Chapter 6

EIGENVALUES AND
EIGENVECTORS

6.1 Motivation

We motivate the chapter on eigenvalues by discussing the equation
2 2 _
ax® + 2hxy + by” = ¢,

where not all of a, h, b are zero. The expression az? + 2hzy + by? is called
a quadratic form in x and y and we have the identity

az® + 2hzy +by* = [ = y][z Z} [g]:XtAX,

a h

x
WhereX—[y}andA—[h b

] . A is called the matrix of the quadratic

form.

We now rotate the x, y axes anticlockwise through 6 radians to new
x1, y1 axes. The equations describing the rotation of axes are derived as
follows:

Let P have coordinates (z, y) relative to the z, y axes and coordinates
(21, y1) relative to the x1, y1 axes. Then referring to Figure 6.1:
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Y P

1 x1

Figure 6.1: Rotating the axes.

x = 0Q=O0OPcos (0+ )
= OP(cosfcosa —sinfsina)
= (OPcosa)cosf — (OPsina)siné
= ORcos — PRsin0

= x1co86 — y;sind.

Similarly y = x1 sin 6 + y; cos 6.
We can combine these transformation equations into the single matrix

equation:
x | | cosf —sinf T
y | | sinf  cosf Rk

or X = PY, where X = z VY = L1 and P — C.OSQ —sinf .
Yy (i sing  cosf

We note that the columns of P give the directions of the positive x1 and y;
axes. Also P is an orthogonal matrix — we have PP! = I, and so P~! = P?.
The matrix P has the special property that det P = 1.

cosf —siné
sinf  cosf
We shall show soon that any 2 x 2 real orthogonal matrix with determinant

A matrix of the type P = } is called a rotation matrix.
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equal to 1 is a rotation matrix.
We can also solve for the new coordinates in terms of the old ones:

1| _y _pty C.OSQ sin 6 x 7
Y1 —sinf cosf Y

so x1 = xcosf 4+ ysinfh and y; = —xsinf + ycosh. Then
X'AX = (PY)'A(PY) = YY(P'AP)Y.

Now suppose, as we later show, that it is possible to choose an angle 6 so
that P'AP is a diagonal matrix, say diag(\1, A2). Then

XAX =[ &1 ] [ )E)l A02 ] [ " ] — et Ay? (6)
and relative to the new axes, the equation axz? 4+ 2hay + by?> = ¢ becomes
A2? + A\oy? = ¢, which is quite easy to sketch. This curve is symmetrical
about the xy and y; axes, with P; and P, the respective columns of P,
giving the directions of the axes of symmetry.

Also it can be verified that P, and P» satisfy the equations

AP1 = )\1P1 and APQ = )\QPQ.

U1

These equations force a restriction on A\; and Ao. For if P, = [ ], the

U1
first equation becomes

P Y S R RN [ e

Hence we are dealing with a homogeneous system of two linear equations in
two unknowns, having a non-trivial solution (u1, v1). Hence
a — )\1 h

h b—X\
Similarly, Ao satisfies the same equation. In expanded form, A; and As
satisfy

=0.

M —(a+b)A+ab—h?=0.
This equation has real roots
N a+bt/(a+b)?—4(ab—h?) a+bt/(a—0b)?+4h? 6.2)
B 2 B 2 '
(The roots are distinct if a # b or h # 0. The case a = b and h = 0 needs
no investigation, as it gives an equation of a circle.)

The equation A2 — (a+b)A+ab—h? = 0 is called the eigenvalue equation
of the matrix A.
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6.2 Definitions and examples

DEFINITION 6.2.1 (Eigenvalue, eigenvector)
Let A be a complex square matrix. Then if A is a complex number and
X a mon—zero complex column vector satisfying AX = AX, we call X an
eigenvector of A, while X is called an eigenvalue of A. We also say that X
is an eigenvector corresponding to the eigenvalue A.

So in the above example P; and P, are eigenvectors corresponding to Ap
and Mg, respectively. We shall give an algorithm which starts from the

eigenvalues of A = [ ] and constructs a rotation matrix P such that

a
h b
PtAP is diagonal.

As noted above, if \ is an eigenvalue of an n X n matrix A, with
corresponding eigenvector X, then (A — AI,)X = 0, with X # 0, so
det (A — A\I,) = 0 and there are at most n distinct eigenvalues of A.

Conversely if det (A — AI,,) =0, then (A — AI;,) X = 0 has a non-trivial
solution X and so ) is an eigenvalue of A with X a corresponding eigenvector.

DEFINITION 6.2.2 (Characteristic equation, polynomial)
The equation det (A — AI,,) = 0 is called the characteristic equation of A,
while the polynomial det (A — AI,) is called the characteristic polynomial of
A. The characteristic polynomial of A is often denoted by ch ().

Hence the eigenvalues of A are the roots of the characteristic polynomial
of A.

a

For a 2 x 2 matrix A = [ . b } , it is easily verified that the character-

d
istic polynomial is A? — (trace A)\ +det A, where trace A = a +d is the sum
of the diagonal elements of A.

2 1

EXAMPLE 6.2.1 Find the eigenvalues of A = [ 1 9

] and find all eigen-

vectors.

Solution. The characteristic equation of A is A> — 4\ +3 =0, or
A=1)(A=3)=0.

Hence A =1 or 3. The eigenvector equation (A — AI,,) X = 0 reduces to

i
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or

2-XNz+y = 0

r+(2-XNy = 0.
Taking A = 1 gives
Tty
z+y = 0,
which has solution x = —y, y arbitrary. Consequently the eigenvectors

corresponding to A = 1 are the vectors [ _Z } , with y #£ 0.
Taking A = 3 gives
rz—y = 0,
which has solution x = y, y arbitrary. Consequently the eigenvectors corre-
sponding to A = 3 are the vectors { Z; } , with y # 0.
Our next result has wide applicability:

THEOREM 6.2.1 Let A be a 2 x 2 matrix having distinct eigenvalues A\
and Ay and corresponding eigenvectors X; and X,. Let P be the matrix
whose columns are X; and Xs, respectively. Then P is non—singular and

A O]

1 o
P AP_[ 0

Proof. Suppose AX; = A\ X7 and AX5 = Ay X5. We show that the system
of homogeneous equations

X1 +yXo=0

has only the trivial solution. Then by theorem 2.5.10 the matrix P =
[X1]|X?2] is non-singular. So assume

X1 +yXo = 0. (6.3)
Then A(zX; + yX2) = A0 =0, so z(AX1) + y(AX2) = 0. Hence

A X1 + yAaXo = 0. (6.4)



120 CHAPTER 6. EIGENVALUES AND EIGENVECTORS

Multiplying equation 6.3 by A; and subtracting from equation 6.4 gives
(/\2 — )\1>ng = 0.

Hence y = 0, as (A2— A1) # 0 and X5 # 0. Then from equation 6.3, zX; = 0
and hence z = 0.
Then the equations AX; = A\ X1 and AXs = Ao X5 give

AP = A[X1|Xs] = [AX1|AXy] = [MX1|A2X)
B N0 ] AN O
- [X1|X2][ 0 AQ]_P[ 0 AJ’
SO
s [ M0
P AP_[ 0 x|

EXAMPLE 6.2.2 Let A = { 1 9

2 1 ] be the matrix of example 6.2.1. Then

X = [ _1 ] and Xy = [ } ] are eigenvectors corresponding to eigenvalues
. : -1 1
1 and 3, respectively. Hence if P = [ 11 } , we have
10
P'AP = :
o 5]

There are two immediate applications of theorem 6.2.1. The first is to the
calculation of A™: If P~1AP =diag (\1, \2), then A = Pdiag (A1, A\o) P!
and

- M 0] oo\ ST A 0 o ST A 0]
A(P[OAQ]P>P[O)\2]PP[0/\§P.

The second application is to solving a system of linear differential equations

dzx

i ax + by
d
dii{ = cr+ dy,
where A = { CCL d ] is a matrix of real or complex numbers and x and y

are functions of ¢. The system can be written in matrix form as X = AX,

where _ p
X:[‘T]and)'(:[a.c}:[%}
Yy ) a
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We make the substitution X = PY, where Y = { 51 ] Then x; and y;
1
are also functions of ¢ and

X = PY = AX = A(PY), sol'f—<PlAP>Y—[Ao1 )E) ]Y'
2

Hence 21 = A\1x1 and 1 = A9y1.
These differential equations are well-known to have the solutions x1 =
21(0)eMt and y; = y1(0)e*?!, where 1(0) is the value of 21 when ¢ = 0.

[If Ca% = kx, where k is a constant, then

d( ke )\ _ —kt g dT —kt —kty.,. _
dt(e :r)— ke "z +e i ke™"x 4+ e "kx = 0.
Hence e ¥z is constant, so e ¥z = e *02(0) = 2(0). Hence x = z(0)e" ]
However [ zlggi } =p! [ zgg; ], so this determines z1(0) and y;(0) in
1

terms of (0) and y(0). Hence ultimately = and y are determined as explicit
functions of ¢, using the equation X = PY.

EXAMPLE 6.2.3 Let A = [ i :g } Use the eigenvalue method to
derive an explicit formula for A™ and also solve the system of differential
equations

dx
= = 20-3
dt T
dy
= 4z-5
dt m y7

given x = 7 and y = 13 when ¢t = 0.

Solution. The characteristic polynomial of A is A2+3A+2 which has distinct

1
roots Ay = —1 and Ao = —2. We find corresponding eigenvectors X1 = [ 1 ]
1 3

andXQ:[3 14

4]. HenceifP:[

} , we have P~1AP = diag (-1, —2).

Hence

A" = (Pdiag (-1, —2)P")" = Pdiag ((—-1)", (-2)")P*

- LS Gl T
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.1 3 1 0 4 -3
= =D 1 4“0 2”H—1 1]
A1 3x2n 4 -3
= D7 4><2"H—1 1]
—— 4—-3x2" —-343x2"
B | 4—4x2" —3+4x2"

To solve the differential equation system, make the substitution X =
PY. Then z = x1 4+ 3y1, y = 1 + 4y1. The system then becomes

l"l = —X
o= —2u,

—t

sox1 =x1(0)e™", y1 = yl(O)e_Qt. Now

210 _paf2©@ ] _[ 4 3][7])_[-1

y1(0) | yO) ] -1 1] 1B] 61
so 1 = —1let and y; = 6e 2. Hence v = —11let + 3(6e72) = —1let +
18e72, y = —1le! + 4(6e %) = —1le~" + 242

For a more complicated example we solve a system of inhomogeneous
recurrence relations.

EXAMPLE 6.2.4 Solve the system of recurrence relations

Tpntl = 2Tp —Yn—1
Yntl = —Tp+ 2y, +2,

given that zo = 0 and yy = —1.
Solution. The system can be written in matrix form as

Xn—l—l = AXn + B:

as] 2 M wane[1]

It is then an easy induction to prove that

where

X, =A"Xo+ (A" +... 4+ A+ 1L,)B. (6.5)
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Also it is easy to verify by the eigenvalue method that

1[14—3” 1-3" 3"

1
n __ — — _
=5l 1+3"} VY

11 1 -1
WhelreU—[1 1]andV—[1 1].Hence

n=1_4 .. 1
Al A+ L = ZU+(3 - 2+3+ )y
o (31 —1)
=gVt

Then equation 6.5 gives

- (o ) 2] () 4]

which simplifies to

][ty

Hence x, = (2n — 1+ 3")/4 and y, = (2n — 5 + 3") /4.

REMARK 6.2.1 If (A — I)™! existed (that is, if det (A — Iy) # 0, or
equivalently, if 1 is not an eigenvalue of A), then we could have used the
formula

A 4 A+ L= (A" - L) (A- L) (6.6)

However the eigenvalues of A are 1 and 3 in the above problem, so formula 6.6
cannot be used there.

Our discussion of eigenvalues and eigenvectors has been limited to 2 x 2
matrices. The discussion is more complicated for matrices of size greater
than two and is best left to a second course in linear algebra. Nevertheless
the following result is a useful generalization of theorem 6.2.1. The reader
is referred to [28, page 350] for a proof.

THEOREM 6.2.2 Let A be an n X n matrix having distinct eigenvalues

A1, ..., A\p and corresponding eigenvectors Xy, ..., X,,. Let P be the matrix
whose columns are respectively X7, ..., X,. Then P is non—singular and
M O - 0
0 A -+ 0
plAp=| .

0 0 - M\
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Another useful result which covers the case where there are multiple eigen-
values is the following (The reader is referred to [28, pages 351-352] for a
proof):

THEOREM 6.2.3 Suppose the characteristic polynomial of A has the fac-

torization

det (A, —A)=A—c1)"™ - (A =)™,
where ¢y, ...,c¢ are the distinct eigenvalues of A. Suppose that for i =
1,...,t, we have nullity (¢;I,—A) = n;. For each i, choose a basis Xj1, ..., Xin,

for the eigenspace N(c;I, — A). Then the matrix
P=[Xul- X | [ Xal - | Xin,]

is non-singular and P~'AP is the following diagonal matrix

cly, 0 o 0
poiap_ | 0 @lw e 0
0 0 - ey,

(The notation means that on the diagonal there are n; elements ¢y, followed
by ngy elements ca,. .., n; elements ¢;.)

6.3 PROBLEMS

1. Let A= [ le _g ] . Find a non-singular matrix P such that P~1 AP =

diag (1, 3) and hence prove that
3" -1 3-3"

A" = A L.
2 Ttk

0.6 0.8

2. 4= { 0.4 0.2

} , prove that A" tends to a limiting matrix

(7 ]

as 1n — OQ.
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3. Solve the system of differential equations

dx

e _9
7 3z Y
dy

— = bzx—4
dt "r y?

given z = 13 and y = 22 when t = 0.
[Answer: x = Te! + 6e~ 2!, y = Tel + 1572t
4. Solve the system of recurrence relations
Tpt1 = 3Tp — Yn
Ynt1 = —Tp+ 3Yn,
given that 9 = 1 and yo = 2.
[Answer: x, = 2" 1(3 —2"), y, = 2""1(3 +2") ]

5. Let A= [ OCL Z ] be a real or complex matrix with distinct eigenvalues

A1, A2 and corresponding eigenvectors Xi, Xs. Also let P = [X;]X5].

(a) Prove that the system of recurrence relations

Tpy1 = aZp+ by,
Ynt1l = CTyp+dy,

has the solution
Tn

Yn

where a and (8 are determined by the equation

MR

(b) Prove that the system of differential equations

:| = Oé)\?Xl + ﬁ)\ng,

& ar
o = aztby
d

d—?z = cx+dy

has the solution

z :| = OéeAltXl + BeAQth,
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where « and 3 are determined by the equation
o' 1| z(0) ]
=P :
[ B } [ y(0)

ayl a . .
6. Let A= [ all a12 } be a real matrix with non-real eigenvalues A =
21 022

a+ib and A = a — ib, with corresponding eigenvectors X = U + iV
and X = U — iV, where U and V are real vectors. Also let P be the
real matrix defined by P = [U|V]. Finally let a + ib = re®, where
r > 0 and 0 is real.

(a) Prove that

AU = aU —-bV
AV = bU +aV.

(b) Deduce that
plap=| * 7
b a |’

(¢) Prove that the system of recurrence relations

Tp+l = QA11%p + Q12Yn

Yn+l = G21Tp + A22Yn

has the solution

[ in ] =r"{(aU + BV) cosnb + (BU — aV) sinn},

where « and 3 are determined by the equation

MR

(d) Prove that the system of differential equations

&~ ar
o = awtby
d

LA cr +dy

dt
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has the solution

[ uyc } = e {(aU + BV) cosbt + (BU — aV) sin bt },

where a and (8 are determined by the equation
« 1] x(0) ]
=P .
[ B } [ y(0)
. X T .
[Hint: Let [ y ] =P [ y ] Also let z = x1 + iy1. Prove that
1
2= (a—1ib)z
and deduce that
x1 + iy1 = e™(a + iB)(cos bt + isin bt).
Then equate real and imaginary parts to solve for xq, y1 and
hence z, y.]
. a b
7. (The case of repeated eigenvalues.) Let A = e d and suppose

that the characteristic polynomial of A, A2 — (a + d)\ + (ad — be), has
a repeated root a. Also assume that A # als. Let B = A — als.

(i) Prove that (a — d)? + 4bc = 0.

(ii) Prove that B = 0.
(iii) Prove that BXy # 0 for some vector Xo; indeed, show that Xo

can be taken to be [é]or [(1]]

(iv) Let X; = BXs. Prove that P = [X;|Xy] is non-singular,
AX] =aX; and AXy = aXy + Xy
and deduce that
—1 a 1
P AP = .
0 «

8. Use the previous result to solve system of the differential equations

dx

ST gy —
dt vy
d

- 4x + 8y,

dt
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given that x =1 =y when ¢ = 0.
[To solve the differential equation
dr kx = f(t), k a constant,
dt
multiply throughout by e™**, thereby converting the left-hand side to
da (ki
o (e Fx).]
[Answer: x = (1 — 3t)eb, y = (1 + 6t)e% ]
9. Let
12 1/2 0
A=|1/4 1/4 1/2
1/4 1/4 1/2
(a) Verify that det (AI3 — A), the characteristic polynomial of A, is
given by
1
A=DAN= ).
4
(b) Find a non-singular matrix P such that P~'AP = diag (1, 0, ).
(c¢) Prove that
1 1 11 1 2 2 —4
A== 11 1 + -1 -1 2
Sl 3|1 a1 2
if n > 1.
10. Let
5 2 =2
A= 2 5 —2
-2 -2 5

(a) Verify that det (A3 — A), the characteristic polynomial of A, is
given by
(A—3)2(A—9).

(b) Find a non-singular matrix P such that P~'AP = diag (3, 3, 9).



