
Numerical Integration

Numerical integration is the study of how the numerical value of an

integral can be found. Also called quadrature, which refers to finding

a square whose area is the same as the area under a curve, it is one

of the classical topics of numerical analysis. Of central interest is

the process of approximating a definite integral from values of the

integrand when exact mathematical integration is not available. The

corresponding problem for multiple dimensional integration is known

as multiple integration or cubature.

Numerical integration has always been useful in biostatistics to

evaluate distribution functions and other quantities. Emphasis in

recent years on Bayesian and empirical Bayesian methods and on

mixture models has greatly increased the importance of numerical

integration for computing likelihoods and posterior distributions and

associated moments and derivatives. Many recent statistical methods

are dependent especially on multiple integration, possibly in very high

dimensions.

Although there exist many high-quality automatic integration pro-

grams, no program can be expected to integrate all functions, even in

one dimension. It is therefore useful for the user to know something

2 Numerical Integration

about the limitations of the commonly used methods.

This article describes classical quadrature methods and, more briefly,

some of the more advanced methods for which software is widely

available. The description of the elementary methods in this article

borrows from introductory notes by Stewart [31]. An excellent general

reference on numerical integration is [5]. More recent material can be

found in [7] and [29]. Recent surveys of numerical integration with

emphasis on statistical methods and applications are [9] and [8].

Trapezoidal Rule

The simplest quadrature rule in wide use is the trapezoidal rule. Like

many other methods, it has both a geometric and an analytic derivation.

The idea of the geometric derivation is to approximate the area under

the curve y = f (x) from x = a to x = b by the area of the trapezoid

bounded by the points (a, 0), (b, 0), [a, f (a)], and [b, f (b)]. This gives

∫ b

a

f (x)dx ≈ b − a

2
[f (a) + f (b)].

The analytic derivation is to interpolate f (x) at a and b by a linear

polynomial.

The trapezoidal rule cannot be expected to give accurate results over

a larger interval. However, by summing the results of many applications

of the trapezoidal rule over smaller intervals, we can obtain an accurate

Numerical Integration 3

approximation to the integral over any interval. We begin by dividing

[a, b] into n equal intervals by the points a = x0 < x1 < . . . < xn−1 <

xn = b. Specifically, if h = (b − a)/n is the common length of the

intervals, then xi = a + ih, i = 0, 1, . . . , n. Applying the trapezoidal

rule to each interval [xi−1, xi] gives the composite trapezoidal rule

∫ b

a

f (x)dx ≈ h

{
f (x0)

2
+ f (x1)

+ · · · + f (xn−1) + f (xn)

2

}
.

An error formula for the composite trapezoidal rule can be obtained

from polynomial approximation theory. If f is twice continuously

differentiable on (a, b), then the error of integration decreases as h2,

so that doubling the number of points reduces the error by a factor of

four.

Simpson’s Rule

More sophisticated quadrature rules can produce higher-order error

terms. Even more popular than the trapezoidal rule is Simpson’s rule:

∫ b

a

f (x)dx ≈ b − a

6

[
f (a) + 4f

(
a + b

2

)
+ f (b)

]
.

Simpson’s rule can be derived by interpolating f (x) by a quadratic

polynomial at a, (a + b)/2, and b.

As with the trapezoidal rule, Simpson’s rule is usually applied to

many short intervals. Letting the xi be as above for n even, and writing

4 Numerical Integration

fi = f (xi) the composite Simpson rule is

∫ b

a

f (x)dx ≈ h

3
(f0 + 4f1 + 2f2 + 4f3 + · · ·

+ 2fn−2 + 4fn−1 + fn).

If CSh(f) denotes the result of applying the composite Simpson rule to

f over the interval [a, b], and if f has a continuous fourth derivative

on (a, b), then

∫ b

a

f (x)dx − CSh(f) = −(b − a)f (4)(ξ)

180
h4

for some ξ ∈ [a, b]. Although Simpson’s rule was derived to integrate

quadratic polynomials exactly on each interval, the presence of the

fourth derivative in the error term signals that it in fact integrates cubics

exactly as well. This property follows from the fact that Simpson’s rule

is a special case of Gaussian quadrature, treated below.

Newton–Cotes Formulas

The trapezoidal rule integrates any linear polynomial exactly. In gen-

eral, we might look for an (n + 1)-point rule which integrates exactly

any polynomial of degree n. Such a quadrature rule is the New-

ton–Cotes formula.

Numerical Integration 5

Let x0, x1, . . . , xn be distinct points in the interval [a, b]. We wish

to determine constants A0, A1, . . . , An such that

∫ b

a

f (x)dx = A0f (x0) + · · · + Anf (xn)

for any polynomial f of degree ≤ n. Strictly speaking, as

Newton–Cotes usually refers to formulas with equally spaced abscissas,

this is a slight generalization.

Although there is an elegant analytic expression for the Ai in terms

of Lagrange polynomials [31], they are difficult to evaluate stably.

For rules of low degree, one can substitute in f (x) = 1, f (x) = x,

f (x) = x2, etc. to obtain a system of linear equations which can be

solved for the Ai .

Clenshaw–Curtis Integration

Newton–Cotes formulas with equally spaced abscissas are of practical

use only for small point numbers, say n ≤ 8. For n as low as nine, the

coefficients Ai vary in sign. As n increases, the coefficients become

large in absolute value, leading to unstable evaluation of the integral.

This problem can be avoided by choosing the abscissas in a more

sophisticated way. One choice for which the coefficients are not only

positive but have stable analytic expressions is the Chebyshev points

6 Numerical Integration

on [a, b],

xi = b + a

2
+ b − a

2
cos

(
iπ

n

)
, i = 0, 1, . . . , n.

Define the modified Fourier coefficients,

aj = 2

n

n∑
i=0

′′f (xi) cos
(

ijπ

n

)
,

where ′′ indicates that the first and last terms in the sum are to be

halved. If n is even, then the Clenshaw–Curtis formula can be written

∫ b

a

f (x)dx ≈ b − a

2

[
a0 − 2a2

(1)(3)
− 2a4

(3)(5)
− · · ·

− 2an−2

(n − 3)(n − 1)
− an

(n − 1)(n + 1)

]
.

Like other formulas of the Newton–Cotes type, Clenshaw–Curtis

will integrate exactly polynomials of order n or less. In practice, it

does rather better than other rules of the same order, because of the

bounded variation properties of Chebyshev polynomials. The error of

Clenshaw–Curtis integration can be estimated from the rate of decrease

of the coefficients aj . O’Hara & Smith [22] suggest the use of bounds

such as max(2|an−4|, 2|an−2|, |an|) for the approximation error.

Treatment of Singularities

Provided that the integrand f is sufficiently smooth, the Newton–Cotes

formulas converge as n → ∞. It sometimes happens, however, that one

has to integrate a function with a singularity. Suppose, for example, that,

Numerical Integration 7

for x near zero,

f (x) ≈ c

xd

for some constant c and 0 < d < 1. Then
∫ 1

0 f (x)dx exists, but the

Newton–Cotes formulas will not obtain good results because f is not

at all polynomial on [0, 1]. A better approach is to incorporate the

singularity into the quadrature rule itself.

First define

g(x) = xdf (x),

and look for a rule that evaluates the integral

∫ 1

0
g(x)x−ddx,

where g is a well-behaved function on [0, 1]. The function x−d is called

a weight function. Given any modest number of points x0, . . . , xn in

the interval (0,1], the method of undetermined coefficients can easily

determine an integration rule of the form

∫ 1

0
g(x)x−ddx = A0f (x0) + · · · + Anf (xn)

by substituting in g(x) = 1, g(x) = x, g(x) = x2, etc.

The appearance of derivatives in the error terms for Newton–Cotes

rules (and for the Gaussian rules below) shows that the method is

troubled not only by singularities in the integrand, but by singularities

8 Numerical Integration

in its derivatives as well. A weight function may therefore need to

remove singularities in the derivatives as well as in the function itself.

Gaussian Quadrature

A polynomial of degree n is determined by its n + 1 coefficients.

We have seen that the n + 1 coefficients A0, . . . , An in the (n + 1)-

point Newton–Cotes formula can be chosen to make the rule exact for

polynomials of degree n or less. The idea behind Gaussian quadrature

is that the abscissas x0, . . . , xn represent another n + 1 degrees of

freedom, which may be used to extend the exactness of the rule to

polynomials of degree 2n + 1.

Gauss quadrature formulas have the form

∫ b

a

f (x)w(x)dx ≈ A0f (x0) + · · · + Anf (xn),

where w(x) is a weight function which is greater than zero on the

interval [a, b]. The correct choice for x0, . . . , xn turns out to be

the zeros of an orthogonal polynomial P{n+1} of order n + 1. An

important point is that the coefficients Ai are positive. Moreover,

A0 + A1 + · · · + An = ∫ b

a
w(x)dx, so no coefficient can be larger than

∫ b

a
w(x)dx. Consequently, we cannot have a situation in which large

coefficients create large intermediate results that suffer cancellation

when they are added.

Numerical Integration 9

Gaussian quadrature has error formulas similar to those for New-

ton–Cotes formulas. Specifically, if f is 2n + 2 times continuously

differentiable on (a, b), and Gnf is the quadrature approximation, then

∫ b

a

f (x)w(x)dx − Gnf

= f (2n+2)(ξ)

(2n + 2)!

∫ b

a

p2
n+1(x)w(x)dx,

where ξ ∈ [a, b]. If f does not satisfy the smoothness property, then

the accuracy of Gaussian quadrature is generally reduced by at least an

order of magnitude. However, it is a consequence of the positivity of the

coefficients Ai that Gaussian quadrature converges for any continuous

function as n → ∞.

Particular Gauss formulas arise from particular choices of the interval

[a, b] and the weight function w(x). The workhorse is Gauss–Legendre

quadrature in which [a, b] = [−1, 1] and w(x) = 1, so that the formula

approximates the integral

∫ 1

−1
f (x)dx.

The corresponding orthogonal polynomials are called Legendre poly-

nomials.

10 Numerical Integration

If we take [a, b] = [0, ∞) and w(x) = e−x , we get a formula to

approximate

∫ ∞

0
f (x)e−xdx.

This is called Gauss–Laguerre quadrature.

If we take [a, b] = [−∞, ∞] and w(x) = e−x2
, we get a formula to

approximate

∫ ∞

−∞
f (x)e−x2

dx

This is Gauss–Hermite quadrature.

Computing the abscissas and coefficients for these and other Gauss

rules in a stable and efficient manner is a challenging nonlinear

problem. Two successful algorithms are those of Golub & Welsch [12]

and Sack & Donovan [28]. A FORTRAN program implementing the

Golub–Welsch method can be obtaining by searching the NETLIB∗

database for GAUSSQ. The expense of computing the abscissas and

coefficients is sufficiently great that they are usually stored and reused

rather than generated afresh for each problem.

Simpson’s rule is actually a variant of the Gauss–Legendre three-

point rule in which x0 and xn are constrained to be the end points.

Rules with such constraints are called Gauss–Radau or Gauss–Lobatto

quadrature [5].

Numerical Integration 11

Progressive Formula

Despite their optimal properties, the Gaussian formulas are not uni-

versally used in practice. The main reason for this is the difficulty of

determining in advance the required number of points to achieve a given

level of accuracy. In some cases, mathematical analysis of the function

to be integrated makes it possible to use the analytic error bounds of

the quadrature rules. It is more common, however, to estimate the error

empirically by applying the same quadrature rule twice with different

point numbers. Often the point number is doubled until the successive

values of the integral agree to the required number of figures.

A succession of integration formulas with increasing point numbers

is said to be nested or progressive if each formula reuses the abscissas

of the earlier formulas. The composite Simpson and Clenshaw–Curtis

rules with n doubling at each step are important examples of progressive

formulas. Gaussian formulas are generally not progressive, as the

abscissas at any point number are different from those for any other

point number. The relative advantage of the Gauss formulas is therefore

lost in the expense of computing addition abscissas and function

evaluations.

One possibility is to construct progressive formulas starting or

finishing with a Gaussian formula. Kronrod [18] gave a method for

12 Numerical Integration

adding points to a Gauss–Legendre formula in an optimal way. The

Kronrod rule adds n + 1 points to a n-point Gauss–Legendre formula,

resulting in a rule which integrates exactly polynomials of order 3n + 1

(n even) or 3n + 2 (n odd). The desirable properties of Gaussian

quadrature are preserved in that the abscissas remain in the integration

interval and the coefficients Ai remain positive. When the n-point

Gauss rule is combined with its Kronrod optimal extension, a very

economical pair of formulas result for the simultaneous calculation of

an approximation for an integral and the respective error estimate. The

problem of extending arbitrary quadrature formulas in a progressive

fashion was studied by Patterson [17, 23, 24], who also gave a stable

computation for the Kronrod rules. Together, the Kronrod and Patterson

methods provide a nested sequence of quadrature rules based on an

initial Gauss rule, and are the basis of some of the most widely used

integration programs.

Adaptive Methods

A quadrature rule is adaptive if it compensates for a difficult subrange

of an integrand by automatically increasing the number of quadrature

points in the awkward region. Adaptive strategies divide the integration

interval into subintervals and, typically, employ a progressive formula

in each subinterval with some fixed upper limit on the number of points

Numerical Integration 13

allowed. If the required accuracy is not achieved by the progressive

formula, then the subinterval is bisected and a similar procedure carried

out on each half. This subdivision process is carried out recursively

until convergence is achieved in each of the terminating subintervals.

Most general purpose integration programs are adaptive, since such a

strategy can be successful over a very wide range of integrands.

Multiple Integration: Product Rules

Multiple integration is concerned with the numerical approximation

of integrals of two or more variables. It is not a simple extension

of one-dimensional integration. The diversity of possible integration

regions and singularities for d-dimensional functions is daunting. As a

general rule, it is not possible to obtain the same accuracy with higher-

dimensional integrals as with one-dimensional integrals for reasonable

computing times.

The problem addressed by multiple integration is to evaluate integrals

of the form

∫
f =

∫ bd

ad

∫ bd−1(xd)

ad−1(xd)

· · ·
∫ b1(x1,...,xd)

a1(x1,...,xd)

f (x1, x2, . . . , xd)

× dx1dx2 . . . dxd.

The most obvious approach is to treat the multiple integral as a nested

sequence of one-dimensional integrals, and to use one-dimensional

14 Numerical Integration

quadrature with respect to each argument in turn. The resulting multiple

integration formula is a product rule.

Suppose that the integration region is a hyper-rectangle, so that the

integration interval [aj , bj] for xj in the above integral is independent of

xj+1, . . . , xd . If Gauss quadrature is used to integrate f with respect to xj ,

with abscissas xj0, xj1, . . . , xjn and coefficients Aj0, Aj1, . . . , Ajn, then

the product rule is

∫
f ≈

n∑
i0,i1,...,id=0

A0i0A1i1 . . . Adid

× f (x0i0, x1i1, . . . , xdid).

This rule integrates exactly any sum of monomials xα
1 x

β

2 . . . x
γ
n , where

each α, β, . . . , γ is an integer between zero and 2n + 1, a result which

derives directly from the corresponding result for the one-dimensional

Gauss rule.

The number of evaluations of f in the product rule is (n + 1)d ,

which grows exponentially with d. Rapid growth in the number of

function evaluations usually limits the practical use of product rules to

around five or six dimensions. One special case common in statistical

applications is that in which x1, . . . , xd are exchangeable. This arises

when x1, . . . , xd is an independent sample from some distribution

and f is a function of the probability density. In that case only one

Numerical Integration 15

evaluation of f is needed for all points which are permutations of one

another. The total number of evaluations required is then
(
n+d

d

)
, which

is considerably smaller than (n + 1)d , so that calculations for sample

sizes up about 10 are manageable.

Despite the above limitations, Gauss product rules have been the

basis of at least one general approach to implementing Bayesian

analysis methods, discussed in [20] and [30].

Rules of Polynomial Degree

As with quadrature, most cubature rules are designed to integrate a

certain class of polynomials exactly. A rule is said to be of polynomial

degree r if it integrates exactly any sum of monomials x
k1
1 . . . x

kd

d

with k1 + · · · + kd ≤ r . Although Gauss product rules integrate certain

monomials of higher order, they do not integrate x2n+2
j exactly and are

therefore of polynomial degree 2n + 1.

By allowing rules that are not product rules, it is usually possible

to find rules which are more efficient than the Gauss product rules in

the sense of having polynomial degree ≥ 2n + 1 yet requiring fewer

than (n + 1)d points. Methods for constructing rules of prescribed

polynomial degree are surveyed in [3]. For a compilation of such rules

see [32] and [4].

Polynomial rules of degrees five and seven on the hyper-rectangle

16 Numerical Integration

serve as basic integrating rules for the popular multiple integration

program ADAPT [11], which is described further below.

Globally Adaptive Algorithms

One-dimensional adaptive programs usually consider each subinterval

in turn, subdividing each until a specified accuracy is obtained. This

straightforward strategy is called locally adaptive because the behavior

of the algorithm in each local subinterval depends only on the error

estimates in that interval. However, for multiple integrals it is often

unknown at the beginning of the calculation whether the given accuracy

can be obtained in a reasonable amount of time. A popular adaptive

strategy, originally proposed by van Dooren & de Ridder [33], always

subdivides the integration subregion with the largest error. Such a

strategy is known as globally adaptive because it makes subdivision

decisions using information about all the current subregions. Although

globally adaptive algorithms require more memory space to maintain

the current subregion list and take more time to select subregions for

subdivision, at each stage in the calculation the global estimate for
∫

f

is in some sense the best one available using the computation that has

been done so far.

The globally adaptive program ADAPT [11] and its successor

DCUHRE [1, 2] build on the work of van Dooren & de Ridder [33].

Numerical Integration 17

ADAPT uses the difference between nested pairs of polynomial rules,

of degrees seven and five, respectively, to estimate the error in each

subregion. Some of the degree seven integrand values are also used

to compute fourth differences in directions parallel to each of the

coordinate axes. When a subregion is selected for subdivision, it is

divided in half in the direction of largest absolute fourth difference.

This clever strategy for halving in only one direction, using fourth

differences to measure integrand irregularity, is probably one of the

main reasons for the practical effectiveness of the algorithm. The later

program DCUHRE gives the user a choice of integration rules, uses a

more sophisticated error estimate, and is organized to facilitate parallel

integration of a vector of related integrands.

Lattice Methods

Lattice rules were originally called “number theoretic” or “quasi-

random” methods [32]. The integration region is translated to the unit

cube, and the integral approximated by a multiple sum of the form

Qf = 1

n1n2 . . . nt

×
nt−1∑
jt=0

· · ·
n1−1∑
j1=0

f

(
j1

n1
z1 + · · · + jt

nt

zt

)
,

where z1, . . . , zt are carefully selected integer vectors. This is the

simple unweighted mean of the integrand evaluated over a regular

18 Numerical Integration

lattice of abscissas in the unit cube. For the method to work well,

the integrand must be transformed to be periodic in the cube so that its

Fourier coefficients go to zero rapidly.

A lattice method originated by Korobov [16] and extended by

Patterson & Cranley [25] is implemented in the NAG library∗ routines

D01GCF and D01GDF. Lattice methods are not yet in widespread use,

but there is some evidence [10, 29] that they can outperform other

available methods when the number of dimensions is between about

10 and 20.

Monte Carlo Methods

The idea of estimating an integral by random sampling is a natural one

in a statistical context. In the classical Monte Carlo method [13, 19],

points x1, . . . , xn are chosen randomly in the integration region and the

integral is estimated by

f = V

n

n∑
i=1

f (xi),

where V is the volume of the integration region. Convergence is

guaranteed almost surely by the central limit theorem under very weak

conditions on f . Moreover, the rate of convergence is independent of

the dimensionality. The error f − ∫
f is approximately normal with

Numerical Integration 19

mean zero and standard deviation

σ(f)√
n

V,

where

σ 2(f) = 1

V

∫
f 2 −

(
1

V

∫
f

)2

is the variance of f . Finally, and most importantly, a free estimate of

the error is available as σ 2(f) may be estimated by the sample variance

of f (x1), . . . , f (xn).

The slow n−1/2 rate of convergence means that Monte Carlo methods

are usually limited to low accuracy; say, three significant figures.

However, this accuracy can be achieved with comparable work for

any number of dimensions and for a very wide range of integration

regions. In many statistical applications higher accuracy is not required;

computational error need only be small relative to the inherent statistical

uncertainty that enters the process of drawing inferences from data.

Practical use of the Monte Carlo method depends on techniques

for reducing the σ 2(f) variance term in the error. Central amongst

these is importance sampling, in which x1, . . . , xn are sampled from a

distribution which is as much like f in shape as possible. This has the

effect of sampling most densely in those parts of the integration region

20 Numerical Integration

where the integrand is greatest. Specifically, write the integral as

∫
f (x)g(x)dx,

where g is a density function on the integration region, and f is as

close to a constant function as possible. Points x1, . . . , xn are sampled

from g, and the integral is approximated as before by f . The standard

deviation of f is now

σg(f)√
n

,

where

σ 2
g (f) =

∫
f 2g −

(∫
fg

)2

is the variance of f with respect to the density g.

Other variance reduction techniques include stratified sampling

and antithetic acceleration. Antithetic acceleration involves generating

pairs of identically distributed but negatively correlated points x1
i and

x2
i . This tends to produce negatively correlated terms in the sum; the

more negative the correlation, the lower the variance of the sum. See

[5], [13], [15], or [8] for references to variance reduction methods. The

use of Monte Carlo integration to solve Bayesian problems is treated

more fully in the article, Markov chain Monte Carlo.

The NAG library subroutine D01GBF uses an adaptive Monte Carlo

algorithm to integrate over a hyper-rectangle. The number of subregions

Numerical Integration 21

is doubled at each iteration, and in each the integral and variance are

estimated by Monte Carlo sampling. Algorithms also exist which are

adaptive in terms of the importance sampling density. Such algorithms

refine the importance sampling density adaptively so as to minimize

σ 2 during the Monte Carlo process [5, 21].

Conclusions

If a large number of well-behaved one-dimensional integrands are to

be integrated, and the user is willing to do some analytic analysis to

obtain efficiency, then it is hard to go past the classical Gauss quadrature

methods. More usually, though, users will choose to use an automatic

integration program of some kind, using computer time to save their

own time and to gain reliability.

Reliable and well-documented software for numerical integration

can be found by searching the NIST GAMS online catalogue at

http://gams.nist.gov under category “h2”. See [14] for brief reviews

of much of this software. It is also worth searching the STATLIB

database for statistical functions based on these routines. Simple

integration programs, suitable for modification by users, can be found in

[27]. Most major statistical and mathematical programming languages

include numerical integration programs, often based on the programs

found in GAMS.

22 Numerical Integration

In one and two dimensions there is a wealth of reliable and effective

programs. The leading one-dimensional package currently is QUAD-

PACK by Piessen et al. [26]. This is available from the NETLIB

database and is cross-classified by GAMS. It has also been incorporated

into the NAG, IMSL, and SLATEC subroutine libraries. QUADPACK

provides a suite of programs designed for different types of difficulties,

such as singularities and oscillatory integrands, and includes a decision

tree to guide the user in choosing the appropriate routine. The program

QAGS is a particularly robust general purpose integration program, as

is the non-QUADPACK program CADRE [6] which is included in the

IMSL library. In statistical applications, however, the integrands are

often smooth with a single dominant peak, so the more efficient pro-

grams QNG and QAG, which use higher-order Gauss, Gauss–Kronrod

and Patterson rules, may suffice.

So far there is no reliable suite of programs for multiple integration.

Up to 10 or perhaps 15 dimensions, globally adaptive routines such

as ADAPT and DCUHRE can be recommended. When the number of

dimensions exceeds about 20, Monte Carlo methods are the only ones

possible. Mark 17 of the NAG library includes ten multiple integration

programs, including one which implements a Monte Carlo method.

