
Chapter 2

Constrained Optimization

2.1 Introduction

This chapter introduces and explains the fundamental mathematical tools that we will need to
study consumer theory. It is a self contained summary of multivariable calculus and constrained
optimization. It assumes familiarity with calculus of a single variable.

Multivariable calculus is a pre requisite to understanding constrained optimization which is
the fundamental technique that economists use to analyze economic problems. Consider the
economic problem faced by consumers, the subject of Part I. Consumers are rational in the
sense that they use their limited resources to obtain the maximum amount of happiness that
they can. They must choose the combination of consumption that grants them the highest
possible level of utility. Choice and trade-offs are at the root of any economic problem. If
consumers were to get utility from only one good, the solution to the economic problem would
be trivial: consume as much as possible. In order to have a meaningful economic problem, we
need to provide consumers with a choice. In this case the solution to the economic problem is
not as obvious. Constraints illustrate the fact that resources are limited and the Calculus is
the tool that we use to implement the rationality of consumers. Constrained optimization is,
therefore, the way in which we study the interaction between scarcity and rational choice.

We will discuss two solution methods to a constrained optimization problem. First, we will
study the substitution method, which essentially eliminates the constraint and one variable;
then, we will proceed to study the method of Lagrange multipliers which introduces an
extra variable and treats the constraint explicitly. We will also explain why these two methods
are equivalent. That is, why they give the same solution to well posed economic problems.
However, we will highlight the benefit of each solution method, in terms of the economic intu-
ition that we derive from each one. Then, we will introduce the Kuhn-Tucker theorem, which
is an extension of Lagrange’s method of solving constrained maximization problem to the case
of non-negativity constraints on the variables. We will also discuss under what conditions the
first order conditions of the maximization are also sufficient for a maximum.

The last topic we cover deals with comparative statics. Comparative statics concerns
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38 CHAPTER 2. CONSTRAINED OPTIMIZATION

the effect that a change in parameters has on the solution to our problem. We will introduce
techniques from the Calculus, the envelope theorem in particular, to show how we can carry
out sensitivity analysis on the solution to our economic problem.

2.2 Partial Derivatives

Suppose that we have a function of two variables. Call it f (x, y) . We want to know how rapidly
the function changes when the variables change. The problem is that if both variables change
at the same time, it may be difficult to isolate the effect of, say, the change in x. Partial
derivatives allow us to quantify the effect on a function of the change in one variable when all
others held constant.

Suppose we take the function f (x, y) , but we evaluate it at a fixed value of y, say ȳ. Now we
have a function of only one variable, since now the value of y is fixed, and all the differentiation
rules from single variable calculus apply. Our function is now equal to:

f (x, y = ȳ) .

Suppose that I want to know how rapidly the function is changing in the x direction. Then,
I take the derivative with respect to x of f (x, y = ȳ) :

fx =
∂f (x, y)

∂x
=

df (x, y = ȳ)
dx

.

Notice that what we are doing is holding the value of y constant and taking the derivative
with respect to x. The derivative will, in general, be a function of both x and y. This means
that the magnitude of fx depends on the value of y at which we evaluate fx.

Example 2.1 Suppose the f (x, y) = xαy1−α. Then,

fx =
∂f

∂x
= αxα−1y1−α

and
fy =

∂f

∂y
= (1− α) xαy−α.

Notice how we hold constant one of the variable and then we look for the magnitude of
change in the direction of the other variable, treating the function as if it were a single variable
function.

2.3 Total Derivatives

Suppose, now, that both x and y change simultaneously. We want to find the effect of this
change on f. We will compute the total derivative of f by decomposing the total change
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in f as the sum of two partial changes. First, hold x fixed and compute the change in the
direction of y. This is fy. Multiply fy by the magnitude of the change, say, dy. Then, fydy is
the magnitude of the change in f due to the change in y holding x constant. To find the total
change, add to this quantity the effect of the change in x holding y constant: fxdx. The total
differential is equal to:

df = fxdx + fydy.

Suppose that we divide both sides by dx :
df

dx
= fx + fy

dy

dx
.

This expression tells us that the total change in f due to a change in x is the sum of a direct
effect and an indirect effect. The direct effect, fx, holds y fixed. The indirect effect is the
extra change that arises from the effect that x may have on y, dy

dx , and the subsequent effect
that y has on f, holding x constant, fx. Suppose that we take y to be constant as we do in
partial differentiation. Then, dy

dx = 0 and the indirect effect vanishes. The change in f is simply
given by the direct effect which is the partial derivative with respect to x :

df

dx
= fx

the total effect is simply the partial effect.

2.4 The Substitution Method

The standard constrained optimization problem is given by:

[P ] : max
{x,y}

f (x, y)

s.t. g (x, y) = m
(2.1)

Notice that there are three variables in this problem. We wish to select the control variables
{x, y} to make the objective function, f (x, y) , as large as possible, as long as when we plug
these values into the constraint, g (x, y) , we obtain exactly m. The third variable, m, is a
parameter, which we may take as a given of the problem.

The substitution method is very intuitive. First we solve the constraint for one of the
control variables, say y, as a function of the other control variable, x, and the parameter m:

y = h (x,m) .

Next we substitute y out of the problem to obtain the following optimization problem, which
we label [S] :

[S] : max
{x}

f (x, h (x,m)) (2.2)

The substitution method allows us to convert a problem that we are not quite sure how to solve
into a single variable calculus problem that we can solve by taking a derivative. The first order
condition of this problem is given by the following expression:

[x] : fx + fy
dh
dx . (2.3)
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Notice that we use the chain rule to obtain the first order condition. We need it because the
constraint does not allow us to select x and y independently of each other; any optimal choice
must satisfy the constraint. Therefore, when we vary x a little bit, we need to consider the
effect that varying x has on our choice of y. In other words, because the solution must satisfy
the constraint the effect that changing x has on the feasible value of y (this happens through
dh
dx) must affect our choice of x.

There are several points that deserve special mention. First, two letters appear in the first
order condition: x and m. But, remember that m is a parameter so it is given to us and we
consider it a number. Therefore, the solution to the problem is given by the value of x that
makes the first order condition exactly equal to 0. It turns out that since we do not have a
value for the parameter m, the maximizing value of x will be a function of m. Also, we will
place a star on the maximizing value of x, x∗, to indicate that x∗ is a number. Therefore, the
maximizing value of x is written as x∗ (m) and it solves the following equation:

fx + fy
dh

dx
= 0.

To obtain the maximizing value of y, we plug x∗ into the implicit function we obtained above:

y∗ (m) = h (x∗ (m) ,m) .

Therefore, the solution to [P ] when we use [S] is given by two equations:

fx + fy
dh

dx
= 0 (2.4)

y∗ (m) = h (x∗ (m) ,m) .

The first condition determines the maximizing value of x and the second utilizes the constraint
to obtain the maximizing value of y. It is important to note that we use the constraint twice.
First we use it in the maximization to replace the value of one variable. Second, we use it to
recover the optimal value of the variable we substituted out.

Consider the following simple example.

Example 2.2 Suppose we want to solve the following maximization problem:

max
x,y

log (x) + log (y)

s.t. x + y = m

Then,
f (x, y) = log (x) + log (y)
g (x, y) = x + y

Solving for h (x,m) , we obtain
y = m− x = h (x,m) ,
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and substituting for y we obtain the following equivalent maximization problem:

max
x

log (x) + log (m− x)

The first order condition for this problem is

[x] : 1
x∗ + 1

m−x (−1) = 0 .

and solving for x∗ we obtain
x∗ =

m

2
.

Then, we use y = h (x,m) = m− x to obtain the optimal value of y :

y∗ =
m

2
.

Notice that as we stated previously, the solution expresses the choice variables, in this case x
and y, as functions of the parameters, in this case m.

Alternatively we could substitute in for x after taking the first order conditions. We show
the equivalence of both procedures in the following example.

Example 2.3 Consider the same maximization as in the previous example. In the text we
derived the two conditions that determine the optimum values of x and y, which we reproduce
below for convenience:

y∗ (m) = h (x∗ (m) ,m)

fx + fy
dh

dx
= 0.

The first condition is a simple manipulation of the constraint, evaluated at the optimal value.
The second is the first order condition with respect to x, also evaluated at the optimum. In our
simple maximization problem the first condition is given by

y∗ = m− x∗

and the second is given by
1
x∗

+
1
y∗

(−1) = 0.

If we substitute for y∗ in the second condition, the equations determining the optimum values
of x and y are given by:

1
x∗

+
1

m− x∗
(−1) = 0

y∗ = m− x∗

which is precisely the first order condition that with respect to x of the previous problem.
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2.5 The Method of Lagrange Multipliers

Instead of replacing the constraint into the objective function, the method of Lagrange
multipliers introduces one more variable, λ, into the problem. This variable is known as the
Lagrange multiplier and has an important economic interpretation which we will get to later.
The method of Lagrange relies on maximizing an associated function, called the Lagrangian. We
form the Lagrangian by adding λ times the constraint to the objective function and maximizing
over the control variables and also the Lagrange multiplier:

[L] : max
{x,y,λ}

f (x, y) + λ (m− g (x, y)) . (2.5)

In order to maximize the Lagrangian, we take partial derivatives with respect to the three
control variables:

[x] : fx − λgx

[y] : fy − λgy

[λ] : m− g (x, y)
(2.6)

and to obtain the maximizing values of the controls, x∗, y∗, λ∗, we set these equations equal to
zero and solve them simultaneously.

First we note that this method treats the constraint explicitly, therefore, there is no chain
rule effect in the first order conditions. In the process of taking first order conditions, we
treat all variables except the control variable at hand as constant. Thus, we take only partial
derivatives and not total derivatives. In this case, the solution satisfies the constraint because
the constraint is one of the conditions that must be explicitly satisfied.

Example 2.4 Consider the same maximization problem that we solved via the substitution
method in the previous section. That is, suppose we want to solve

max
x,y

log (x) + log (y)

s.t. x + y = m

using Lagrange multipliers. First we form the Lagrangian

[L] : max
{x,y,λ}

log (x) + log (y) + λ (m− x− y) . (2.7)

Now we find the first order conditions by taking derivatives with respect to x, y, and λ and
setting them equal to 0 :

[x] : 1
x∗ − λ∗ = 0

[y] : 1
y∗ − λ∗ = 0

[λ] : m− x∗ − y∗ = 0.
(2.8)

Now we obtain the optimality condition by eliminating λ∗ from [x] and [y] :

x∗ = y∗.
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The optimality condition gives us the relationship between x and y when they are optimally
chosen. [λ] is the feasibility condition because it pins down the level of x and y consistent with
the available resources:

x∗ + y∗ = m.

We have two equations and two unknowns which we can solve for x∗ and y∗. The solution is
given by:

x∗ = y∗ =
m

2
, (2.9)

precisely what we obtained with the substitution method. Recall, however, that λ is also a choice
variable and, consequently, we must solve for it too. We can obtain it either from [x] or [y] :

λ∗ =
2
m

. (2.10)

Therefore, notice that both methods give us the same solution, but Lagrange’s method give
us more information! In addition to the optimal values of x and y, it also tells us the value of
λ. We will explore the reasons for the equivalence of the two problems in the following section.
Then, we will provide the economic interpretation of the Lagrange multiplier.

2.6 Equivalence of [S] and [L]

Both methods are equivalent if they yield the same solution to the constrained optimization
problem. That is we should get the same optimal values of x and y. This will occur if both
methods have the same first order conditions or if we can obtain the first order conditions of
one method from the first order conditions of the other. Certain conditions must be satisfied
in order for the solution to the problem to exist. We will leave these restrictions unstated but
we will provide an example where the solution method fails after the simple proof. The type of
problem that we are interested in solving will not be problematic so you can use either method
with confidence.

Now, on to the proof. We want to show that [x] and [y] of [L] are equivalent to [x] of [S] .
We will begin by showing that we can get the necessary conditions of [S] from those of [L].
Therefore we need to eliminate λ and consolidate the remaining conditions into one equation
that allows us to recover the value of the control variable from [S]. Thus, we look for a value of
λ that leads both sets of first order conditions to be equivalent. In both cases, the constraint
provides the value of the other control.

First, we set the first order conditions of [L] equal to zero. Let us solve [y] for λ∗ and obtain:

λ∗ =
fy

gy
.

If we plug in this value of λ∗ into [y] for [L] the first order condition holds trivially:

fy − fy

gy
gy = 0
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because we used that same equation to find λ∗ so it must hold. If we replace the value for λ∗
into [x] of [L] we obtain:

fx − fy

gy
gx

Recall that all partials are functions of x∗ and y∗ only.

Now, we look at [S] . The first order condition of this problem is given by:

fx + fy
dh

dx
= 0,

where
y = h (x,m) .

We can use implicit differentiation on the constraint to obtain dy
dx . We know that:

gxdx + gydy = 0

and solving for dy
dx we obtain:

dy

dx
= −gx

gy
=

dh

dx

where the last equality follows because we obtained the implicit function h (x,m) by solving the
constraint for y. Notice that there is an implicit assumption here: gy "= 0 must hold everywhere
(for every possible x, y combination) because otherwise we would be dividing by 0 and the entire
procedure would break down.

Since dy
dx = −gx

gy
, we can rewrite the first order condition we obtained from [S] as:

fx + fy

(
−gx

gy

)
= 0,

which we can re-write as:
fx −

(
fy

gy

)
gx = fx − λ∗gx = 0

so the first order condition [x] of [L] holds too. The last piece of information is provided by the
constraint which in [S] we substituted into the first order condition. We need it to recover the
optimal value of y, y∗. In [L], we consider it explicitly and use it, also to obtain the optimal
value of y. Thus, we have shown that we can get [S] from [L] . We can show that we can get
[L] from [S] by working backwards. This establishes the equivalence of [S] and [L] .

2.7 The Economic Interpretation of λ

If [S] and [L] are equivalent, then why bother with [L]? The answer to this question is that λ
provides important economic information. Remember that we will be interested in obtaining
information about behavior, so that we are not done once we have obtained the solution. In
addition, we want to know how the solution varies when we change the parameters of the
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problem; that is we wish to compute comparative statics properties. λ is the answer to one
such question.

λ is often referred to as the shadow value of the constraint (in economic applications it is
called the marginal utility of income). It tells us by how much the maximum value of the
objective function changes when we relax the constraint by one unit:

df∗

dm
= λ. (2.11)

We know that the solution to [L] can be written as x∗ (m) and y∗ (m) , so that the maximum
value of the objective function is obtained by plugging the maximizers into it:

f∗ (m) = f (x∗ (m) , y∗ (m)) .

If we take the derivative of the objective function with respect to m, we obtain:

df∗

dm
= f∗x

dx∗

dm
+ f∗y

dy∗

dm
,

but if we recall that [x] and [y] of [L] are given by

[x] : f∗x − λ∗g∗x = 0
[y] : f∗y − λ∗g∗y = 0

we can re-write the derivative as:

df∗

dm
= λ∗

(
g∗x

dx∗

dm
+ g∗y

dy∗

dm

)
,

by solving the first order conditions for f∗x and f∗y and, then, substituting them out in the
expression for df∗

dm above.

We also know that the constraint must hold with equality:

g (x∗ (m) , y∗ (m)) = m.

Therefore, if we take the derivative of the constraint with respect to m, we obtain

g∗x
dx∗

dm
+ g∗y

dy∗

dm
= 1,

which we can use to substitute and obtain the desired result:

df∗

dm
= λ∗.

This result is an example of comparative statics. It tells us how the solution to [P ] varies as
we vary the parameters of the problem. Throughout the course we will be interested in studying
the properties of two versions of [P ] : the problems of utility maximization and expenditure
minimization.




