
Chapter 6

EIGENVALUES AND

EIGENVECTORS

6.1 Motivation

We motivate the chapter on eigenvalues by discussing the equation

ax2 + 2hxy + by2 = c,

where not all of a, h, b are zero. The expression ax2 + 2hxy + by2 is called
a quadratic form in x and y and we have the identity

ax2 + 2hxy + by2 =
[

x y
]

[

a h
h b

] [

x
y

]

= XtAX,

where X =

[

x
y

]

and A =

[

a h
h b

]

. A is called the matrix of the quadratic

form.

We now rotate the x, y axes anticlockwise through θ radians to new
x1, y1 axes. The equations describing the rotation of axes are derived as
follows:

Let P have coordinates (x, y) relative to the x, y axes and coordinates
(x1, y1) relative to the x1, y1 axes. Then referring to Figure 6.1:
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Figure 6.1: Rotating the axes.

x = OQ = OP cos (θ + α)

= OP (cos θ cos α − sin θ sinα)

= (OP cos α) cos θ − (OP sinα) sin θ

= OR cos θ − PR sin θ

= x1 cos θ − y1 sin θ.

Similarly y = x1 sin θ + y1 cos θ.
We can combine these transformation equations into the single matrix

equation:
[

x
y

]

=

[

cos θ − sin θ
sin θ cos θ

] [

x1

y1

]

,

or X = PY , where X =

[

x
y

]

, Y =

[

x1

y1

]

and P =

[

cos θ − sin θ
sin θ cos θ

]

.

We note that the columns of P give the directions of the positive x1 and y1

axes. Also P is an orthogonal matrix – we have PP t = I2 and so P−1 = P t.
The matrix P has the special property that detP = 1.

A matrix of the type P =

[

cos θ − sin θ
sin θ cos θ

]

is called a rotation matrix.

We shall show soon that any 2× 2 real orthogonal matrix with determinant
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equal to 1 is a rotation matrix.
We can also solve for the new coordinates in terms of the old ones:

[

x1

y1

]

= Y = P tX =

[

cos θ sin θ
− sin θ cos θ

] [

x
y

]

,

so x1 = x cos θ + y sin θ and y1 = −x sin θ + y cos θ. Then

XtAX = (PY )tA(PY ) = Y t(P tAP )Y.

Now suppose, as we later show, that it is possible to choose an angle θ so
that P tAP is a diagonal matrix, say diag(λ1, λ2). Then

XtAX =
[

x1 y1

]

[

λ1 0
0 λ2

] [

x1

y1

]

= λ1x
2
1 + λ2y

2
1 (6.1)

and relative to the new axes, the equation ax2 + 2hxy + by2 = c becomes
λ1x

2
1 + λ2y

2
1 = c, which is quite easy to sketch. This curve is symmetrical

about the x1 and y1 axes, with P1 and P2, the respective columns of P ,
giving the directions of the axes of symmetry.

Also it can be verified that P1 and P2 satisfy the equations

AP1 = λ1P1 and AP2 = λ2P2.

These equations force a restriction on λ1 and λ2. For if P1 =

[

u1

v1

]

, the

first equation becomes
[

a h
h b

] [

u1

v1

]

= λ1

[

u1

v1

]

or

[

a − λ1 h
h b − λ1

] [

u1

v1

]

=

[

0
0

]

.

Hence we are dealing with a homogeneous system of two linear equations in
two unknowns, having a non–trivial solution (u1, v1). Hence

∣

∣

∣

∣

a − λ1 h
h b − λ1

∣

∣

∣

∣

= 0.

Similarly, λ2 satisfies the same equation. In expanded form, λ1 and λ2

satisfy
λ2 − (a + b)λ + ab − h2 = 0.

This equation has real roots

λ =
a + b ±

√

(a + b)2 − 4(ab − h2)

2
=

a + b ±
√

(a − b)2 + 4h2

2
(6.2)

(The roots are distinct if a 6= b or h 6= 0. The case a = b and h = 0 needs
no investigation, as it gives an equation of a circle.)

The equation λ2− (a+b)λ+ab−h2 = 0 is called the eigenvalue equation

of the matrix A.
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6.2 Definitions and examples

DEFINITION 6.2.1 (Eigenvalue, eigenvector)
Let A be a complex square matrix. Then if λ is a complex number and
X a non–zero complex column vector satisfying AX = λX, we call X an
eigenvector of A, while λ is called an eigenvalue of A. We also say that X
is an eigenvector corresponding to the eigenvalue λ.

So in the above example P1 and P2 are eigenvectors corresponding to λ1

and λ2, respectively. We shall give an algorithm which starts from the

eigenvalues of A =

[

a h
h b

]

and constructs a rotation matrix P such that

P tAP is diagonal.
As noted above, if λ is an eigenvalue of an n × n matrix A, with

corresponding eigenvector X, then (A − λIn)X = 0, with X 6= 0, so
det (A − λIn) = 0 and there are at most n distinct eigenvalues of A.

Conversely if det (A − λIn) = 0, then (A − λIn)X = 0 has a non–trivial
solution X and so λ is an eigenvalue of A with X a corresponding eigenvector.

DEFINITION 6.2.2 (Characteristic equation, polynomial)
The equation det (A − λIn) = 0 is called the characteristic equation of A,
while the polynomial det (A−λIn) is called the characteristic polynomial of
A. The characteristic polynomial of A is often denoted by chA(λ).

Hence the eigenvalues of A are the roots of the characteristic polynomial
of A.

For a 2× 2 matrix A =

[

a b
c d

]

, it is easily verified that the character-

istic polynomial is λ2 − (traceA)λ+det A, where trace A = a+d is the sum
of the diagonal elements of A.

EXAMPLE 6.2.1 Find the eigenvalues of A =

[

2 1
1 2

]

and find all eigen-

vectors.

Solution. The characteristic equation of A is λ2 − 4λ + 3 = 0, or

(λ − 1)(λ − 3) = 0.

Hence λ = 1 or 3. The eigenvector equation (A − λIn)X = 0 reduces to

[

2 − λ 1
1 2 − λ

] [

x
y

]

=

[

0
0

]

,
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or

(2 − λ)x + y = 0

x + (2 − λ)y = 0.

Taking λ = 1 gives

x + y = 0

x + y = 0,

which has solution x = −y, y arbitrary. Consequently the eigenvectors

corresponding to λ = 1 are the vectors

[

−y
y

]

, with y 6= 0.

Taking λ = 3 gives

−x + y = 0

x − y = 0,

which has solution x = y, y arbitrary. Consequently the eigenvectors corre-

sponding to λ = 3 are the vectors

[

y
y

]

, with y 6= 0.

Our next result has wide applicability:

THEOREM 6.2.1 Let A be a 2× 2 matrix having distinct eigenvalues λ1

and λ2 and corresponding eigenvectors X1 and X2. Let P be the matrix
whose columns are X1 and X2, respectively. Then P is non–singular and

P−1AP =

[

λ1 0
0 λ2

]

.

Proof. Suppose AX1 = λ1X1 and AX2 = λ2X2. We show that the system
of homogeneous equations

xX1 + yX2 = 0

has only the trivial solution. Then by theorem 2.5.10 the matrix P =
[X1|X2] is non–singular. So assume

xX1 + yX2 = 0. (6.3)

Then A(xX1 + yX2) = A0 = 0, so x(AX1) + y(AX2) = 0. Hence

xλ1X1 + yλ2X2 = 0. (6.4)
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Multiplying equation 6.3 by λ1 and subtracting from equation 6.4 gives

(λ2 − λ1)yX2 = 0.

Hence y = 0, as (λ2−λ1) 6= 0 and X2 6= 0. Then from equation 6.3, xX1 = 0
and hence x = 0.

Then the equations AX1 = λ1X1 and AX2 = λ2X2 give

AP = A[X1|X2] = [AX1|AX2] = [λ1X1|λ2X2]

= [X1|X2]

[

λ1 0
0 λ2

]

= P

[

λ1 0
0 λ2

]

,

so

P−1AP =

[

λ1 0
0 λ2

]

.

EXAMPLE 6.2.2 Let A =

[

2 1
1 2

]

be the matrix of example 6.2.1. Then

X1 =

[

−1
1

]

and X2 =

[

1
1

]

are eigenvectors corresponding to eigenvalues

1 and 3, respectively. Hence if P =

[

−1 1
1 1

]

, we have

P−1AP =

[

1 0
0 3

]

.

There are two immediate applications of theorem 6.2.1. The first is to the
calculation of An: If P−1AP = diag (λ1, λ2), then A = Pdiag (λ1, λ2)P

−1

and

An =

(

P

[

λ1 0
0 λ2

]

P−1

)n

= P

[

λ1 0
0 λ2

]n

P−1 = P

[

λn
1 0
0 λn

2

]

P−1.

The second application is to solving a system of linear differential equations

dx

dt
= ax + by

dy

dt
= cx + dy,

where A =

[

a b
c d

]

is a matrix of real or complex numbers and x and y

are functions of t. The system can be written in matrix form as Ẋ = AX,
where

X =

[

x
y

]

and Ẋ =

[

ẋ
ẏ

]

=

[

dx
dt
dy
dt

]

.
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We make the substitution X = PY , where Y =

[

x1

y1

]

. Then x1 and y1

are also functions of t and

Ẋ = PẎ = AX = A(PY ), so Ẏ = (P−1AP )Y =

[

λ1 0
0 λ2

]

Y.

Hence ẋ1 = λ1x1 and ẏ1 = λ2y1.
These differential equations are well–known to have the solutions x1 =

x1(0)eλ1t and y1 = y1(0)eλ2t, where x1(0) is the value of x1 when t = 0.

[If dx
dt

= kx, where k is a constant, then

d

dt

(

e−ktx
)

= −ke−ktx + e−kt dx

dt
= −ke−ktx + e−ktkx = 0.

Hence e−ktx is constant, so e−ktx = e−k0x(0) = x(0). Hence x = x(0)ekt.]

However

[

x1(0)
y1(0)

]

= P−1

[

x(0)
y(0)

]

, so this determines x1(0) and y1(0) in

terms of x(0) and y(0). Hence ultimately x and y are determined as explicit
functions of t, using the equation X = PY .

EXAMPLE 6.2.3 Let A =

[

2 −3
4 −5

]

. Use the eigenvalue method to

derive an explicit formula for An and also solve the system of differential
equations

dx

dt
= 2x − 3y

dy

dt
= 4x − 5y,

given x = 7 and y = 13 when t = 0.

Solution. The characteristic polynomial of A is λ2+3λ+2 which has distinct

roots λ1 = −1 and λ2 = −2. We find corresponding eigenvectors X1 =

[

1
1

]

and X2 =

[

3
4

]

. Hence if P =

[

1 3
1 4

]

, we have P−1AP = diag (−1, −2).

Hence

An =
(

Pdiag (−1, −2)P−1
)n

= Pdiag ((−1)n, (−2)n)P−1

=

[

1 3
1 4

] [

(−1)n 0
0 (−2)n

] [

4 −3
−1 1

]
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= (−1)n

[

1 3
1 4

] [

1 0
0 2n

] [

4 −3
−1 1

]

= (−1)n

[

1 3 × 2n

1 4 × 2n

] [

4 −3
−1 1

]

= (−1)n

[

4 − 3 × 2n −3 + 3 × 2n

4 − 4 × 2n −3 + 4 × 2n

]

.

To solve the differential equation system, make the substitution X =
PY . Then x = x1 + 3y1, y = x1 + 4y1. The system then becomes

ẋ1 = −x1

ẏ1 = −2y1,

so x1 = x1(0)e−t, y1 = y1(0)e−2t. Now

[

x1(0)
y1(0)

]

= P−1

[

x(0)
y(0)

]

=

[

4 −3
−1 1

] [

7
13

]

=

[

−11
6

]

,

so x1 = −11e−t and y1 = 6e−2t. Hence x = −11e−t + 3(6e−2t) = −11e−t +
18e−2t, y = −11e−t + 4(6e−2t) = −11e−t + 24e−2t.

For a more complicated example we solve a system of inhomogeneous

recurrence relations.

EXAMPLE 6.2.4 Solve the system of recurrence relations

xn+1 = 2xn − yn − 1

yn+1 = −xn + 2yn + 2,

given that x0 = 0 and y0 = −1.

Solution. The system can be written in matrix form as

Xn+1 = AXn + B,

where

A =

[

2 −1
−1 2

]

and B =

[

−1
2

]

.

It is then an easy induction to prove that

Xn = AnX0 + (An−1 + · · · + A + I2)B. (6.5)
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Also it is easy to verify by the eigenvalue method that

An =
1

2

[

1 + 3n 1 − 3n

1 − 3n 1 + 3n

]

=
1

2
U +

3n

2
V,

where U =

[

1 1
1 1

]

and V =

[

1 −1
−1 1

]

. Hence

An−1 + · · · + A + I2 =
n

2
U +

(3n−1 + · · · + 3 + 1)

2
V

=
n

2
U +

(3n−1 − 1)

4
V.

Then equation 6.5 gives

Xn =

(

1

2
U +

3n

2
V

)[

0
−1

]

+

(

n

2
U +

(3n−1 − 1)

4
V

) [

−1
2

]

,

which simplifies to
[

xn

yn

]

=

[

(2n + 1 − 3n)/4
(2n − 5 + 3n)/4

]

.

Hence xn = (2n − 1 + 3n)/4 and yn = (2n − 5 + 3n)/4.

REMARK 6.2.1 If (A − I2)
−1 existed (that is, if det (A − I2) 6= 0, or

equivalently, if 1 is not an eigenvalue of A), then we could have used the
formula

An−1 + · · · + A + I2 = (An − I2)(A − I2)
−1. (6.6)

However the eigenvalues of A are 1 and 3 in the above problem, so formula 6.6
cannot be used there.

Our discussion of eigenvalues and eigenvectors has been limited to 2 × 2
matrices. The discussion is more complicated for matrices of size greater
than two and is best left to a second course in linear algebra. Nevertheless
the following result is a useful generalization of theorem 6.2.1. The reader
is referred to [28, page 350] for a proof.

THEOREM 6.2.2 Let A be an n × n matrix having distinct eigenvalues
λ1, . . . , λn and corresponding eigenvectors X1, . . . , Xn. Let P be the matrix
whose columns are respectively X1, . . . , Xn. Then P is non–singular and

P−1AP =











λ1 0 · · · 0
0 λ2 · · · 0
...

...
...

...
0 0 · · · λn











.
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Another useful result which covers the case where there are multiple eigen-
values is the following (The reader is referred to [28, pages 351–352] for a
proof):

THEOREM 6.2.3 Suppose the characteristic polynomial of A has the fac-
torization

det (λIn − A) = (λ − c1)
n1 · · · (λ − ct)

nt ,

where c1, . . . , ct are the distinct eigenvalues of A. Suppose that for i =
1, . . . , t, we have nullity (ciIn−A) = ni. For each i, choose a basis Xi1, . . . , Xini

for the eigenspace N(ciIn − A). Then the matrix

P = [X11| · · · |X1n1
| · · · |Xt1| · · · |Xtnt

]

is non–singular and P−1AP is the following diagonal matrix

P−1AP =











c1In1
0 · · · 0

0 c2In2
· · · 0

...
...

...
...

0 0 · · · ctInt











.

(The notation means that on the diagonal there are n1 elements c1, followed
by n2 elements c2,. . . , nt elements ct.)

6.3 PROBLEMS

1. Let A =

[

4 −3
1 0

]

. Find a non–singular matrix P such that P−1AP =

diag (1, 3) and hence prove that

An =
3n − 1

2
A +

3 − 3n

2
I2.

2. If A =

[

0.6 0.8
0.4 0.2

]

, prove that An tends to a limiting matrix

[

2/3 2/3
1/3 1/3

]

as n → ∞.
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3. Solve the system of differential equations

dx

dt
= 3x − 2y

dy

dt
= 5x − 4y,

given x = 13 and y = 22 when t = 0.

[Answer: x = 7et + 6e−2t, y = 7et + 15e−2t.]

4. Solve the system of recurrence relations

xn+1 = 3xn − yn

yn+1 = −xn + 3yn,

given that x0 = 1 and y0 = 2.

[Answer: xn = 2n−1(3 − 2n), yn = 2n−1(3 + 2n).]

5. Let A =

[

a b
c d

]

be a real or complex matrix with distinct eigenvalues

λ1, λ2 and corresponding eigenvectors X1, X2. Also let P = [X1|X2].

(a) Prove that the system of recurrence relations

xn+1 = axn + byn

yn+1 = cxn + dyn

has the solution
[

xn

yn

]

= αλn
1X1 + βλn

2X2,

where α and β are determined by the equation
[

α
β

]

= P−1

[

x0

y0

]

.

(b) Prove that the system of differential equations

dx

dt
= ax + by

dy

dt
= cx + dy

has the solution
[

x
y

]

= αeλ1tX1 + βeλ2tX2,
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where α and β are determined by the equation

[

α
β

]

= P−1

[

x(0)
y(0)

]

.

6. Let A =

[

a11 a12

a21 a22

]

be a real matrix with non–real eigenvalues λ =

a + ib and λ = a − ib, with corresponding eigenvectors X = U + iV
and X = U − iV , where U and V are real vectors. Also let P be the
real matrix defined by P = [U |V ]. Finally let a + ib = reiθ, where
r > 0 and θ is real.

(a) Prove that

AU = aU − bV

AV = bU + aV.

(b) Deduce that

P−1AP =

[

a b
−b a

]

.

(c) Prove that the system of recurrence relations

xn+1 = a11xn + a12yn

yn+1 = a21xn + a22yn

has the solution
[

xn

yn

]

= rn{(αU + βV ) cos nθ + (βU − αV ) sinnθ},

where α and β are determined by the equation

[

α
β

]

= P−1

[

x0

y0

]

.

(d) Prove that the system of differential equations

dx

dt
= ax + by

dy

dt
= cx + dy
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has the solution
[

x
y

]

= eat{(αU + βV ) cos bt + (βU − αV ) sin bt},

where α and β are determined by the equation
[

α
β

]

= P−1

[

x(0)
y(0)

]

.

[Hint: Let

[

x
y

]

= P

[

x1

y1

]

. Also let z = x1 + iy1. Prove that

ż = (a − ib)z

and deduce that

x1 + iy1 = eat(α + iβ)(cos bt + i sin bt).

Then equate real and imaginary parts to solve for x1, y1 and
hence x, y.]

7. (The case of repeated eigenvalues.) Let A =

[

a b
c d

]

and suppose

that the characteristic polynomial of A, λ2 − (a + d)λ + (ad− bc), has
a repeated root α. Also assume that A 6= αI2. Let B = A − αI2.

(i) Prove that (a − d)2 + 4bc = 0.

(ii) Prove that B2 = 0.

(iii) Prove that BX2 6= 0 for some vector X2; indeed, show that X2

can be taken to be

[

1
0

]

or

[

0
1

]

.

(iv) Let X1 = BX2. Prove that P = [X1|X2] is non–singular,

AX1 = αX1 and AX2 = αX2 + X1

and deduce that

P−1AP =

[

α 1
0 α

]

.

8. Use the previous result to solve system of the differential equations

dx

dt
= 4x − y

dy

dt
= 4x + 8y,
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given that x = 1 = y when t = 0.

[To solve the differential equation

dx

dt
− kx = f(t), k a constant,

multiply throughout by e−kt, thereby converting the left–hand side to
dx
dt

(e−ktx).]

[Answer: x = (1 − 3t)e6t, y = (1 + 6t)e6t.]

9. Let

A =





1/2 1/2 0
1/4 1/4 1/2
1/4 1/4 1/2



 .

(a) Verify that det (λI3 − A), the characteristic polynomial of A, is
given by

(λ − 1)λ(λ −
1

4
).

(b) Find a non–singular matrix P such that P−1AP = diag (1, 0, 1

4
).

(c) Prove that

An =
1

3





1 1 1
1 1 1
1 1 1



 +
1

3 · 4n





2 2 −4
−1 −1 2
−1 −1 2





if n ≥ 1.

10. Let

A =





5 2 −2
2 5 −2

−2 −2 5



 .

(a) Verify that det (λI3 − A), the characteristic polynomial of A, is
given by

(λ − 3)2(λ − 9).

(b) Find a non–singular matrix P such that P−1AP = diag (3, 3, 9).


