Solution Paper -1
Mathematical Methods in Engineering & Science

Example 1 ~ Consider the vectors PQ and RS in R®, where P = (2,1,5),Q = (3,5,7),R =
(1,-3,-2) and § =(2,1,0). Does PQ =RS?

Solution: The vectofrP—Q is equal to the vector v with initial point (0,0,0) and terminal point
Q@-P=(3,57-12,1,5)=(3-2,5-1,7T-5)=1(1,4,2).

Similarly, RS is equal to the vector w with initial point (0,0,0) and terminal point S-R =
(2,1,00—(1,-3,-2)=(2-1,1-(-3),0-(-2))=(1,4,2).

So PQ=v=(1,4,2) and RS =w=(1,4,2).

SPR=RS

Figure 1.1.7

Recall the distance formula for points in the Euclidean plane:

For points P = (x,,%,), @ = (x,,v,) in B2, the distance d between P and Q is:

d= '\."'Ill{xz_xl}z“'(yz_j"l}z (1.1)

By this formula, we have the following result:

For a vector P_Q in B? with initial point P = (x,,y,) and terminal point
Q = (x,,y,), the magnitude of PQ is:

1PQ] = \/ (e~ 22+ (3.~ 312 (1.2)




Finding the magnitude of a vector v = (a,b) in B? is a special case of formula (1.2) with

P=(0,0)and @ =(a,b):

For a vector v = (a,b) in B2, the magnitude of v is:

vl =va?+b?

.

(1.3)

To calculate the magnitude of vectors in R, we need a distance formula for points in

Euclidean space (we will postpone the proof until the next section):

Theorem 1.1. The distance d between points P = (x,,¥,,2,) and @ = (x.,¥.,2.) in B is:
d =)0t~ 2)2+ (3~ 3,)2 +(2, - 2,)° (1.4)
The proof will use the following result:
Theorem 1.2. For a vector v=(a,b,c) in R® the magnitude of v is:
Ivli=va?+b2+c? (1.5)

Proof: There are four cases to consider:

Case1:a=b=c=0.Thenv=0,50 [v]|=0=v0%+02+02=vaZ+b2+cZ

Case 2: exactly two of a, b, c are 0. Without loss of generality, we assume thata =56 =0 and
¢ # 0 (the other two possibilities are handled in a similar manner). Then v = (0,0, ¢), which

is a vector of length |c| along the z-axis. So [v] =lc|=veZ=v0E+02+cZ=VaZ+bZ+cl.

Case 3: exactly one of a,b,c iz 0. Without loss of generality, we assume thata =0, 5 Z0
and ¢ # 0 (the other two possibilities are handled in a similar manner). Then v=1(0,b,¢),
which is a vector in the yz-plane, so by the Pythagorean Theorem we have |v| = vbZ +¢Z =

VOZ+bZ+e? = Va?+b%+ 2

Case 4: none of a,b,c are 0. Without loss of generality, we can as-
sume that a,b,c are all positive (the other seven possibilities are
handled in a similar manner). Consider the points P = (0,0,0),
Q =(a,b,c), R =(a,b,0), and S = (a,0,0), as shown in Figure
1.1.8. Applying the Pythagorean Theorem to the right trian-
gle APSR gives |PR|? = a?+b% A second application of the
Pythagorean Theorem, this time to the right triangle APQR,
gives [vII=1PQI=\/IPR>+IQRI* = VaZ+ b7 + %

This proves the theorem. QED
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Example-2 Letv=(2,1,-1)and w=(3,-4,2) in R2.

(a) Find v—w.
Solution: v—-w=(2-3,1-(—-4),-1-2)=(-1,5,-3)

(b) Find 3v +2w.
Solution: 3v+2w =(6,3,—-3)+(6,-8,4)=(12,-5,1)

(c) Write v and w in component form.
Solution: v=2i+j—-k, w=31i—4j+2k

u-w u-z|
Example- 3 Prove: (uxv)-(wxz)= v ) _f-::-r all vectors u, v, w, z in B,

v-Z
Solution: Let x =ux v, Then

(uxv)-(wxz)=x-(wxz)
=w-(zxx) (by formula(1.12))
=w-(zx(uxv))
=w-+((z:v)u-(z-u)v) (by Theorem 1.16)
=(z.-vw:u)—(Z-uliw-v)
=(u-wliv-z)—(u-z)v-w) (by commutativity of the dot product).
u-w u-Z
V-W V-Z

Example -4 Find the intersection (if any) of the spheres ¥ + y¥ + 2% = 25 and ¥* + y¥ + (z -
2y =16.

Solution: For any point (x,y,2) on both spheres, we see that
*+y?+z?=25 o x*+y*=25-2% and
2 I;r2 iz 2%=186 = x° I;rz= 16 (¢ 92)% =0
16=(z=2)"=25=2" = 4z-4=9 > z=13/4
- x%3y2-95_(12/4)* - 23116

. The intersection is the circle %2 +_}r9' = % of radius * :i:“ = 3.8 centered at {ﬂ,ﬂ,%‘].



Example--5  (Convert the point (—2,-2,1) from Cartesian coordinates to (a) cylindrical

and (b) spherical coordinates.
Solution: (a) r = /(-2)? +(-2)2 = 2y/2, 0 =tan™! (=5 ) = tan"'(1) = 2%, since y = -2 < 0.
o (r,0,2)=(2v2,2 1)

(b) p=\/(-2P +(-202+12= /0=3, p=cos™! (1) = 1.23 radians.

. (p,0,¢)=(3,5%,1.23)

. of . of _ sin(xy?)
E le- & —_ — = —_—
xample Find I and 3y for the function f(x,y) 211

Solution: Treating v as a constant and differentiating f(x, ¥) with respect to x gives

of _ (x% +1)y* coslxy?)) —(2¢) sin(xy?)
ox (x%+1)%

and treating x as a constant and differentiating f(x, y) with respect to y gives

of _ 2xy cos(xy®)
dy x2+1 )



Example-7 Find the eigenvalues and eigenvectors of A and A% and A~ " and A4 + 4/ -

e[ e[

Check the trace A| + A, and the determunant A, A, for A and also A2%.

Solution  The eigenvalues of A come from det(A — AJ) = (:

2-1 -1

det(A—AD)=|""" 7

‘=12—4A+3=u.

Thas factors mto (A —1)(A—3) = O so the eigenvaluesof Aare Ay = |l and A; = 3. Forthe
trace, the sum 2+ 2 agrees with | + 3. The deternunant 3 agrees with the product A 142 = 3.
The eigenvectors come separately by solving (4 — AJ )x = 0 which s Ax = Ax:

[ 1 —=1][x] T[o] . . 1
A=1: (A=Ix = h_] ld )| = hﬂ_ gives the eigenvector ¥ = _1]
A=3 (A-3x = :: :: : = E gives the eigenvector X, = —:]

A% and A7 ! and A + 4] keep the same eigenvectors as A. Their eigenvalues are 12 and
A lVand A + 4

. 5 . 1 I l + 5
A has eigenvalues 1* = land 3 =9 A7 has I and < A+4l has , 4—7

The trace of A% is 5 + 5 which agrees with 1 + 9. The determinant is 25 — 16 = 9.

Notes for later sections: A has orthogonal eigenvectors (Section 6.4 on symmetric
matrices). A can be diagonalized since A1 #£ A (Section 6.2). A 1s similar to any 2 by 2
matnx with eigenvalues 1 and 3 (Section 6.6). A 1s a positive definite matrix (Section 6.3)
since A = AT and the A’s are positive.



Example-8 Find the eigenvalues and eigenvectors of this 3 by 3 matrix A:

Svmmetric matrix 1 =1 0
Singular matrix A= |-1 2 =1
Tracel+2+1=4 0 -1 |

Solution  Since all rows of A add to zero, the vectorx = (1,1, 1) gives Ax = 0. This
15 an eigenvector for the eigenvalue A = 0. To find A, and A5 I will compute the 3 by 3
deternunant:

-4 =1 0 | =(1=H2-D(1-2)-201-1)
det(A—Al)=| -1 2-4 -1 | =(1-1[Q-1)(1-21)-2
0 -1 1=A =(1=A)(=2)03=4).

That factor —A confirms that A = (0 1s a root, and an eigenvalue of A. The other factors
(1 —4) and (3 — A) give the other eigenvalues | and 3, adding to 4 (the trace). Each
eigenvalue 0, 1, 3 corresponds to an eigenvector

| 1 1
xy=|1] Ax; =0, x,= 0] Axa=1lx, x3=|-=-2| Axi=3xi.
| -1 |

[ notice again that eigenvectors are perpendicular when A 1s symmetric.

The 3 by 3 matnx produced a third-degree (cubic) polynomual for det(d — AJ) =
=A% + 412 — 31 We were lucky to find simple roots A = 0, 1, 3. Normally we would use
a command like eig(4), and the computation will never even use determinants (Section 9.3
shows a better way for large matrices).

The full command [S, D] = eig(4) will produce unit eigenvectors in the columns of
the eigenvector matrix S The first one happens to have three minus signs, reversed from
(1.1.1) and divided by /3. The eigenvalues of A will be on the diagonal of the eigenvalie
mairix (typed as D but soon called A).



Example-9  Find all local maxima and minima of f(x,y)=x%+xy+ y* - 3x.
Solution: find the critical points, i.e. where Vf = 0. Since

%=2x+_?—3 and %=I+2}'

then the critical points (x, ) are the common solutions of the equations

2x+ y=3=0
r+2y =0

which has the unique solution (x,¥)=(2,-1). So (2,-1) is the only critical point.
To use Theorem 2.6, we need the second-order partial derivatives:

*f _ Ff *f
ﬂ.rz-z’ ﬂyz_z' ﬂyﬂx_l
and so
_¥f a*f *f 2 2 _
D=2 2[2,—1}{”,2{2.—1:-—{E.}Wxtfz,—1*.:] = (@@-1%=3>0

and g;{.(i,—l)= 2> 0. Thus, (2,-1) is a local minimum.



Example- 10 Evaluate [.(x*+ y*)dx +2xydy, where:
(a) C:x=t, y=2t, 0=t=1

(b) C:x=t, y=2t2, 0=t=1

Solution: Figure 4.1.4 shows both curves.
(a) Since x'(t)=1 and y'(#) = 2, then

1
L (2 + y)dx + 2xydy = L (G + YD (0) + 26Dy (0)) it

1
= f ((£2 + 462X(1) + 2624 X2)) dit
]

1
=f13t2dt
0
138t a3
- 3 |, 3

(b) Since x'(£)= 1 and y'(¢) = 4¢, then
2, L (02 4 (1)
f{x +y%)dx +2tydy = f (0 + O (D) + 26Oy y (@) it
C 0

1
=f ((¢2 + 42*)1) + 26262)4D)) it
0

1
= J; (1% + 20t*)dt
A L | 13
= —+4t%| = —44==
3 L 3 3

¥ o,




