 4
/// \/xQ—i-deV:/ // 2rrdzdrd9:127r/5.
1—r

EXERCISE 13.7. Evaluate/ / (2% 4 ?) dzdydz.

/ Va=a? J\[a2+y2
[Answer=167 /5]

13.3. Triple Integrals in Spherical Coordinates. Consider the volume element in
spherical coordinates. To do so, take any point P(p,6,¢). Make an increment in each of
the coordinates. See figure 90. Let’s calculate the volume of the solid arising from these
increments. The projection of OP onto the xy-plane has length psin ¢. Thus the thickness of
this volume element is psin ¢df. It opens up a sector of width of pd¢. Thus, the volume is
dV = p? sin ¢dpdfdé.

N

dp

1)/

/

/” \
//

'{‘i" “P(p,0,0)

0 )

psin ¢db

dV = p? sin ¢pdpdfded

Z
Figure 90 The volume element in spherical coordinate

Now consider a spherical rectangle
E={(p.0.9) la<p<ba<0<pe<o<d
where a > 0, 8 —a < 27w, d — ¢ < . The triple integral of f over E can be expressed as follow:

// f(a;,y,z)dV:/d/ﬁ/bf(psin¢(:050,psin¢sin0,pcos¢)pQSin¢dpd0d¢.
E c Ja Ja
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3
EXAMPLE 13.8. Evaluate /// @ Hv*+2°)2 gy where B is the unit ball {(z,y,2) | 22+ 92 +
B
22 <1}

Solution. Using spherical coordinates, we have

3 T 27l 3 4
JJ e av = [T 0N 2sin dpass = (e~ ).
B o Jo Jo 3

Note that the corresponding triple integral formulated in Cartesian coordinates is very hard
to evaluate.

EXERCISE 13.9. Use spherical coordinates to find the volume of the solid that lies above the
cone z = v/x2? + 32 and below the sphere z? + 32 + 22 = 2. See figure 91.

[Answer: /8]

x

Figure 91

EXERCISE 13.10. Let B be the solid ball in R? of radius R centered at the origin. The 4-
dimensional ball H in R?* of radius R centered at the origin is the 4-dimensional solid given by
{(z,y,z,w) | 22 +y?+ 22 +w? < R?}. The volume of H can be expressed as the triple integral

2\/ R? — 22 — 42 — 22 V. Using spherical coordinates, show that this volume is 72R*/4.
B

14. Change of Variables in Multiple Integrals

Let T be a transformation from the uv-plane to the zy-plane. That is (z,y) = T(u,v) or
r = x(u,v),y = y(u,v). We assume that T is a C'-transformation, i.e. both z(u,v) and
y(u,v) have continuous partial derivatives with respect to w and v. We also assume 7T is an
injective function so that its inverse 7! exists (from the range of T back to the domain of T').
Thus T maps a region .S in the uv-plane bijectively onto a region R in the xy-plane.

v Y

Figure 92

For example if T' is the transformation to polar coordinates T'(r,0) = (rcosf,rsinf), then T'
maps a rectangle [r1,r2] X [01,02] in the rf-plane to a polar rectangle in the xy-plane.
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6 Y
S R
92 T T2
T
[ J
(r,0) Y
011 Iz\\/,
: : r 101\ 02 z
T1 )

Figure 93 Polar coordinates

2

EXAMPLE 14.1. Consider T(u,v) = (u? — v%2uv). Find the image of the square S =

{(u,v) |0<u<1,0<v <1}

Solution. First let’s find out the boundary of the image. Label the edges of the square S by
S1,S52,53 and Sy as shown in figure 94.

v Yy
ot % @y 0.2)
x:—l—i—in r=1—1y?
S S’
54 S SQ T 3 2
R
oS o ¢ (-1.0) 8§ 0 & (1,0
Figure 94

Sy is described by v = 0,0 < u < 1. Thus the image S} in the zy-plane is given by =z =
u? — 0% = u?,y = 2u(0) = 0. Thatis x = u? for 0 < u < 1 and y = 0. Therefore, S} is
described by y = 0,0 < = < 1, which is just the line segment on the z-axis from (0,0) to (1,0).

Next Sy is described by v = 1,0 < v < 1. Thus the image S in the xy-plane is given by
z =1 -2,y = 2v. Eliminating v, we obtain x = 1 — %yQ. As0<wv <1, wehave 0 <y < 2.
Therefore, S5 is described by x =1 — in for 0 <y <2.

Similarly, we find out S5 as ¢ = —1+ %yQ for y from 2 to 0 and S as y = 0 for = from —1 to 0.

The boundary of the image of S encloses a region R. We are going to show that 7" maps S
bijectively onto R. We leave it the reader to verify that T is a bijective function for u,v > 0.
As we traverse the boundary of S in the counterclockwise direction, the above calculation
shows that the image of the boundary of S also traverses in the counterclockwise direction.
This means that T preserves orientation. In other words, points on the left hand side of the
boundary of S go under 7" to points on the left hand side of the boundary of R. Therefore, T’
maps S onto R. Another easy way to confirm this is to pick a point P, say (1/2,1/2) inside S
and check that T'(P) is inside R. Then the region S must be mapped by T into R.

Before we derive the formula for change of variables in a multiple integral, let’s review the
formula for functions of 1 variable. Let the continuous function f(z) be integrated over the
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interval [a,b]. Suppose we make a substitution = g(u) so that a = g(c) and b = g(d). Thus
we obtain:

/ab f(z)dx = /Cdf(g(u))g’(u) du.

Here the formula is valid provided g is differentiable and ¢’(u) # 0, except possibly at a finite
number of points. The function ¢ is also required to be bijective so that ¢g~! exists. Observe
that ¢ may not be less than d. More precisely, if ¢’(u) > 0 for all u between ¢ and d, then
g and hence g~! is increasing. Thus g~! preserves orientation or ordering. This means that
¢ < d and [c,d] is an interval. On the other hand, if ¢’(u) < 0 for all u between ¢ and d, then
g and hence ¢! is decreasing. Thus ¢! reverses orientation or ordering. This means that
¢ > d and it does not make sense to write [, d] though we could still integrate from ¢ to d. In
this case, the formula can be rewritten as:

b Cc
/a f(z)dz :/d flg(uw) (=g (u)) du,

so as to keep the lower limit of integration smaller than the upper limit.
Therefore, if the interval [c,d], (¢ < d) is mapped onto the interval [a, b] under z = g(u), then
the formula for change of variables can be stated as:

[ t@de= [ flgw)lg @] du
[a,b] [e,d]
It is this formula that we are going to generalize.

How does a change of variables affect a double integral? Let T be a transformation mapping
a point (ug,vg) to a point (xg,yp). Consider a small increment du and dv at the point (ug, vo)
along the v and v directions respectively. These increments generate a rectangle of area dudv
whose image under 7T is a curved parallelogram in the zy-plane. The area of this curved
parallelogram up to the first order approximation is given by the area of the parallelogram
generated by the two tangent vectors adu and bdv at (xg,yo), where a is the derivative of the
curve T'(u,vp) at (ug,vo), and b is the derivative of curve T'(ug,v) at (ug,vp). That is

_dT(u,vo) 0z dy
a= du u=ugp N <8u(u0’vo)’ Gu(uo’vo»’
~dT'(ugp,v) ox
b= 0| = () gy (o))
v Y
T (/
N (w,0) = (2.1) N
(uo,v9) du (0, Y0) T'(u,v0) = (x(u,vo),y(u, vo))
U T
Figure 95

Therefore, the area element dA in the xy-plane is dudv times the magnitude of
U LT AN
ou’ ou’ ov' ov’ " \oudv Owou)
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' _ |9z 0y _ 9z 9y
That is dA = |57 52 — 50 52 |dudv.

DEFINITION 14.2. The Jacobian of the tmnsformation T given by z = x(u,v),y = y(u,v) is

UMY AR
O(u,v) S Oudv Ovdu
Therefore,
I(z,y)
A= .
d ’8(%1}) dudv

THEOREM 14.3. Let T'(u,u) be a bijective C'-transformation whose Jacobian is nonzero except
possibly at a finite number of points. Suppose T maps a region S in the uv-plane onto a region
R of the xy-plane. Suppose f is continuous on R. Then

//Rf(x,y)dAz//Sf(x(u,v),y(u,v)) ggzzg

EXAMPLE 14.4. Find the Jacobian of the transformation from polar coordinates to Cartesian
coordinates.

dudv.

Solution. x = rcos @ and y = rsinf. Thus,

a(ﬂf,y): % % _ cos@ —rsinf _
a(r,0) aiT/ 87%0/ sinf rcos@

Therefore,

//R f(z,y)dA = //Sf('r cos 0, 7 sin 0)rdrdf.

EXAMPLE 14.5. Use the change of variables z = u? — v?,y = 2uv to evaluate the integral

ffpos

where R is the region bounded by the parabolas y?> = 4 — 4z and y?> = 4 + 4z, and the z-axis.

Solution. The transformation is the one discussed in example 10.1. First, let’s compute the
Jacobian of T

= 4u? + 2.

ox,y) | 2u —2v
20 2u

Therefore,

[[ vaa= [ o

z+
ExAMPLE 14.6. Evaluate the double integral / / eﬁdA, where R is the trapezoidal region
with vertices (1,0), (2,0), (0,—2), (0,—1).

dudv—// 2uv)4(u? + v*)dudv = 2.

Solution. Under the change of variables u = x 4+ y and v = z — y, the trapezoid R =ABCD
is mapped bijective onto the trapezoid R’ = A'B'C'D’, where A = (-2,2), B’ (2,2),C" =
(=1,1) and D’ = (1,1). The inverse transformation is = 3(u + v) and y =2(u— U) and its
Jacobian is

1
5"

N[O —
D[ —

D=
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’l) y
z=3(u+v)
y=5(u-1)
u
D(()) 71) 2
Figure 96
A(0,—2)F
Therefore,
// @) /) g4 — // quto 2@ )| // dA / / dudv
R s O(u,v) —v

1 r2 u=v
_ = w/v _ =t -1 _ 3/, -1
= 2/1 [ue }u:ﬂ}dv = 2/1 vie—e T)dv = j(e—e ).

Note that the above transformation reverses orientation.

For the case of triple integrals, we have a completely analogous formula for change of variables.
Suppose T'(u,v,w) = (z(u,v,w),y(u,v,w), z(u,v,w)) is a C'-transformation from R? to R?
mapping a solid region S bijective onto the solid region R. First, the Jacobian of T" is defined
to be

9z Oz Oz

Ox.y.2) | 8y 8 &
A(u,v,w) % gv G
v Ow

If f(z,y,2) is a continuous function defined on R Then

//f:vy, )dV = //f u, v, w), y(u, v, w), z(u, v, w) Iy, 2)
8uvw

EXERCISE 14.7. Show that the Jacobian 8Em’ : ¢g of the transformation from spherical coordi-

dudvdw.

nates to Cartesian coordinates is —p sin ¢.

15. Vector Fields

DEFINITION 15.1. Let D C R2%. A vector field on D is a function F that assigns to each point
(z,y) in D a two dimensional vector F(x,y).

Y

F(z,y)

Figure 97

We may write F(z,y) in terms of its component functions. That is

F(z,y) = P(z, )i+ Q(z,y)j = (P(z,y), Q(x,y)),
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or simply F = Pi+ @j.

DEFINITION 15.2. Let E C R3. A wector field on E is a function F that assigns to each point
(z,y,2) in E a three dimensional vector F(z,y, z).

That is F(z,y,2) = P(z,y,2)i+ Q(z,y,2)j + R(z,y, 2 )k = (P(,y,2), Q(z,y, 2), R(z, y, 2)).

EXAMPLE 15.3. A vector field on R? is defined by F(z,y) = —yi + xj. Show that F(z,y) is
always perpendicular to the position vector of the point (z,y).

Solution.

Figure 98

Figure 98 shows the vector field F. Note that (x,y) - F(z,y) = (z,y) - (—y,z) = 0. Also
|F(z,y)| = v/ + y2. The vector assigned by F to the origin is the zero vector.

15.1. Gradient Fields.

DEFINITION 15.4. If f : R? — R is a differentiable function, then V f is a vector field on R?
and it is called the gradient vector field of f.

Similarly, if f : R? — R is a differentiable function, then ¥V f is a vector field on R? and it is
called the gradient vector field of f.

EXAMPLE 15.5. Find the gradient vector field of f(z,y) = 2%y — y3.

Solution. Vf(x,y) = 2zyi + (2% — 3y?)j. The gradient field and the contours of f are drawn
on the diagram in figure 99.
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Y
-1
0 0
1
S N — T
-1
Vi(z;y)
1
Figure 99

Notice that the gradient vectors are perpendicular to the level curves as is proved in 8.6 using
the chain rule.

EXERCISE 15.6. Find the gradient vector field Vf of f(x,y) = /22 + y?. Sketch Vf.

DEFINITION 15.7. A wvector field F is called a conservative vector field if it is the gradient of
some scalar function, that is there exists a differentiable function f such that F =V f. In this
situation, f is called a potential function for F.

For example, F(z,y) = 2zyi + (a:2 — 3y2) j is conservative since it has a potential function
flx,y) = 2%y — ¢

Not all vector fields are conservative, but such fields do arise frequently in physics. For instance,
the gravitational field given by

-mMGx . -mMGy —-mMGz
1 J
@2+ 24227 (22 4y2+22)2 (22492 +22)0

is conservative because it is the gradient of the gravitational potential function

mMG
f(z,y,2) = W,
where G is the gravitational constant, M and m are the masses of two objects. Think of
the mass M at the origin that creates the field and f is the potential energy attained by the
mass m situated at (z,y, z). in later sections, we will derive conditions when a vector field is
conservative.

16. Line Integrals

Consider a plane curve C : x = z(t),y = y(t),z = 2(t) or r(t) = x(¢t)i + y(¢)j. We assume C
is a smooth curve, meaning that r’(¢) # 0, and r/(¢) is continuous for all ¢t. Let f(z,y) be a
continuous function defined in a domain containing C.

To define the line integral of f along C, we subdivide arc from r(a) to r(b) into n small arcs of
length As;, i =1,---n. Pick an arbitrary point (x, yj*) inside the ith small arc and form the
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Riemann sum 7" ; f(x}, y;)Asi. The line integral of f along C is the limit of this Riemann
sum.

DEFINITION 16.1. The integral of f along C is defined to be
| fayds = lim 3 (et o5
i=1

We can pull back the integral to an integral in terms of ¢ using the parametrization r. Recall
that the arc length differential is given by ds = |r/(¢)||d¢|. Thus,

/Cf(:c,y) ds :/abf(r)I"(t)|dt:/abf(x(t),y(t))\/<i§§>2+ (Zf)th.

Note that since a <t < b, |dt| = dt.

EXAMPLE 16.2. Evaluate / (2+ ny)ds, where C' is the upper half of the unit circle traversed
C

in the counterclockwise sense.

Solution. We may parametrize C' by x = cost,y = sint,t € [0,7]. Thus /(2+x2y)ds =
C

s s 1 ™
/ (2 + cos? tsint)\/sin®t + cos? t dt = / (2 + cos®tsint)dt = {275 ~3 cos® t} =21+ 2.
0 0

0
DEFINITION 16.3. A piecewise smooth curve C is a union of a finite number of smooth curves
C1,Co, -+, Cy, where the initial point of Ciy1 is the terminal point of C;, i =0,--- ,n—1. In
that case, we write C = Cy + Co + --- C),.
C2
Cs

C1

Figure 100 C =C7 + Cy + C5

Then the line integral f along C' is defined to be

ﬁj@mwzéy@ww+m+4jmmw

EXERCISE 16.4. Evaluate | 2xds, where C consists of the arc Cy of the parabola y = x? from
C
(0,0) to (1,1) followed by the vertical line segment Cy from (1,1) to (1,2).
[Answer: §(5v/5 + 11)]

Next we define two more line integrals:

DEFINITION 16.5. Given a smooth curve C: r(t) = z(t)i+ y(t)j, a <t <b.

/f:nydx—/f 2 (1) dt,

/fxy@—/fumm»uMa
are called the line integrals of f along C with respect to x and y.
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Sometimes, we refer to the original line integral of f along C, namely,

Léf@wﬂkzlfﬂﬂﬂwﬂb¢cz>a+Cgfdt

as the line integral of f along C' with respect to arc length.

We make the following abbreviation:
[ Pwde+Q.yiy = [ Playde+ | Q.ydy.

EXAMPLE 16.6. Evaluate / y2dx + xzdy, where

C
(a) C' = ( is the line segment from (-5, —3) to (0, 2),
(b) C = Oy is the arc of the parabola z = 4 — y? from (-5, —3) to (0,2).

Solution. (a) C; :x =5t -5,y =5t—3,0<t <1

C/
0

(_57 _3)
Figure 101

1 1
Thus, / yidx 4 xdy = / (5t — 3)%5dt + / (5t — 5)5dt = —5/6.
Cq 0 0

(b)Cy:z=4—t2y=t —3<t<2.
2 2
Thus / y?dr + vdy = / t2(=2t)dt +/ (4 — t?)dt = 245/6.
Co -3 -3

A parametrization r = (x(t),y(t), 2(t)), t € [a,b] determines an orientation of C. In other
words, C' is an oriented curve. Note that if we reverse the orientation of C, we obtain a curve
with the opposite orientation of C. We denote this oriented curve by —C.

/;;/B //Q/B
A A

Figure 102

For example the upper semicircle C' in the zy-plane centered at the origin with radius 1 joins
the point (1,0) to (—1,0). It has a vector equation in the form ri(t) = (cos(nt),sin(mt)),
t € [0,1]. Then —C' can be parametrized by ra(t) = (cos(m(1 —t)),sin(m(1 —1))), t € [0,1] and
—C joins (—1,0) to (1,0).
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Note that because the sign of 2/(t) and y/(t) reverses in —C, we have

/_Cf(a:,y)da::—/cf(x,y)dx and /_Cf(:c,y)dy:—/cf(g;,y)dy

But because the arclength differential is always positive,
| t@wyds= [ fy)ds
C —C

For line integral of a function f(x,y, z) along a space curve C, we have the similar definitions:

[ s zyas= [ s = [ a0, Z(t”\/((fzf>2 * (Cﬁ)z * (fu>2 i

b
/f(x,y,z)da::/ flx(t),y(t),z(t)z' (t) dt,
C a

b
|tz dy = [ 5a®).50). 20y (0) d,
C a

b
/f($7y,2)dz:/ flx(t),y(t),z(t)2 (t)dt.
C a

EXAMPLE 16.7. Evaluate / ysinzds, where C is the circular helix r(f) = (cost,sint,t),
C
t €[0,2n].

Solution.
271' \/5 2
/ysmzds—/ nt)(sint) s1n2t+cos2t+1dt:7/ (1 —cos(2t)) dt
0 0
2 1 2T
= £ [ — (2t)] =/27.
2 2" 0

17. Line Integrals of Vector Fields

DEFINITION 17.1. Let F be a continuous vector field defined on a domain containing a smooth
curve C given by a vector function r(t), t € [a,b]. The line integral of ¥ along the curve C is

/CF-dr:/abF(r(t))-r’(t)dt.

Note that / F-dr = —/ F - dr as r/(t) changes sign in —C.
—C C

EXAMPLE 17.2. Evaluate / F - dr, where F(z,y, 2) = (zy, yz, zz), and C is the curve r(t) =
C
t, 2,3, t € 0,1].

Solution. First r'(¢) = (1,2t,3t2). Thus F(r(t)) -v/(t) = (t-12,#2- 13,43 -1) - (1, 2t, 3t?) = 3+ 5¢°.
Therefore,

1
/F dr—/ F(r £) dt = /t3—|—5t6dt:27/28.
0
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Let’s rewrite / F - dr is the component form. Suppose
C

F(x,y,2) = P(x,y,2)i+ Q(z,y, 2)j + R(z,y, 2)k,
and

C:r(t)=z)i+y(t)j+ z(t)k, te€]a,b].
Then

/Fdr_/F £)dt

/ (r(t)), R(x(1))) - (2'(t),4/(¢), 2/ (t)) dt
= / P(r t)dt + / Q(r(t))y (t) dt + /b R(x(t))2'(t) dt
_ / Pdx + Qdy + Rdz=.
Sometimes, it is helpful to think of F - dr as (P, Q, R) - (dz, dy, dz) = Pdz + Qdy + Rdz.

18. The Fundamental Theorem for Line Integrals

Let’s recall the fundamental theorem for Calculus:

b
/ F'(z)dz = F(b) — F(a).
It has the following generalization in terms of line integrals:

THEOREM 18.1. Let C be a smooth curve given by r(t), t € [a,b]. Let f be a function of 2 or
3 variables whose gradient V f is continuous. Then

/C Vf-dr = f(x(b)) - f(r(a)).

Proof.
A
v A Vf
7 r(b)
VA A
" A
r(a) 7
Figure 103
/ Vf-dr = / V(b)) (1) dt
[ (e oy ordey
/ (8xdt+8ydt+8zdt dt
= dtf(r(t)) dt by Chain Rule
=f ( (b)) — f(r(a)). by Fundamental Theorem of Calculus
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mMG

ExAMPLE 18.2. Consider the gravitational (force) field F(r) = T

mMG

/2 +y2 + 22
tional field in moving a particle of mass m from the point (3,4,12) to the point (1,0,0) along
a piecewise smooth curve C.

r, where r = (z,y, 2).

Recall that F = Vf, where f(z,y,2) = Find the work done by the gravita-

Solution.WE/ F-dr:/Vf~dr:f(l,0,0)—f(3,4,12):12mMG/13.
C C

19. Independence of Path
Let F be a continuous vector field with domain D.

DEFINITION 19.1. The line mtegml/ F - dr is independent of path D if/ F.dr = F-dr
C C C:
for any 2 paths C1 and Cs in D that have the same initial and terminal p(l)mts. ’

DEFINITION 19.2. A curve is called closed if its terminal point coincides with its initial point.

THEOREM 19.3. / F - dr is independent of path in D if and only z'f/ F-dr =0 for every
C C
closed path in D.

Proof. To prove the necessity, let C' be a closed path starting from the point A and ending at
A. Pick any point B on C' other than A. Denote the subpath along C from A to B by C7 and
the subpath along C' from B to A by C5. Then C = C7 + Cs. See figure 104. Now both C4
and —Cy are paths from A and B.

Cl Ol
B B
A Cs A Cs
Figure 104 C =C;+Cy Figure 105 C =C; —Cy
We have / F.dr = / F-dr + F.-dr = F.dr — F - dr = 0, since both C7 and
Co C1 —Cs

—(C5 are paths from A and B and the line integral is by assumption independent of path.

To prove the sufficiency, consider 2 paths C; and C3 having the same initial point A and

terminal point B. See figure 105. Then C' = C; — (5 is a closed path. Thus, 0 = / F-dr =
C

/ F.dr = F.dr — F - dr. Hence, F.dr = F - dr.
Cl CQ Cl C2 Cl C2

Consider the following statements:
(1) F is conservative on D.

(2) / F - dr is independent of path in D.
C
) / F - dr = 0 for any closed path C' in D.
C
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By 18.3 and the fundamental theorem for line integrals, we have the following implication and
equivalence: (1) = (2) < (3).
In fact, the implication (2) = (1) is true with some suitable assumptions on the domain D.

DEFINITION 19.4. A subset D in R? (or R3) is said to be open if for any point p in D, there
is a disk (ball) with center at p that lies entirely in D. (This means D does not contain any

boundary points.)
(7.

Figure 106  An open set D in R?  Figure 107 D is not open

DEFINITION 19.5. A subset D in R? (or R3) is said to be connected if any two points in D can
be joined by a path that lies in D.

Figure 108 D is connected Figure 109 D is not connected

THEOREM 19.6. Suppose F is a vector field that is continuous on an open connected region D.

If/ F - dr is independent of path in D, then F is conservative. That is there exists a function
C

f such that Vf =F.

Proof. Let’s prove the case in R?. The case in R3 is similar. Fix a point A(a,b) in D. Let

(zy)
f(xuy):/ F'dI',
(

a,b)

where (z,y) € D. Since / F - dr is independent of path in D, f is well-defined. As the domain

C
D is open, there exists a disk centered at (z,y) that lies entirely in D. Pick a point (z1,y)
in the disk with z; < z. Let C consist of any path C; from (a,b) to (z1,y) followed by the
horizontal line segment Cy from (x1,y) to (z,y). See figure 111. Then

(z1,y)
flz,y)=[ F-dr+ F-dr:/ F-dr+ [ F-dr.
C1 Ca (a,b) Co
of 0 . .
Thus, == =0+ — F - dr because the first line integral along ' is independent of x.
ox or Jco,
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Let’s write F = Pi+ Qj. Then F-dr = Pdx 4+ Qdy. On Cs, y = constant so that
CQ CQ
/ Qdy = 0. Hence,
Cy

of 0 0 [ B
3= Ba Cz)F.dr_&v ledm—P(x,y).

Figure 110 Figure 111

Similarly, by considering a path from A(a,b) to a point (z,y;) with y; < y inside the disk

3}
followed by the vertical segment from (z,y1) to (x,y), we can prove that 8—f = Q(z,y). There-
Y

fore,

af. 0
F:Pi+Qj:a£i+a§j:w.

The openness of D is to ensure the points (z1,y) and (x,y1) exist corresponding to every (x,y)
in D.

There is an obvious necessary condition for a vector field on R? to be conservative due to
Clairaut’s Theorem

THEOREM 19.7. Let F(x,y) = P(x,y)i+ Q(x,y)j be a vector field on D C R?, where P and Q
have continuous partial derivatives in D. If F is conservative, then

or _oQ

oy  Ox’
Proof. As F is conservative in D, there exists a differentiable function f(z,y) in D such that
Vf=F. That is f, = P and f, = Q. By Clairaut’s Theorem,

0P _ 3 _ o _ o0
oy  Oydxr Oxdy Ox’

The converse is true for a special kind of domain in R?.

DEFINITION 19.8. A simple curve is a curve which does not intersect itself.
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Gy

a simple curve not a simple curve
Figure 112

DEFINITION 19.9. A simply-connected region in the plane is a connected region such that every
stmple closed curve in D encloses only points that are in D.

simply-connected not simply-connected

Figure 113

THEOREM 19.10. Let F(x,y) = P(z,y)i+Q(x,y)j be a vector field on an open simply-connected
oP 0
region D C R?, where P and Q have continuous partial derivatives in D. If 0= a—Q, then
Y x
F is conservative.

This is a consequence of Green’s Theorem in the next section.

EXAMPLE 19.11. Determine whether the vector field F(x,y) = (3 + 22y)i + (2® — 3y?)j is
conservative.

Solution. As
(x? — 3y?) Cop— (3 + 2zy)
Ox S oy ’

and the domain of F is R? which is open and simply-connected, F is conservative by the
Theorem 19.10.

EXAMPLE 19.12. Let F(z,y) = (3 + 22y)i+ (2% — 3y?)j. Find a function f such that Vf = F.

Also evaluate / F - dr, where C is the curve given by r(t) = e'sinti + costj, t € [0, ].
C
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Solution. As Vf = F, we have f,(z,y) = 3 + 2zy. Integrating with respect to x, we get
f(x,y) = 3z + 2%y + g(y), where g(y) is an integration constant, but it could be a function of
y. Thus f,(z,y) = 22 + ¢'(y) so that 2? + ¢'(y) = #? — 3y*. That is ¢'(y) = —3y*. Integrating
¢’ (y) with respect to y, we obtain g(y) = —y> + K, where K is a constant. Consequently,
f(z,y) =3z + 2%y — y* + K.

Since F is conservative, the line integral / F - dr is independent of path. In fact, f is

a potential function for F. Thus by the fundamental theorem for line integrals, we have

/ F.dr=f(0,-1)— f£(0,1) = 2.
C
EXERCISE 19.13. If F(z,y,2) = y?i + (2zy + €%*)j + 3ye*’k, Find a function f such that
Vf=F.
[Answer: f(x,y,2) = zy? + ye3* + O]

20. Green’s Theorem

Green’s Theorem gives the relationship between a line integral along a simple closed curve C
on the plane and the double integral over the plane region D that C bounds.

Suppose a simple closed curve C on the plane bounds a region D. The positive orientation
of C' refers to the orientation of C' such that as one traverses along C' in the direction of this
orientation, the region D that it bounds is always on the left hand side.

positive orientation negative orientation

Figure 114

In other words, if D is a simply connected region on the plane, then the boundary C of D
oriented in the counterclockwise sense is the positive orientation. We use the notation 0D to
denote the boundary of D with the positive orientation.

THEOREM 20.1. (Green’s Theorem) Let C' be a positively oriented, piecewise-smooth, simple
closed curve in the plane and let D be the region bounded by C. If P(x,y) and Q(x,y) have
continuous partial derivatives on an open simply connected region that contains D, then

/CPdaZ—i-Qdy://D (g—g> dA.

The line integral / Pdx + Qdy has other notations as
C

/ Pdz + Qdy, f Pde+Qdy, or d Pdr+Qdy.
C C oD
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They all indicate that the line integral is calculated using the positive orientation of C'.

Proof. We shall first verify that Green’s Theorem is true for D being a region which is both
of type I and Type II. (See figure 71 for type I and type II regions.) The general case can be
proved by cutting the region into a finite number of regions of both type I and type II and

applying the result to each of them. Let’s consider a type I region. The proof for type II region
is similar.

Cs y = Ya(z)

Cy

Cq

y=Yi(z)

i
; ; :

Figure 115

In this case, the lower and upper boundaries of D consists of simple smooth curves C7 and Cj
respectively, and the left and right boundaries are vertical lines Cy : * = @ and Cs : © = b.
See figure 115. Let C; and C5 be parametrized as the graphs of y = Yj(z) and y = Ya(x)
respectively for = € [a,b]. Here we assume Ya(z) > Yi(z) for all x € (a,b) so that C3 is higher
than Cj. Thus C is given the orientation which goes from left to right, whereas C3 is given
the orientation which goes from right to left so that C' = Cy + Cs + C3 + C4. Then

P b Ya(x) P
// adavdyz/ /2 a—dy dx
D 9y o [ Ay
y=Ya(z)
/ Pla,y))202 ) da

—/PxYQ (xYl)d

Note that / Pdx and Pdx are in fact zero because Cy and C} are vertical segments:
Cz C4
z =band x = a, so that dx = 0.
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0
Similarly, using the fact that D is also a type II region, / / 8—Q dxdy = / Q dy. Therefore,
D 0T C

ﬁYde—i—Qdy://D (Zf—g]D dA.

Now to extend this result to the general case, first consider a region D which is a union of two
regions D and D meeting along a curve L in their common boundaries. See figure 116. Thus
0Dy =L+ L, 3Dy = —L+ Ly and 0D = Ly + Ly. Suppose Green’s Theorem holds for the
regions Dy and Ds. Then

oD Ly Lo
Figure 116

Then, suppressing the terms involving P, @) etc, the following calculation shows that Green’s
theorem holds for the region D.

o= / b b L),
,L+L2 /BDl /<9D2
—// I,

Now any simple closed curve in the plane bounds a region which can be cut into regions both
of type I and type II. See figure 117. Thus, by the above consideration, Green’s Theorem is
valid for any simple closed curve in the plane.

W
\ar/

Figure 117

Lastly, the proof of Theorem 19.10 follows from Green’s Theorem and Theorem 19.6.

ExaMpPLE 20.2. Evaluate / zdx + xydy, where C is the triangular curve consisting of the
C
line segments from (0,0) to (1,0), from (1,0) to (0,1) and from (0,1) to (0,0).

Solution. The functions P(z,y) = z* and Q(x,y) = xy have continuous partial derivatives on
the whole of R?, which is open and simply connected.
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0.0

Figure 118

By Green’s Theorem, / zhdz + zydy = // la(xy 9 ] dA
C

Ay
:// y dydzx
11—z
:// ydydx

EXAMPLE 20.3. Evaluate 7{ (3y — ™ ®)dx + (Tx + \/y* + 1)dy, where C is the circle 22 +y? =
C

9, oriented in the counterclockwise sense.

Solution. C' bounds the circular disk D = {(z,y) | 22 +y? < 9} and is given the positive
orientation. By Green’s Theorem,

: O(Tx +yr+1)  0(3y — esn®)
_ sinx 4 — —
%C(Sy M) dx + (Tx +1/y* + 1)dy //D [ e oy dA

4dA
D
= 4(73?%) = 367.
20.1. Application of Green’s Theorem to Find Area. Recall that the area of a region
D in R? is / 1dA. Therefore, if we choose P(z,y) and Q(z,y) such that o 1,

then by Green’s Theorem we have

Area of D = // 1dA = de + Qdy.

There are various choices of P and () that satisfy thls requirement. For example:

(2) P(:L‘,y) = _y,Q(«T7y) =0.

Therefore,

1
Area of D = :Udy:—y{ ydx:fj{ xdy — ydx.
oD oD 2 Jop

2 2
ExaMPLE 20.4. Find the area of the ellipse z— + i
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Solution. Let the parametric equations for the ellipse be x = acost,y = bsint, for t €10, 2m].
Then, Area = % ¢, 2xdy — ydx = %fo%(a cost)(bcost) — (bsint)(—asint) dt = 027r abdt =
mab.

EXERCISE 20.5. Evaluate by Green’s Theorem j{ e *sinydx + e ¥ cosydy, where C is the
C

rectangle with vertices at (0,0), (,0), (7, 7/2), (0,7/2), oriented in the counterclockwise sense.

[Answer: 2(e™™ — 1)]

-y . T

+

EXERCISE 20.6. Let F(x,y) = j be defined on R?\ {(0,0)}. Show that

F is not conservative.

20.2. Non Simply-Connected Regions. Green’s Theorem is also valid for non simply-
connected regions, that is regions with holes. Consider the region D in figure 119 in which
0D = C1 + Cy. We may cut the region D by two line segments Ly and Ls into two simply
connected regions D’ and D”.

0D =C=C1+Cy

01 Cl
Figure 119

o (2 ) [, (2o ], (325

= / Pdz + Qdy + / Pdx + Qdy
D’ aD"
:/?HM+Q@+/)HM+Q@
C1 C2

= Pdzx + Qdy
C1+C2

:/PM+Q@.
C

Here the third equality is obtained by re-grouping the line integrals and cancelling the line
integrals along L; and Ls.

EXAMPLE 20.7. Let F(z,y) = Z;y 2
x Yy

closed curve that encloses the origin.

i+— ° 5J- Show that / F - dr = 27 for every simple
x4 +y C

Solution. Note that the vector field F is defined on R?\ {(0,0)}. Let C be any closed curve that
encloses the origin. Choose a circle C’ centered at the origin with a small radius a such that
('’ lies inside C. We can parametrize C' by = acost,y = asint, t € [0,2r]. Let D be the
region bounded between C' and C’. We give both C' and C’ the counterclockwise orientation.
Thus 0D = C — (" is given the positive orientation with respect to the region D.
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Y
\ C
Cl
D
Figure 120
By Green’s Theorem applied to R, we have
0 x 0 y? — a2 y? — a2
F.-dr = — ] = | — = — dA = 0.
oo /Laxaﬁ+%> 8yQﬂ+y> // (@2 +y?)? (22 +y?)?
Thus,/ F-dr:/F-dr+/ F - dr = 0. In other words, / F-dr:/ F - dr.
oD C -’ C c’
Therefore, / F.dr = F.dr
C C’

F(r(t)) r'(t) dt
_ /2” —asint)(—asint) + (acost)(acost)
a2

dt
cos?t + a?sin’ t)

21. The Curl and Divergence of a Vector Field
Let F = Pi+ Qj + Rk be a vector field on R?. The curl of F is defined by

OR 0Q 0P OR 0Q 0P
IF=—-——")i — —— ] — —— ]k
cur <8y 8z>l+<8z 8$>J+(8:): Gy)
The curl of a vector field F is a vector field which measures the rotational effect of F. The
geometric meaning of curl F' can be seen after we learn Stokes’ Theorem. At this point, let’s
introduce the del operator V. We let
0 0 0
V=i—+j—+k—.
183: +J8y * 0z
We regard V as a 3-dimensional vector consisting of the operators of partial differentiations
with respect to z,y,z. We can multiple V by a scalar function (on the right), take the dot
product with a function, or the cross product with a vector field. For example, we may regard
the gradient of a function f as being the scalar multiplication of V and f. That is

of [ .of . of
df= — +j=
grad f=Vf = 8 +j 8y +k 9.
The curl of a vector field F = Pi+ @j + Rk can be regarded as the cross product between V

and F.

i j k
carlF=VxF=|g2 & £
P Q@ R
OR 0Q OP OR 0Q 8P)
Rl = 2= =2 )k
(8y >1+<6z 81:) +(8m dy
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ExXAMPLE 21.1. Let F(z,vy, 2) = xzi + zyzj — y*k. Find curl F.
Solution.
i j k
cal F=VxF=|& & & |=-2+ayitajtyk
rz xyz —y>
THEOREM 21.2. If f(z,y, 2) has continuous 2nd order partial derivatives, then curl (Vf) = 0.

Proof.

i j k

o] o) o)

curl Vf=| 5z oy 2
of of 9f

oxr Oy 0Oz

I\, (25 PEN, (P21,
8y8z 020y 0z0x  0x0z Oxdy  Oyox
0.

by Clairaut’s Theorem

COROLLARY 21.3. If F is conservative (i.e. F =V f), then curl F = 0.
REMARK 21.4. If F = Pi+ Qj is a vector field on R?, we may regard F as the vector field

0 oP
F = Pi+ Qj + Ok in R? with zero k component. Then curl F = <6Q — 8> k. Thus in this
& Y
case, if F' is conservative, then 8—Q —— which is 19.7.
x Oy
For example F(z,y, z) = z2i + xyzj — y°k is not conservative because curl F = —(2y + zy)i +

xj+yzk # 0.
Using Stokes’ Theorem in the next section, one can prove the following:

THEOREM 21.5. Let F be a vector field on R® whose component functions have continuous
partial derivatives. If curl F = 0, then F is conservative.

EXERCISE 21.6. Show that the vector field F = 2%i+y2j+ 2%k is conservative. Find a function
f such that Vf =F.

Let F = Pi+ Qj + Rk be a vector field on R?. The divergence of F is defined by

oP 8@ OR
div F_(?i 8y 0z
o .0 0
<8 8— 8) (Pi+ Qj+ Rk).
=V

EXAMPLE 21.7. Let F(z,y, 2) = xzi + zyzj — y*k. Find div F.

' o 9, 9] d, o
Solution. div F =V - F = 8:C(xz) + af(:cyz) + 87( y°) =z +xz.

THEOREM 21.8. Let F = Pi+ Qj + Rk. Suppose P,Q, R have continuous 2nd order partial
derivatives. Then div curl F = 0.
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Proof.

oy 0z

0z Ox

0 <8R 8Q>+ 0 (8P 8R>+ 0 (gi} 831;)

div curl F= 7 a—y 9
_ 0°R B 0%Q n 0’P B 0’R N 0%Q B 0*P
© 0x0y  0x0z Oydz Oydxr 0z0r 020y

=0.

because the terms cancel in pairs by Clairaut’s Theorem.

For a velocity vector field F, div F measures the amount of flow radiating at a point. If the
flow is uniform and without compression or expansion, then div F = 0. Thus, if div F = 0, we
say that F is incompressible. Whereas curl F measures the rotational effect of the vector field
F. Therefore, if curl F = 0, then we say that F is irrotational.

-~ N G NG
-e¥\\ X > s > s > >
-
¢v‘AT g U
l‘L \\:4/// N U G
\\%- N G NG
— N G NG 2
curl F #0 curl F =0
irrotational
> > A > oA > >
T3>
Ny E B O Y G
s
divF <0 divF =0
v F # incompressible

Figure 121

Another differential operator occurs when we compute the divergence of a gradient vector field
Vf. If fis a function of three variables, we have
. 0*f  0*f 0O°f
div (Vf)ZV(Vf):@‘Fain—Fi
We abbreviate this expression as V2f. The operator V? = V -V is called the Laplace operator
because of its relation to Laplace’s equation:
0%f  O*f  O*f
Vi = =0.
/ 0x? + 0y? + 022
We can also apply the Laplace operator V2 to a vector field F = Pi+ Qj + Rk in terms of its
components:

V2F = V2Pi+ V2Qj+ V?Rk.
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EXERCISE 21.9. Let r = /22 + 32 + 22. Find V2(r?).
EXERCISE 21.10. Prove that div(fF) = fdivF + F - Vf.

21.1. Green’s Theorem in Vector Forms. Let F = Pi+ Qj be a vector field. Green’s

Theorem says that
0Q 0P
F.d :// (-) dA.
op = JIp\ox T oy

P
Regard F as a vector field in R3. That is F = Pi+ Qj + 0k. Then curl F = ((ZQ — (g) k,
z Oy
so that ?)Q - g = (curl F) - k. Therefore, we may state Green’s Theorem in the following
€L Y

form:

F.dr = // (curl F) - kdA.
oD D

To get a better meaning of this equation, let 0D be parametrized by the vector equation
r(t) = (z(t),y(t)) fort € [a,b)].

We assume the pararmetrization gives the positive orientation of 9D. Then the unit tangent
vector is
() a0 )
T(t) = = ( / t ? / t >
e/ ()] ' (2)]

Thus

Em—/%mm'mﬁ:fmwwfgwww

_/ T(6)) | (¢)| dt = / F.Tds,

where ds = |r/(t)| dt is the arc length differential. Then, we can also state Green’s Theorem in
the following form:

oD

F-Tds= // (curl F) - kdA.
oD D

In this form, the equation expresses the line integral of the tangential component of F along
0D as the double integral of the vertical component of curl F over the region D. This is a
special case of Stoke’s Theorem in which D is not necessarily a planar region but is a surface
in R? with a boundary curve 9D.

We could also derive a formula involving the normal component of F along 0D. In that way,
Greens’ theorem will be stated in terms of the divergence of the vector field F. Using the above
parametrization of C, one can easily verify (by taking dot product with T) that the outward
unit normal vector to 9D is given by

y't) 't

0= (Qeor )

(It is the outward pointing normal because C' is given the positive orientation.) Now we
consider the line integral of the normal component of F along dD.
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F - nds = b(F(r(t)) n(t)) |v'(t)| dt

-n(t))

b {P(ﬂﬂ(t),y(t))y'(t) - Qz(t),y(t
\ ()] (%)
P(a(t),y()y (t)dt — Q(x(t), y(t
de Qdx

/ <6P 8Q> dA by Green’s Theorem

/ divF dA.

)
|
)y (t)dt

Il I
\\\\ S—

Therefore,
F‘nds:/ divF dA.
oD D

This version says that the line integral of the normal component of F along 9D is equal to
the double integral of the divergence of F' over the region D. This result can be generalized to
the case of closed surface enclosing a solid region in R? which is the content of the Divergence
Theorem.

In the next two exercises, we assume D satisfy the hypotheses of Green’s Theorem and the
appropriate partial derivatives of f and ¢ exist and are continuous. The first exercise is a
consequence of 20.10.

EXERCISE 21.11. Prove that // fVigdA :/ f(Vg) -nds —/ Vf-VgdA.
D oD D

EXERCISE 21.12. Prove that //D(fv%q V) dA = /8D(f(Vg) —g(Vf)) nds.

22. Parametric Surfaces and their Areas

DEFINITION 22.1. Let r(u,v) = (x(u,v),y(u,v), z(u,v)) be a vector-valued function defined on
a region D in the uv-plane. Then

S ={(z,y,2) | x = z(u,v),y = y(u,v),z = z(u,v), (u,v) € D}

is called a parametric surface. The equations: © = x(u,v),y = y(u,v),z = z(u,v) are called
the parametric equations of S.

v z
D r(u,v)
U
%) )
T
Figure 122
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EXAMPLE 22.2. Identity the surface with vector equation r(u,v) = (2cosu, v, 2sinu).

Solution. The point (z,y,2) = (2cosu,v,2sinu) lies on this surface if and only if 22 + 22 =
4 cos? u + 4sin? u = 4. Therefore, the surface is the cylinder 22 + 22 = 4. The domain of r can
be taken as the infinite strip D = {(u,v) | 0 < u < 2w, —00 < v < co}. The function r simply
identifies the two vertical sides of this strip to form the cylinder. Here we omit the line u = 27
so that r is injective. We could take the domain of r to be the whole xy-plane. In that case, r
takes the whole zy-plane and wraps it up around the cylinder infinitely many times.

r(u,v)

Figure 123

ExaMPLE 22.3. Find a vector function that represents the plane that passes through the point
P,y with position vector ry and contains two non-parallel vectors a and b.

Solution. Let O be the origin. For any point P on the plane, its position vector r can be
expressed as
r =0F) + PyP=ry + ua + vb,

for some numbers © and v.

PO a ua

Figure 124

Therefore, r(u,v) = ro+ua+vb is the vector equation of the plane. If we let ro = (o, yo, 20),
a = (ay,az,a3), b = (b1, b, b3), then the parametric equations of the plane are : x = xg +
ual + vbi,y = yo + uas + vboz = 2y + uag + vbs. Here u and v are the parameters.

EXAMPLE 22.4. Find a parametric representation of the sphere 2 + y? 4 22 = a?.

Solution. We use the angles ¢ and 6 in spherical coordinates. For a point on the sphere, p = a.
Thus x = asin¢gcos b,y = asin ¢sinf, z = acos ¢. That is

r(¢,0) = (asin¢cos b, asin psinb, acos ).

EXAMPLE 22.5. Find a vector function that represents the elliptic paraboloid z = 22 4 y2.
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Solution. We simply use x and y as the parameters. Thus, r(z,y) = (z,y, 2% + 2y?).

In general, if the surface S is the graph of a function z = f(x,y), then a natural parametric
representation of S is

r(z,y) = (z,y, f(z,y)).

EXAMPLE 22.6. Find a parametric representation of the cone z = 2y/x2 + 32.
Solution. Since the cone is the graph of the function z = 2v/22 + y2, we can simply take

r(z,y) = <a:,y,2\/m>'

Alternatively, we can consider cylindrical coordinates. The equation of the cone z = 24/x2 + 12
in cylindrical coordinates is z = 2r. Thus if we use polar coordinates (r,#) of the zy-plane, we
can write r(r,6) = (rcosd,rsinf, 2r).

22.1. Tangent Planes. Let S be a parametric surface defined by

r(u,v) = (z(u,v),y(u,v), 2(u, v)).
We shall find the equation of the tangent plane to S at a point Py with position vector
ro = r(ug, vo).
Consider the horizontal line v = vg in the uv-plane and within the domain of r, its image under r
is a curve C on S passing through the point Py. This curve C has a vector equation r(u,vy) =
(2(u, v0), y(u, v9), z(u, v9)). The tangent vector to Cy at Py is given by -Lr(u, vg) [y=u, , which
is simply

oy 0z
ry = <%(UO>U0)7 %(UO, UO)v %(UOa UO))'

D r=r(u,v) %

_ >

u0,[v0)

L
)
v

C is the image of the line v = vg
T C> is the image of the line u = ug

Figure 125

Similarly, the image of the vertical line u = up under r is a curve Cy whose tangent vector at
Py is given by
Ox y 0z
ry, = (= (uo,v0), == (w0, v0), 7— (10, v0))-
0 = (G0, v0), 5 (1o, v0), 5 1o, o)

Both vectors r,, and r, lie in the tangent plane to S at Py. Therefore, the cross product r, X r,,
assuming it is nonzero, provides a normal vector to the tangent plane to S at Fy. Therefore,
(r—rp)-(ry xry) = 0 is the equation of the tangent plane. At this point, lets’ make a definition.

DEFINITION 22.7. The surface S is said to be smooth if v, X v, # 0 for all points (z,y) € D.
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Thus a smooth surface always has a tangent plane at each of its points. Basically, a smooth
surface is one which has no corners and no breaks.

ExaMPLE 22.8. Find the equation of the tangent plane to the surface with parametric equations
r=u?y=v%2=u+2v at the point (1,1,3).

Solution. The vector equation of the surface is

2

r(u,v) = (u?, 0% u + 20).

Therefore, r, = (2u,0,1) and r, = (0,2v,2). Thus, a normal vector to the tangent plane is
r, X r, = (—2v, —4u,4uv). At the point (1,1,3), we have (u,v) = (1,1). Then, the normal
vector at (u,v) = (1,1) is (—2,—4,4). Therefore, the equation of the tangent plane to the
surface at (1,1,3) is ({(x,y, 2) — (1,1,3)) - (=2, —4,4) = 0, or equivalently, x + 2y — 224+ 3 = 0.

22.2. Surface Area. If a smooth parametric surface is given by
r(”? /U) = <:L‘(u’ U)?:y(u’ U)7z(u7 ,U)>7 (u7 /U) E D?

and r is injective except possibly on the boundary of D, then the surface area of S over D is

defined to be
A(S) = // Ity % 1o| dA.
D
2

EXAMPLE 22.9. Find the surface area of the sphere z2 + y? 4 2% = a?.
Solution. A parametric representation of the sphere is given by

r(¢,0) = (asin ¢ cos B, asin ¢sin b, a cos @),
where 0 < ¢ < 7 and 0 < 6 < 27. Thus,

i j k
ry Xrg = | acosgcostl acos¢psing —asing
—asingsin® asin ¢ cosf 0

= (a?sin? ¢ cos 0, a® sin? ¢ sin 0, a? sin ¢ cos B)

Therefore, |ry X rg| = a?sin ¢. Hence,

2T s
A(S)=// \rUXrU!dA:/ / a? sin ¢ dpdf = dra>.
D 0 0

22.3. Surface Area of the Graph of a Function. Let S be a surface which is the graph
of a function f(z,y) defined on a domain D C R?. Then a parametric representation of S is

I'(.%',y) = <x7y7f(x7y)> ThUS, ry = <1707f$> and ry = <07 17fy> S0 that ry Xry = <_fiﬂ7 _fy: 1>7
and |ry x r,| =,/1+ f2+ fg Therefore, the surface area of S over D is given by

A(S)://D,/1+f§+fy2dA.

This is the same formula derived in section 12.
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EXERCISE 22.10. Suppose S is the surface obtained by rotating the curve y = f(z) for = € [a, b]
through an angle 27 about the z-axis, where f(x) > 0, and f/(z) is continuous. Show that S
has a parametric representation given by r(z,8) = (z, f(x) cosé, f(x)siné), for z € [a,b] and
0 € [0, 27]. Show that the area of S is given by

27r/ F@)\ 1+ [f/(2)]? da.

EXERCISE 22.11. On the zz-plane, the circle (z — b)? + 22 = a? (b > a) is rotated through an
angle 27 about the z-axis to form a torus 7. Find the surface area of T

[Answer: 472ab]

22.4. Surface Integrals. Let S be a parametric surface with vector equation r(u,v) =
(x(u,v),y(u,v), z(u,v)), where (u,v) € D. Let f(x,y,z) be a continuous function defined on

S.

DEFINITION 22.12. The surface integral of f over S is

//fxy, )dS = // r(u,v))|ry, X r,|dA.

If S is the graph of z = g(x,y), then

//f:cy, )dS = //f:rygxy),/l—l—gx—i-gsz

ExAMPLE 22.13. Evaluate // 22 dS, where S is the unit sphere z2 + 32 4+ 22 = 1.
S

Solution. A parametric representation of the unit sphere is given by
r(¢,0) = (sin ¢ cos §,sin ¢ sin 6, cos ¢),

where 0 < ¢ <7 and 0 < 6 < 27. From example 22.9, we have |rg X rg| = sin ¢. Therefore,

//x s = // (sin ¢ cos 0)%|ry, x rg| dA

= / / sin® ¢ cos® 0 dpd

:/ 81n3¢d¢/ cos? 0 df
0
= 47 /3.

ExaMpPLE 22.14. Evaluate / / zdS, where S is the surface whose side face S; is part of the
S

cylinder 22 + 2 = 1 bounded by the bottom face Sy which is the zy-plane and the top face
Ss3 which is part of the plane z = x 4+ 1 above the xy-plane. See figure 126.

Solution. The surface integral is the sum of three surface integrals:

//SzdS://SlzdS%—//SQZdS+//SSZdS'
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S1:a24+y?=1

Figure 126

Let’s first calculate the surface integral over S;. The surface 57 is a cylinder. By example 22.2,
it has a parametric representation r(¢, z) = (cos,sin6, z), where 0 <0 < 27,0 <z < 1+z =
1+ cosf. Thus, ry x r, = (cosf,sinf,0) and |ry X r,| = 1. Therefore,

2w pl4cos@ 27 1
// zdS:/ / zdzd&:/ 7(1+cos0)2d9:3—7r.
Sy 0o Jo 0o 2 2

On 83, we have z = 0. Thus the integrand of // zdS is zero so that the integral has value
So

// zdS = 0.
Sa

The surface Sj is the graph of the function z = 1 4+ . Therefore, using polar coordinates, we

have
//53st: //D(ler)\/mdA://D(ler)\@dA

2wl
= / / (1 + 7 cos0)V2rdrdd = /2x.
0 Jo

zero. Therefore,

Consequently, / / zdS = 3% + V2.
S3

EXERCISE 22.15. Evaluate // 22 dS, where S is the portion of the cone z = /22 + y2 for
S
which 1 < 22 +¢2 < 4.

[Answer: 157/2/2]

23. Oriented Surfaces

A surface S is said to be orientable if it is two-sided, otherwise it is non-orientable. For
example, a sphere is orientable because it has an inside and an outside. Whereas the Mobius
strip in figure 127 is non-orientable. When one walks on one side along the center curve of the
Mobius strip, one arrives after one turn to the same position on the opposite side. This means
the Mobius strip is only a one-side surface and is non-orientable.
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Figure 127 A Mobius band

If S is orientable, then it is possible to choose a unit normal vector n at every point .S so that
n varies continuously over S. In that case, S is called an oriented surface and the choice of n is
called an orientation of S. There are only two orientations of an orientable surface S, namely
one for each side of the surface S which corresponds to the choice where all the unit normal
vectors point away from that side of the surface.

n

S -5
Figure 128  There are two possible orientations of S.

If S is the graph of z = g(«,y), then

<_gm7 _gy7 1)

Vi +gy+1

is the upward orientation of S because the k-component is positive.
If S is a smooth orientable surface given in parametric form by a vector function r = r(u,v),
then it is automatically supplied with the orientation of the unit normal vector

n—

Ty Xry,
[ty X 1|

The opposite orientation is denoted by —n and the corresponding oriented surface is denoted
by —S.
As an example, consider the unit sphere. It has a parametric representation given by
r(¢,6) = (sin ¢ cos b, sin ¢ sin 0, cos ¢),
where 0 < ¢ <7 and 0 < 0 < 27. From example 22.9, we have
ry X rg = (sin” ¢ cos ), sin? ¢ sin 0, sin ¢ cos @)
and |ry X ro| = sin ¢.
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T The positive orientation T The negative orientation
Figure 129  The sphere
reXr, . . . . . . .
Therefore, n = \rjer\ = (sin ¢ cos @, sin ¢ sin b, cos ¢) = r(¢, f), which is the outward pointing

normal.

For a closed surface (i.e. a surface which is the boundary of a solid region FE), the convention
is that the positive orientation is the one for which the normal vectors point outward from FE,
and the inward-pointing normals give the negative orientation. For an orientable surface which
is the boundary of a solid region in R3, it is usually understood that it is given the positive
orientation.

24. Surface Integrals of Vector Fields

Let F be a continuous vector field defined on an oriented surface S with unit normal vector n.
The surface integral of F over S is

//SF~dS://SF-ndS.

This integral is also called the flux of F over S.

If S is the graph of a function z = g(x, y) over a region D in the xy-plane, and F = Pi+Qj+ Rk,

then
//F-dS:/ F-ndS
S
—//PQR o 20w 1) S T aa

g2 +g2+1
= /D(—P% — Qgy + R) dA.

EXAMPLE 24.1. Evaluate / F - dS, where F(x,y, z) = (y,z, z), and S is the boundary of the
S
solid region E enclosed by the paraboloid z = 1 — 22 — 3? and the plane z = 0. The surface S

is given the positive orientation with respect to the region F that it bounds.

Solution. Let S7 be the paraboloid above the zy-plane and S5 the unit disk on the zy-plane.
Then S is the union of the surfaces S; and S;. The surface integral over S is the sum of the
surface integrals over S; and So.
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Figure 130

First let’s compute the surface integral over S;. The surface Sy is the graph of the function
g(x,y) = 1—a?—y? over the disk D = {(z,y) | 22+y* < 1}. We have g, = —2z and g, = —2y.
Therefore, / F-dS = / (—Pg, — Qgy + R)dA
S1 D
— /[ 1022~ a(-29) + (1 - 2 — )] dA
(1+4zy — 2° — y?) dA

T rl
= / / (1 + 4r%cosfsin @ — r*) rdrdd = T
o Jo 2

The disk Sy is oriented downward, so its unit normal vector is —k. Then, / F.dS =

Sa
/ F-(—k)dS:// —2zdS = 0, since z =0 on Ss.
Sz SQ

If S is a parametric surface defined by a vector function r = r(u,v) : D — R3, then

JJr-is = [
/!

A [F(r(u ) A ] Ity X 1| dA

[y X Ty

_ //D F(r(u,v)) - (ty X 1p) dA.

Therefore,

//SF'dSZ//DF(r(u?”))'(I‘uXry)dA.

EXAMPLE 24.2. Let F(z,y,2) = (z,y,z). Evaluate // F - dS, where S is the unit sphere
24+ y? 4+ 22 =1. °
Solution. A parametric representation of the unit sphere is given by
r(¢,0) = (sin ¢ cos d,sin ¢psin b, cos ¢),
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where 0 < ¢ <7 and 0 < 0 < 27. We have
rs X g = (sin? ¢ cos 6, sin® ¢sin 0, sin ¢ cos ¢), and F(r(p, 0)) = (cos ¢, sin ¢ sin 6, sin ¢ cos 0).

Thus, F - (ry xrg) =2 sin? ¢ cos ¢ cos 6 + sin® ¢ sin? . Therefore,

21
//F dS_/ / (2sin? ¢ cos ¢ cos 6 + sin® ¢ sin® 0) dpdh

—2/ sin (bcosédqﬁ/ cos@d0+/ smgqﬁdgb/ sin? 6 df
=0+ 47/3.

25. Stokes’ Theorem

THEOREM 25.1. (Stokes’ Theorem) Let S be an oriented piecewise-smooth surface that is
bounded by a simple, closed, piecewise-smooth boundary curve C with positive orientation.
Let F be a vector field whose components have continuous partial derivatives on an open region

in R? that contains S. Then
/F-dr://(curl F) - dS
C S

n C
Figure 131  Stokes’ Theorem / F.dr = // (curl F) - dS
C S

Proof of a special case of Stokes’” Theorem.

Assume S is the graph of z = g(x,y), over a region D which is of type I and II in the zy-plane,
and ¢ has continuous 2nd order partial derivatives.

2z z=g(z,y)

Figure 132
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Let F = Pi+ Qj + Rk. Then

// (curl F) - dS = / /D —(Ry — Q2)9z — (P — Ra)gy + (Qu — P) dA.

Let © = z(t), y = y(t), t € [a,b] be a parametric representation of the boundary curve C of
D. Then x = ;13( ) =y(t),z = g(x(t),y(t)) is a parametric representation of C. Therefore

dx dz
/F dr—/ Pdt+Q dt]dt
B dx dy
—/a +Q +R(gxdt +gydt)},dt
b d dy
:/ (P+Rgx)d (Q+R9y)d } dt

(P + Rgy)dx + (Q + Rgy)dy

I
9\

[;(Q + Rgy) — aa(P + Rgx)} dA by Green’s Theorem on D
£ Yy

Qz + Qz% + (Rz + RZ%)gy + Rgye
dA
—Py— P.% — (Ry + R.%)gs — Ryuy

R Qz)gz - (Pz - Rm) y (Qx - Py) dA
/ (curl F)

Note that Q(z,y,2) = Q(x,y,g(x,y)) is a function of z and y in D. By chain rule, we have

@ _ Qz Ox Qy@ + Qz%- That is @ = Q.+ Qz% = Q; + Q,g,. Similarly, we have
ox ox ox

ox
8R
or

[l
\RUQ

=R, —|—Rzga;

ExaAMPLE 25.2. Evaluate / F - dr, where F = —y?i+zj+2%k and C is the curve of intersection
C

of the plane y + z = 2 and the cylinder 22 + y?> = 1. (C is oriented in the counterclockwise
sense when viewed from above.)

Solution. Let S be the surface enclosed by C' on the plane y + z = 2. S is the graph of
z = g(z,y) = 2 — y over the disk D = {(z,y) | 22 + 5> < 1}.

z

Figure 133
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i j k
Also curl F = 8% 8% % = (1 + 2y)k. By Stokes’ Theorem,
2z 2P

2,1
/F-dr://curlF-dS:// (1+2y)dA:/ /(1+2rsin9)rd7“d9
C D 0 0
ISR

§+§Sm9)d9 = .

ExAMPLE 25.3. Use Stokes’ Theorem to compute // curl F - dS, where F(x,y,2) = yzi +
S

xzj + xyk and S is the part of the sphere x? + y? + 22 = 4 that lies above the cylinder
22 + %> =1 and above the zy-plane.

Solution. The cylinder #2442 = 1 intersects the upper hemisphere z = /4 — 22 + 32 in a curve
C at height z = /3. The curve C has a vector equation given by r(t) = (cost,sint, v/3) and
r'(t) = (—sint,cost,0). Also F(r(t)) = (v/3sint, /3 cost,costsint). By Stokes’ Theorem,

Figure 134

//S curl F - dS = /CF ~dr = /CF(I'(t)) ' (t)dt = /OQﬂ(—\/gsiHQt +V/3cos?t)dt = 0.

COROLLARY 25.4. (Theorem 21.5) If curl F = 0 on all of R3, then F is conservative.

Proof. By Stokes” Theorem, / F-dr = / / curl F-dS = 0 for all simple closed curve C in
C S
R3. By cutting any closed curve into a finite number of simple closed curves, the line integral

is zero for any closed curve. Thus F is conservative by 19.6.

EXERCISE 25.5. Let S be the capped cylindrical surface shown in figure 135. S is the union of
the surfaces S; and Sy where S = {(z,y,2) | 22 +y? =1,0< 2 <1} and Sy = {(z,y,2) | 22+
v? 4+ (z—1)2 =1,2 > 1}. Let F(z,y,2) = (22 + 2%y + 2)i + (z%yz + y)j + z*2’k. Evaluate

/ curl F - dS.
S

[Answer. 0]
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Sa

51

Figure 135
26. The Divergence Theorem

THEOREM 26.1. (The Divergence Theorem or Gauss’ Theorem) Let E be a solid region which
is both of type I, II and III, and let S be the boundary of E, given with the positive (out-
ward) orientation. Let F be a vector field whose component functions have continuous partial
derivatives on an open region containing E. Then

//SF~dS:///EdiVFdV.

Proof. Let F = Pi+ Qj+ Rk. Then div F = P, + Q, + R.. Thus,

///Edivde://[Epmvar///EQxvar//[ERxdv_

Let n be the unit outward normal of S. Then

//SF‘dS://S<Pi+Qj+Rk)‘ndS://SPi'ndS+//SQj‘ndSJr//SRk-ndS.

We shall show

//SPi.ndS:///EdeV, //SQj-ndS:///EdeV,and//SRk.ndS:///EdeV

Figure 136 Type 1 solid region

To prove the third equation, we use the fact that F is a type I solid region:

E={(z,y,2) | wi(z,y) <z <us(z,y), (z,y) € D},
where D is the projection of E onto the xy-plane. The boundary of E consists of 51, 52, and
Ss.

On S3, n is perpendicular to k. Thus // Rk -ndS =0.
S
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The surface Sy is given as the graph of z = us(z,y) with (z,y) € D. The outward normal n

points upward. Thus,
S D

The surface S; is given as the graph of z = uy(z,y) with (z,y) € D. The outward normal n
points downward. Thus,

//5 ftk-md5 = —//D R(x,y,ui(x,y)) dA.

Therefore, // Rk -ndS = // R(z,y,uz(z,y)) — R(z,y,ui(x,y)) dA
S D

- ff ozt = ff [0 S
5 z=u1(z,y) D Jui(z,y) 82

] noav.

Similarly, using the fact that F is a type II and III solid region, one can prove the second and
first equation. Combining the three equations, we get the Divergence Theorem.

EXAMPLE 26.2. Let F(x,y, z) = zi+ yj + zk. Evaluate // F - dS, where S is the unit sphere
S
22?4+ 22 =1

Solution. By the Divergence Theorem, // F-dS = /// div FdV = /// 1dV = volume of
S E E
the unit ball = 47 /3.

ExXAMPLE 26.3. Evaluate // F - dS, where F = zyi + (y2 + ¢%*°)j + sin(zy)k and S is the
S

surface of the region E bounded by the parabolic cylinder z = 1—2? and the planes z = 0,y = 0
and y + z = 2.

Solution. The solid region E can be described as

E={(z,y,2) | —1§x§1,0§z§1—x2,0§y§2—z}.

(0,0,1)

Figure 137
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By the Divergence Theorem, we have

1 pl—2? (2—2 184
//F-dSi///dideV:///3dez3/ / / ydydzdr = —.
S E E -1Jo 0 35

EXERCISE 26.4. Let S be the surface of a solid region E. Show that

// r - dS = 3volume (E),
S

EXERCISE 26.5. Let S be a surface and let F be perpendicular to the tangent to the boundary
of S. Show that // curl F-dS = 0.
S

where r(z,y, z) = zi + yj + zk.

EXERCISE 26.6. Let S be a closed surface and let F a vector field on R? whose component
functions have continuous second order partial derivatives. Show that / / curl F-dS =0.
S

EXERCISE 26.7. Prove that // Dn(f)dS = /// V2fdV, where Dy(f) is the directional
OE E

derivative of f along the direction of the unit normal n to the surface OF.
(Recall that Dy(f) =V f-n.)
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