Solution Paper – I

Mathematical Methods in Engineering & Science

Example 1 Consider the vectors \overrightarrow{PQ} and \overrightarrow{RS} in \mathbb{R}^3 , where P = (2,1,5), Q = (3,5,7), R = (1,-3,-2) and S = (2,1,0). Does $\overrightarrow{PQ} = \overrightarrow{RS}$?

Solution: The vector \overrightarrow{PQ} is equal to the vector \mathbf{v} with initial point (0,0,0) and terminal point Q - P = (3,5,7) - (2,1,5) = (3-2,5-1,7-5) = (1,4,2).

Similarly, \overrightarrow{RS} is equal to the vector **w** with initial point (0,0,0) and terminal point S - R = (2,1,0) - (1,-3,-2) = (2-1,1-(-3),0-(-2)) = (1,4,2).

So
$$\overrightarrow{PQ} = \mathbf{v} = (1, 4, 2)$$
 and $\overrightarrow{RS} = \mathbf{w} = (1, 4, 2)$.

$$\therefore \overrightarrow{PQ} = \overrightarrow{RS}$$

Figure 1.1.7

Recall the distance formula for points in the Euclidean plane:

For points $P=(x_1,y_1), \ Q=(x_2,y_2)$ in \mathbb{R}^2 , the distance d between P and Q is:

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$
 (1.1)

By this formula, we have the following result:

For a vector \overrightarrow{PQ} in \mathbb{R}^2 with initial point $P=(x_1,y_1)$ and terminal point $Q=(x_2,y_2)$, the magnitude of \overrightarrow{PQ} is:

$$\|\overrightarrow{PQ}\| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$
 (1.2)

Finding the magnitude of a vector $\mathbf{v} = (a, b)$ in \mathbb{R}^2 is a special case of formula (1.2) with P = (0,0) and Q = (a,b):

For a vector $\mathbf{v} = (a, b)$ in \mathbb{R}^2 , the magnitude of \mathbf{v} is:

$$\|\mathbf{v}\| = \sqrt{a^2 + b^2} \tag{1.3}$$

To calculate the magnitude of vectors in \mathbb{R}^3 , we need a distance formula for points in Euclidean space (we will postpone the proof until the next section):

Theorem 1.1. The distance d between points $P = (x_1, y_1, z_1)$ and $Q = (x_2, y_2, z_2)$ in \mathbb{R}^3 is:

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$
 (1.4)

The proof will use the following result:

Theorem 1.2. For a vector $\mathbf{v} = (a, b, c)$ in \mathbb{R}^3 , the magnitude of \mathbf{v} is:

$$\|\mathbf{v}\| = \sqrt{a^2 + b^2 + c^2} \tag{1.5}$$

QED

Proof: There are four cases to consider:

Case 1:
$$a = b = c = 0$$
. Then $\mathbf{v} = \mathbf{0}$, so $\|\mathbf{v}\| = 0 = \sqrt{0^2 + 0^2 + 0^2} = \sqrt{a^2 + b^2 + c^2}$.

Case 2: exactly two of a, b, c are 0. Without loss of generality, we assume that a = b = 0 and $c \neq 0$ (the other two possibilities are handled in a similar manner). Then $\mathbf{v} = (0,0,c)$, which is a vector of length |c| along the z-axis. So $\|\mathbf{v}\| = |c| = \sqrt{c^2} = \sqrt{0^2 + 0^2 + c^2} = \sqrt{a^2 + b^2 + c^2}$.

Case 3: exactly one of a,b,c is 0. Without loss of generality, we assume that $a = 0, b \neq 0$ and $c \neq 0$ (the other two possibilities are handled in a similar manner). Then $\mathbf{v} = (0, b, c)$, which is a vector in the yz-plane, so by the Pythagorean Theorem we have $\|\mathbf{v}\| = \sqrt{b^2 + c^2} =$ $\sqrt{0^2 + b^2 + c^2} = \sqrt{a^2 + b^2 + c^2}$

Case 4: none of a,b,c are 0. Without loss of generality, we can assume that a, b, c are all positive (the other seven possibilities are handled in a similar manner). Consider the points P = (0,0,0), Q = (a,b,c), R = (a,b,0), and S = (a,0,0), as shown in Figure 1.1.8. Applying the Pythagorean Theorem to the right triangle $\triangle PSR$ gives $|PR|^2 = a^2 + b^2$. A second application of the Pythagorean Theorem, this time to the right triangle $\triangle PQR$, gives $\|\mathbf{v}\| = |PQ| = \sqrt{|PR|^2 + |QR|^2} = \sqrt{a^2 + b^2 + c^2}$.

This proves the theorem.

Figure 1.1.8

Example-2 Let $\mathbf{v} = (2, 1, -1)$ and $\mathbf{w} = (3, -4, 2)$ in \mathbb{R}^3 .

(a) Find v – w.

Solution:
$$\mathbf{v} - \mathbf{w} = (2 - 3, 1 - (-4), -1 - 2) = (-1, 5, -3)$$

(b) Find $3\mathbf{v} + 2\mathbf{w}$.

Solution:
$$3\mathbf{v} + 2\mathbf{w} = (6, 3, -3) + (6, -8, 4) = (12, -5, 1)$$

(c) Write v and w in component form.

Solution:
$$\mathbf{v} = 2\mathbf{i} + \mathbf{j} - \mathbf{k}$$
, $\mathbf{w} = 3\mathbf{i} - 4\mathbf{j} + 2\mathbf{k}$

Example- 3 Prove: $(\mathbf{u} \times \mathbf{v}) \cdot (\mathbf{w} \times \mathbf{z}) = \begin{vmatrix} \mathbf{u} \cdot \mathbf{w} & \mathbf{u} \cdot \mathbf{z} \\ \mathbf{v} \cdot \mathbf{w} & \mathbf{v} \cdot \mathbf{z} \end{vmatrix}$ for all vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{z}$ in \mathbb{R}^3 .

Solution: Let $x = u \times v$. Then

$$\begin{aligned} (\mathbf{u} \times \mathbf{v}) \cdot (\mathbf{w} \times \mathbf{z}) &= \mathbf{x} \cdot (\mathbf{w} \times \mathbf{z}) \\ &= \mathbf{w} \cdot (\mathbf{z} \times \mathbf{x}) \quad \text{(by formula (1.12))} \\ &= \mathbf{w} \cdot (\mathbf{z} \times (\mathbf{u} \times \mathbf{v})) \\ &= \mathbf{w} \cdot ((\mathbf{z} \cdot \mathbf{v})\mathbf{u} - (\mathbf{z} \cdot \mathbf{u})\mathbf{v}) \quad \text{(by Theorem 1.16)} \\ &= (\mathbf{z} \cdot \mathbf{v})(\mathbf{w} \cdot \mathbf{u}) - (\mathbf{z} \cdot \mathbf{u})(\mathbf{w} \cdot \mathbf{v}) \\ &= (\mathbf{u} \cdot \mathbf{w})(\mathbf{v} \cdot \mathbf{z}) - (\mathbf{u} \cdot \mathbf{z})(\mathbf{v} \cdot \mathbf{w}) \quad \text{(by commutativity of the dot product).} \\ &= \begin{vmatrix} \mathbf{u} \cdot \mathbf{w} & \mathbf{u} \cdot \mathbf{z} \\ \mathbf{v} \cdot \mathbf{w} & \mathbf{v} \cdot \mathbf{z} \end{vmatrix} \end{aligned}$$

Example - 4 Find the intersection (if any) of the spheres $x^2 + y^2 + z^2 = 25$ and $x^2 + y^2 + (z - 2)^2 = 16$.

Solution: For any point (x, y, z) on both spheres, we see that

$$x^2 + y^2 + z^2 = 25$$
 \Rightarrow $x^2 + y^2 = 25 - z^2$, and $x^2 + y^2 + (z - 2)^2 = 16$ \Rightarrow $x^2 + y^2 = 16 - (z - 2)^2$, so $16 - (z - 2)^2 = 25 - z^2$ \Rightarrow $4z - 4 = 9$ \Rightarrow $z = 13/4$ \Rightarrow $x^2 + y^2 = 25 - (13/4)^2 = 231/16$

... The intersection is the circle $x^2+y^2=\frac{231}{16}$ of radius $\frac{\sqrt{231}}{4}\approx 3.8$ centered at $(0,0,\frac{13}{4})$.

Example- - 5 Convert the point (-2, -2, 1) from Cartesian coordinates to (a) cylindrical and (b) spherical coordinates.

Solution: (a)
$$r = \sqrt{(-2)^2 + (-2)^2} = 2\sqrt{2}$$
, $\theta = \tan^{-1}\left(\frac{-2}{-2}\right) = \tan^{-1}(1) = \frac{5\pi}{4}$, since $y = -2 < 0$. $\therefore (r, \theta, z) = \left(2\sqrt{2}, \frac{5\pi}{4}, 1\right)$

(b)
$$\rho = \sqrt{(-2)^2 + (-2)^2 + 1^2} = \sqrt{9} = 3$$
, $\phi = \cos^{-1}\left(\frac{1}{3}\right) \approx 1.23$ radians. $(\rho, \theta, \phi) = \left(3, \frac{5\pi}{4}, 1.23\right)$

Example- 6 Find
$$\frac{\partial f}{\partial x}$$
 and $\frac{\partial f}{\partial y}$ for the function $f(x,y) = \frac{\sin(xy^2)}{x^2 + 1}$.

Solution: Treating y as a constant and differentiating f(x, y) with respect to x gives

$$\frac{\partial f}{\partial x} = \frac{(x^2 + 1)(y^2 \cos(xy^2)) - (2x)\sin(xy^2)}{(x^2 + 1)^2}$$

and treating x as a constant and differentiating f(x,y) with respect to y gives

$$\frac{\partial f}{\partial y} = \frac{2xy\cos(xy^2)}{x^2 + 1} \ .$$

Example-7 Find the eigenvalues and eigenvectors of A and A^2 and A^{-1} and A + 4I:

$$A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \quad \text{and} \quad A^2 = \begin{bmatrix} 5 & -4 \\ -4 & 5 \end{bmatrix}.$$

Check the trace $\lambda_1 + \lambda_2$ and the determinant $\lambda_1 \lambda_2$ for A and also A^2 .

Solution The eigenvalues of A come from $det(A - \lambda I) = 0$:

$$\det(A - \lambda I) = \begin{vmatrix} 2 - \lambda & -1 \\ -1 & 2 - \lambda \end{vmatrix} = \lambda^2 - 4\lambda + 3 = 0.$$

This factors into $(\lambda - 1)(\lambda - 3) = 0$ so the eigenvalues of A are $\lambda_1 = 1$ and $\lambda_2 = 3$. For the trace, the sum 2+2 agrees with 1+3. The determinant 3 agrees with the product $\lambda_1\lambda_2 = 3$. The eigenvectors come separately by solving $(A - \lambda I)x = 0$ which is $Ax = \lambda x$:

$$\lambda = 1$$
: $(A - I)x = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ gives the eigenvector $x_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

$$\lambda = 3$$
: $(A - 3I)x = \begin{bmatrix} -1 & -1 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ gives the eigenvector $x_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$

 A^2 and A^{-1} and A+4I keep the same eigenvectors as A. Their eigenvalues are λ^2 and λ^{-1} and $\lambda+4$:

$$A^2$$
 has eigenvalues $1^2 = 1$ and $3^2 = 9$ A^{-1} has $\frac{1}{1}$ and $\frac{1}{3}$ $A + 4I$ has $\frac{1+4=5}{3+4=7}$

The trace of A^2 is 5+5 which agrees with 1+9. The determinant is 25-16=9.

Notes for later sections: A has orthogonal eigenvectors (Section 6.4 on symmetric matrices). A can be diagonalized since $\lambda_1 \neq \lambda_2$ (Section 6.2). A is similar to any 2 by 2 matrix with eigenvalues 1 and 3 (Section 6.6). A is a positive definite matrix (Section 6.5) since $A = A^T$ and the λ 's are positive.

Example-8 Find the eigenvalues and eigenvectors of this 3 by 3 matrix A:

Symmetric matrix
Singular matrix
$$A = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{bmatrix}$$
Trace $1 + 2 + 1 = 4$

Solution Since all rows of A add to zero, the vector x = (1, 1, 1) gives Ax = 0. This is an eigenvector for the eigenvalue $\lambda = 0$. To find λ_2 and λ_3 I will compute the 3 by 3 determinant:

$$\det(A - \lambda I) = \begin{vmatrix} 1 - \lambda & -1 & 0 \\ -1 & 2 - \lambda & -1 \\ 0 & -1 & 1 - \lambda \end{vmatrix} = (1 - \lambda)(2 - \lambda)(1 - \lambda) - 2(1 - \lambda)$$

$$= (1 - \lambda)[(2 - \lambda)(1 - \lambda) - 2]$$

$$= (1 - \lambda)(-\lambda)(3 - \lambda).$$

That factor $-\lambda$ confirms that $\lambda = 0$ is a root, and an eigenvalue of A. The other factors $(1 - \lambda)$ and $(3 - \lambda)$ give the other eigenvalues 1 and 3, adding to 4 (the trace). Each eigenvalue 0, 1, 3 corresponds to an eigenvector:

$$x_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
 $Ax_1 = 0x_1$ $x_2 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$ $Ax_2 = 1x_2$ $x_3 = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$ $Ax_3 = 3x_3$.

I notice again that eigenvectors are perpendicular when A is symmetric.

The 3 by 3 matrix produced a third-degree (cubic) polynomial for $det(A - \lambda I) = -\lambda^3 + 4\lambda^2 - 3\lambda$. We were lucky to find simple roots $\lambda = 0, 1, 3$. Normally we would use a command like eig(A), and the computation will never even use determinants (Section 9.3 shows a better way for large matrices).

The full command [S, D] = eig(A) will produce unit eigenvectors in the columns of the eigenvector matrix S. The first one happens to have three minus signs, reversed from (1, 1, 1) and divided by $\sqrt{3}$. The eigenvalues of A will be on the diagonal of the eigenvalue matrix (typed as D but soon called Λ).

Example-9 Find all local maxima and minima of $f(x, y) = x^2 + xy + y^2 - 3x$. Solution: find the critical points, i.e. where $\nabla f = 0$. Since

$$\frac{\partial f}{\partial x} = 2x + y - 3$$
 and $\frac{\partial f}{\partial y} = x + 2y$

then the critical points (x, y) are the common solutions of the equations

$$2x + y - 3 = 0$$
$$x + 2y = 0$$

which has the unique solution (x,y) = (2,-1). So (2,-1) is the only critical point. To use Theorem 2.6, we need the second-order partial derivatives:

$$\frac{\partial^2 f}{\partial x^2} = 2$$
, $\frac{\partial^2 f}{\partial y^2} = 2$, $\frac{\partial^2 f}{\partial y \partial x} = 1$

and so

$$D \; = \; \frac{\partial^2 f}{\partial x^2}(2,-1) \frac{\partial^2 f}{\partial y^2}(2,-1) - \left(\frac{\partial^2 f}{\partial y \, \partial x}(2,-1)\right)^2 \; = \; (2)(2) - 1^2 \; = \; 3 \; > \; 0$$

and $\frac{\partial^2 f}{\partial x^2}(2,-1) = 2 > 0$. Thus, (2,-1) is a local minimum.

Example-10 Evaluate $\int_C (x^2 + y^2) dx + 2xy dy$, where:

(a)
$$C: x = t$$
, $y = 2t$, $0 \le t \le 1$

(b)
$$C: x = t$$
, $y = 2t^2$, $0 \le t \le 1$

Solution: Figure 4.1.4 shows both curves.

(a) Since x'(t) = 1 and y'(t) = 2, then

$$\int_C (x^2 + y^2) dx + 2xy dy = \int_0^1 \left((x(t)^2 + y(t)^2) x'(t) + 2x(t) y(t) y'(t) \right) dt$$

$$= \int_0^1 \left((t^2 + 4t^2)(1) + 2t(2t)(2) \right) dt$$

$$= \int_0^1 13t^2 dt$$

$$= \frac{13t^3}{3} \Big|_0^1 = \frac{13}{3}$$

Figure 4.1.4

(b) Since x'(t) = 1 and y'(t) = 4t, then

$$\int_C (x^2 + y^2) dx + 2xy dy = \int_0^1 \left((x(t)^2 + y(t)^2) x'(t) + 2x(t) y(t) y'(t) \right) dt$$

$$= \int_0^1 \left((t^2 + 4t^4)(1) + 2t(2t^2)(4t) \right) dt$$

$$= \int_0^1 (t^2 + 20t^4) dt$$

$$= \left. \frac{t^3}{3} + 4t^5 \right|_0^1 = \frac{1}{3} + 4 = \frac{13}{3}$$