
Chapter 5

Analytic Functions

5.1 The Derivative

Let f(z) be a complex-valued function of the complex variable z. The derivative

of f is defined as

f ′(z) =
df

dz
= lim

δz→0

f(z + δz) − f(z)

δz
= lim

δz→0

δf

δz
, (5.1)

if the limit exists and is independent of the way in which δz approaches zero.
This is illustrated in Fig. 5.1

5.1.1 Examples

What is the derivative of zn?

d

dz
zn = lim

δz→0

(z + δz)n − zn

δz
= lim

δz→0

nzn−1δz

δz

= nzn−1. (5.2)
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Figure 5.1: In the complex plane, δz, as indicated by the arrows in the figure,
can approach zero from any direction.
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Then, since ez 1s represented by a power series which converges everywhere,
and therefore converges uniformly in any finite bounded (compact) region, it is
also differentiable everywhere,

d

dz
ez =

d

dz

∞
∑

n=0

1

n!
zn =

∞
∑

n=1

1

(n − 1)!
zn−1

= ez. (5.3)

The derivative of the exponential function is the function itself.

5.2 Analyticity

Whenever f ′(z0) exists, f is said to be analytic (or regular, or holomorphic) at
the point z0. The function is analytic throughout a region in the complex plane
if f ′ exists for every point in that region. Any point at which f ′ does not exist
is called a singularity or singular point of the function f .

If f(z) is analytic everywhere in the complex plane, it is called entire.

Examples

• 1/z is analytic except at z = 0, so the function is singular at that point.

• The functions zn, n a nonnegative integer, and ez are entire functions.

5.3 The Cauchy-Riemann Conditions

The Cauchy-Riemann conditions are necessary and sufficient conditions for a
function to be analytic at a point.

Suppose f(z) is analytic at z0. Then f ′(z0) may be obtained by taking δz
to zero through purely real, or through purely imaginary values, for example.

If δz = δx, δx real, we have, upon writing f in terms of its real and imaginary
parts, f = u + iv,

f ′(z0) =

(

∂u

∂x
+ i

∂v

∂x

)

z=z0

. (5.4)

On the other hand, if δz = iδy, δy real, we have similarly,

f ′(z0) =

(

∂u

i∂y
+ i

∂v

i∂y

)

z=z0

=

(

−i
∂u

∂y
+

∂v

∂y

)

z=z0

. (5.5)

Since the derivative is independent of how the limit is taken, we can equate
these two expression, meaning that they must have equal real and imaginary
parts,

∂u

∂x
=

∂v

∂y
,

∂v

∂x
= −

∂u

∂y
. (5.6)
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These are the Cauchy-Riemann conditions.
These conditions are not only necessary, but if the partial derivatives are

continuous, they are sufficient to assure analyticity. Write

f(z + δz) − f(z) = u(x + δx, y + δy) − u(x, y) + i[v(x + δx, y + δy) − v(x, y)]

= u(x + δx, y + δy) − u(x, y + δy) + u(x, y + δy) − u(x, y)

+ i[v(x + δx, y + δy) − v(x, y + δy) + v(x, y + δy) − v(x, y)]

= δx
∂u

∂x
+ δy

∂u

∂y
+ i

[

δx
∂v

∂x
+ δy

∂v

∂y

]

(5.7)

which becomes, if the Cauchy-Riemann conditions hold

f(z + δz) − f(z) = δx
∂u

∂x
− δy

∂v

∂x
+ i

[

δx
∂v

∂x
+ δy

∂u

∂x

]

= (δx + iδy)

[

∂u

∂x
+ i

∂v

∂x

]

, (5.8)

so since δz = δx + iδy, we see

δf

δz
→

∂u

∂x
+ i

∂v

∂x
(5.9)

independently of how δz → 0, so

f ′(z) =
∂u

∂x
+ i

∂v

∂x
(5.10)

exists.

Example

Consider the function z∗ of z; that is, if z = x + iy, z∗ = x − iy. The Cauchy-
Riemann conditions never hold,

∂x

∂x
= 1 6=

∂(−y)

∂y
= −1, (5.11)

so z∗ is nowhere an analytic function of z.

5.4 Contour Integrals

Suppose we have a smooth path in the complex plane, extending from the point
a to the point b. Suppose we choose points z1, z2,. . . , zn − 1 lying on the curve,
and connect them by straight-line segments. Likewise connect a = z0 with z1

amd b = zn with zn−1. See Fig. 5.2. Then the contour integral of a function f
is defined by the following limit,

∫ b

a

C

f(z) dz = lim
∆zi→0

n→∞

n
∑

i=1

f(zi)∆zi, ∆zi = zi − zi−1, (5.12)
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Figure 5.2: Path C in the complex plane approximated by a series of straight-
line segments.

and the limit taken is one in which the number n of straight-line segments goes
to infinity, while the length of the largest one goes to zero. Whenever this limit
exists, independently of how it is taken, the integral exists. Note that in general
the integral depends on the path C, as well as on the endpoints.

Example

Consider
∮

K

dz

z
(5.13)

where K is a circle about the origin, of radius r. (The circle on the integral sign
signifies that the path of integration is closed.) From the polar representation
of complex numbers, we may write

z = reiθ , (5.14a)

so since r is fixed on K, we have

dz = reiθi dθ. (5.14b)

Let us assume that the integration is carried out in a positive (counterclockwise)
sense, so then

∮

K

dz

z
= i

∫ 2π

0

dθ = 2πi, (5.15)

which is independent of the value of r.

5.5 Cauchy’s Theorem

Chauchy’s theorem states that if f(z) is analytic at all points on and inside a
closed contour C, then the integral of the function around that contour vanishes,

∮

C

f(z) dz = 0. (5.16)
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C
BBM

Ci

Figure 5.3: The integral around the contour C may be replaced by the sum of
integrals around the subcontours Ci.

Proof: Subdivide the region inside the contour in the manner shown in
Fig. 5.3. Obviously

∮

C

f(z) dz =
∑

i

∮

Ci

f(z) dz, (5.17)

where Ci is the closed path around one of the mesh elements, since the con-
tribution from the side common to two adjacent subcontours evidently cancels,
leaving only the contribution from the exterior boundary. Now because f is
analytic throughout the region, we may write for small δz

f(z + δz) = f(z) + δz f ′(z) + O(δz2), (5.18)

where O(δz2) means only that the remainder goes to zero faster that δz. We
apply this result by assuming that we have a fine mesh subdividing C—we are
interested in the limit in which the largest mesh element goes to zero. Let zi be
a representative point within the ith mesh element (for example, the center).
Then
∮

Ci

f(z) dz = f(zi)

∮

Ci

dz + f ′(zi)

∮

Ci

(z − zi) dz +

∮

Ci

O((z − zi)
2) dz. (5.19)

Now it is easily seen that for an arbitrary contour Ci

∮

Ci

dz =

∮

Ci

(z − zi) dz = 0, (5.20)

so if the length of the cell is ε,
∮

Ci

f(z) dz = O(ε3) = AiO(ε), (5.21)

which is to say that the integral around the ith cell goes to zero faster than the
area Ai of the ith cell. Thus the integral required is

∮

C

f(z) dz =
∑

i

AiO(ε) = AO(ε), (5.22)
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Figure 5.4: A multiply connected region R consisting of the area within a tri-
angle but outside of an circular region. The closed contour C cannot be contin-
uously deformed to a point without crossing into the disk, which is outside the
region R.

where A is the finite area contained within the contour C. As the subdivision
becomes finer and finer, ε → 0 and so

∮

C

f(z) dz = 0. (5.23)

To state a more general form of Cauchy’s theorem, we need the concept of
a simply connected region. A simply connected region R is one in which any
closed contour C lying in R may be continuously shrunk to a point without
ever leaving R. Fig. 5.4 is an illustration of a multiply connected region. C lies
entirely within R, yet it cannot be shrunk to a point because of the excluded
region inside it.

We can now restate Cauchy’s theorem as follows: If f is analytic in a simply

connected region R then
∮

C

f(z) dz = 0 (5.24)

for any closed contour C in R.

That simple connectivity is required here is seen by the example of the
function 1/z, which is analytic in any region excluding the origin.

Here is another proof of Cauchy’s theorem, as given in the book by Morse
and Feshbach. If the closed contour C lies in a simply-connected region where
f ′(z) exists then

∮

C

f(z) dz = 0. (5.25)

Proof: Let us choose the origin to lie in the region of analyticity (if it does
not, change variables so that z = 0 lies within C). Define

F (λ) = λ

∮

C

f(λz) dz. (5.26)

Then the derivative of this function of λ is

F ′(λ) =

∮

C

f(λz) dz + λ

∮

C

zf ′(λz) dz
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Figure 5.5: Distortion of a contour C to a small one γ encircling the singularity
at z0.

=

∮

C

f(λz) dz + zf(λz)

∣

∣

∣

∣

z=end of C

z=beginning of C

−

∮

C

f(λz) dz = 0, (5.27)

where we have integrated by parts, because the function f is single valued. Thus
F (λ) is constant. But

F (0) = lim
λ→0

λ

∮

C

f(λz) dz = lim
λ→0

∮

λC

f(z) dz = 0 (5.28)

because f(0) is bounded because f is analytic at the origin. (We have deformed
the contour to an infinitesimal one about the origin.) Thus we conclude that
F (1) = 0. This proves the theorem.

5.6 Cauchy’s Integral Formula

If f(z) is analytic on and within the closed contour C, and z0 lies within C,
then the value of f at z0 is given in terms of its boundary values by

f(z0) =
1

2πi

∮

C

f(z)

z − z0
dz, (5.29)

where the contour is traversed in the positive (counterclockwise) sense.

Proof: f(z)/(z − z0) is not analytic within C, so choose a contour inside of
which this function is analytic, as shown in Fig. 5.5. Here we have connected
the contour C to the small contour γ by two overlapping lines C′, C′′ which are
traversed in opposite senses. Now f(z)/(z − z0) is analytic on the inside of the
contour C +C′ +C′′ +γ. (By inside, we mean that if you follow the path in the
direction indicated by the arrows, the inside is only your left, and the outside
is on your right.) Thus, by Cauchy’s theorem

∮

C+C′+C′′+γ

f(z)

z − z0
dz = 0. (5.30)
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Now because we choose the lines C′, C′′ as overlapping, since f is continuous
in the neighborhood of those lines those two integrals cancel,

∫

C′+C′′

f(z)

z − z0
dz = 0. (5.31)

And since the circle γ may be chosen arbitrarily small
∮

γ

f(z)

z − z0
dz = f(z0)

∮

γ

dz

z − z0
= −2πif(z0), (5.32)

since γ is traversed in a negative or clockwise sense. Thus the theorem (5.29) is
proved.

(Implicit in the above is the assumption that the contour does not cross
itself to wind around z0 more than once. If this happens, Cauchy’s formula is
modified. See homework.)

It is now easily shown from the definition of the derivative that if f is analytic
on and within C, we may express the derivative by

f ′(z0) =
1

2πi

∮

C

f(z)

(z − z0)2
dz, (5.33)

and in fact the nth derivative is given by

f (n)(z0) =
n!

2πi

∮

C

f(z)

(z − z0)n+1
dz. (5.34)

That is, if f is analytic, so is its derivative. An analytic function is infinitely
differentiable, a property which is not true for a differentiable function of a real
variable.

5.7 Morera’s Theorem

The converse to Cauchy’s theorem is the following:
If f(z) is continuous in a region R, and for all contours C lying in R

∮

C

f(z) dz = 0, (5.35)

then f(z) is analytic throughout R.
Proof: If f satisfies the above hypotheses, then the integral

∫ z2

z1

f(z) dz = F (z2) − F (z1) (5.36)

is a function of the endpoints only, and not of the path, as is evident from
Fig. 5.6. But now the function F has a unique derivative,

F ′(z) = f(z), (5.37)

so that F (z) is analytic. Hence, so is its derivative f(z). QED.
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Figure 5.6: Two paths C1 and C2 connecting the point z1 with the point z2.
Because

∮

C1−C2
f(z) dz = 0, we conclude that

∫ z2

z1C1
f(z) dz =

∫ z2

z1C2
f(z) dz.

• •

•

1

z
t-plane

-θ

|z|

Figure 5.7: Path of integration in the cut t plane used in defining the logarithm
in Eq. (5.38).

5.8 The Logarithm

An alternative definition to that given in Sec. 3.2 is given by the path integral

log z =

∫ z

1

dt

t
, (5.38)

over any contour connecting 1 with z which does not cross the cut line shown
in Fig. 5.7. The cut is present so the contour cannot encircle the singularity of
the integrand at t = 0. Because the arg function must be single-valued, the cut
supplies the restriction

−π < arg(z) ≤ π. (5.39)

The last equality means for negative z we approach the cut from above.
Since the integral is path independent, we may chose the path to consist

of a segment along the positive z axis and an arc of a circle, as also shown in
Fig. 5.7. Then the logarithm may be written as

log z =

∫ |z|

1

dt

t
+

∫ θ

0

|z| i eiθ′

dθ′

|z| eiθ′
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= log |z| + iθ

= log |z| + i arg z, (5.40)

which coincides with the previous definition.
The logarithm is analytic in the cut plane, and its derivative is

d

dz
log z =

1

z
. (5.41)

If ξ = log z, define the inverse function by z = exp ξ. Since when z = 1, ξ = 0,
we have

exp(0) = 1. (5.42)

Also we have
d

dξ
exp ξ =

dz

dξ
=

dz

d log z
= z = exp ξ. (5.43)

These two properties uniquely define the exponential function.

5.9 A Theorem for Functions Represented by

Series

Let us suppose that the function Φ defined by the series

Φ(z) =

∞
∑

n=0

fn(z) (5.44)

converges uniformly on a closed contour C, and that each fn is analytic on and
within C. Then, on and within C

Φ(z) =

∞
∑

n=0

fn(z) (5.45)

converges and Φ is analytic.
Proof: Since a uniformly convergent series may be integrated term by term,

we have for z0 within C

1

2πi

∮

C

Φ(z)

z − z0
dz =

∞
∑

n=0

1

2πi

∮

C

fn(z)

z − z0
dz

=

∞
∑

n=0

fn(z0), (5.46)

by Cauchy’s integral formula. So this last sum exists; call it

Φ(z0) =

∞
∑

n=0

fn(z0). (5.47)



5.9. A THEOREM FOR FUNCTIONS REPRESENTED BY SERIES51 Version of October 1, 2011

Now Φ′(z0) exists as well:

Φ′(z0) =
1

2πi

∮

C

Φ(z)

(z − z0)2
dz =

∞
∑

n=0

f ′
n(z0), (5.48)

so Φ is analytic within C.


