
4/3/2006 3

Parallel Processing

• So far: focused on performance of a single instruction stream
– ILP exploits parallelism among the instructions of this stream
– Needs to resolve control, data, and memory dependencies

• How do we get further improvements in performance?
– Exploit parallelism among multiple instruction streams
– Multithreading: Streams run on one CPU

• Typically, share resources such as functional units, caches, etc.
• Per-thread register set

– Multiprocessing: Streams run on multiple CPUs
• Each CPU can itself be multithreaded

– Common issues:
• synchronization between threads
• consistency of data in caches (more generally, communication)

• NYU Course: G22.3033 Architecture and Programming of Parallel Computers

4/3/2006 4

Parallel Computers

• Definition: “A parallel computer is a collection of processing
elements that cooperate and communicate to solve large problems
fast.”

Almasi and Gottlieb, Highly Parallel Computing ,1989

• Questions about parallel computers:
– How large a collection?
– How powerful are processing elements?
– How do they cooperate and communicate?
– How are data transmitted?
– What type of interconnection?
– What are HW and SW primitives for programmer?
– Does it translate into performance?

4/3/2006 5

What level Parallelism?

• Bit level parallelism: 1970 to ~1985
– 4 bits, 8 bit, 16 bit, 32 bit microprocessors

• Instruction level parallelism (ILP):
~1985 through today

– Pipelining
– Superscalar
– VLIW
– Out-of-Order execution
– Limits to benefits of ILP?

• Process Level or Thread level parallelism; mainstream for
general purpose computing?

– Servers
– Highend Desktop dual processor PC

4/3/2006 6

Why Multiprocessors?

1. Microprocessors as the fastest CPUs
• Collecting several much easier than redesigning 1

2. Complexity of current microprocessors
• Do we have enough ideas to sustain 1.5X/yr?
• Can we deliver such complexity on schedule?

3. Slow (but steady) improvement in parallel software (scientific apps,
databases, OS)

4. Emergence of embedded and server markets driving
microprocessors in addition to desktops
• Embedded functional parallelism, producer/consumer model
• Server figure of merit is tasks per hour vs. latency

4/3/2006 7

TOP500 Supercomputers (top500.org)

• List of top 500 supercomputers published twice a year
• The latest list shows a major shake-up of the TOP10 since last report
• Only six of the TOP10 systems from November 2004 are still large

enough to hold on to a TOP10 position, four new systems entered the
top tier

• No. 1 supercomputer: DOE's IBM BlueGene/L system
– Installed at Lawrence Livermore National Laboratory (LLNL
– Achieves a record Linpack performance of 280.6 TFlop/s
– It is still the only system ever to exceed the 100 TFlop/s mark
– 131,072 processors

4/3/2006 8

TOP500 architectures and Applications

4/3/2006 9

TOP500 Processors

4/3/2006 10

Top500 OS and Interconnects

4/3/2006 11

Popular Flynn Categories

• SISD (Single Instruction Single Data)
– Uniprocessors

• MISD (Multiple Instruction Single Data)
– ???; multiple processors on a single data stream

• SIMD (Single Instruction Multiple Data)
– Examples: Illiac-IV, CM-2

• Simple programming model
• Low overhead
• Flexibility
• All custom integrated circuits

– (Phrase reused by Intel marketing for media instructions ~ vector)

• MIMD (Multiple Instruction Multiple Data)
– Examples: Sun Enterprise 5000, Cray T3D, SGI Origin

• Flexible
• Use off-the-shelf micros

4/3/2006 12

Two Major MIMD Styles

1. Centralized shared memory
• UMA: Uniform Memory Access
• Symmetric (shared memory) multiprocessors (SMPs)

Processor

Caches

Processor

Caches

Processor

Caches

Processor

Caches

Main Memory I/O System

4/3/2006 13

Two Major MIMD Styles

2. Decentralized memory (memory module with CPU)
• Get more memory bandwidth, lower memory latency
• Drawback: Longer communication latency
• Drawback: Software model more complex
• Two major communication models

Processor
& Caches

Memory I/O

Processor
& Caches

Memory I/O

Processor
& Caches

Memory I/O

Processor
& Caches

Memory I/O

Interconnection network

4/3/2006 14

Communication Models for
Decentralized Memory versions
1. Shared Address Space:

• Called distributed Shared-memory (DSM)
• Shared shared address space

• Shared Memory with "Non Uniform Memory Access" time (NUMA)
2. Multiple Private Address Spaces:

• Message passing "multicomputer" with separate address space per
processor

• Can invoke software with Remote Procedue Call (RPC)
• Often via library, such as MPI: Message Passing Interface
• Also called "Synchronous communication" since communication causes

synchronization between 2 processes
• Asynchronous communication for higher performance

4/3/2006 15

Communication Performance Metrics:
Latency and Bandwidth

1. Bandwidth
– Need high bandwidth in communication
– Match limits in network, memory, and processor
– Node bandwidth vs. bisection bandwidth of network

2. Latency
– Affects performance, since processor may have to wait
– Affects ease of programming, since requires more thought to overlap

communication and computation
– Overhead to communicate is a problem in many machines

3. Latency Hiding
– How can a mechanism help hide latency?
– Increases programming system burden
– Examples: overlap message send with computation, prefetch data, switch to

other tasks

4/3/2006 16

Parallel Framework

• Layers:
– Programming Model:

• Multiprogramming : lots of jobs, no communication
• Shared address space: communicate via memory
• Message passing: send and receive messages
• Data Parallel: several agents operate on several data sets simultaneously

and then exchange information globally and simultaneously (shared or
message passing)

– Communication Abstraction:
• Shared address space: e.g., load, store, atomic swap
• Message passing: e.g., send, receive library calls
• Debate over this topic (ease of programming, scaling)

=> many hardware designs 1:1 programming model

4/3/2006 17

St o r e

P1

P2

Pn

P0

L o a d

P0 p r i v a t e

P1 p r i v a t e

P2 p r i v a t e

Pn p r i v a t e

Virtual address spaces for a
collection of processes communicating
via shared addresses

Machine physical address space

Shared portion
of address space

Private portion
of address space

Common physical
addresses

(1) Shared Address Space Architectures

• Programming model
– process: virtual address space plus one or more threads of control
– portions of address spaces of processes are shared
– writes to shared address visible to all threads (in other processes as well)

4/3/2006 18

Shared Address Space Architectures (cont’d)

• Motivation: Programming convenience
– location transparency

• communication is implicitly initiated by loads and stores
– similar programming model to time-sharing on uniprocessors

• Communication hardware also natural extension of uniprocessor
– addition of processors similar to memory modules, I/O controllers

I/O ctrlMem Mem Mem

Interconnect

Mem I/O ctrl

Processor Processor

Interconnect

I/O
devices

4/3/2006 19

Evolution: Four Organizations

• Mainframes
– motivated by multiprogramming
– extends crossbar for memory modules and I/O

• initially, limited by processor cost
• later, by cost of crossbar

– high incremental cost
– e.g., IBM S/390 (now zServer)

• Minicomputers (SMPs)
– motivated by multiprogramming,

transaction processing
– all components on a shared bus

• latency larger than for uniprocessor
• bus is bandwidth bottleneck
• caching is key: coherence problem

– low incremental cost

P

P

C

C

I/O

I/O

M MM M

PP

C

I/O

M MC

I/O

$ $

4/3/2006 20

– All coherence and multiprocessing
glue in processor module

– Highly integrated, targeted at high
volume

– Low latency and bandwidth

P-Pro bus (64-bit data, 36-bit address, 66 MHz)

CPU

Bus interface

MIU

P-Pro
module

P-Pro
module

P-Pro
module256-KB

L2 $
Interrupt
controller

PCI
bridge

PCI
bridge

Memory
controller

1-, 2-, or 4-way
interleaved

DRAM

P
C

I b
us

P
C

I b
usPCI

I/O
cards

Example of an SMP: Intel Pentium Pro Quad

4/3/2006 21

• Dance Hall
– problem: interconnect cost (crossbar),

or bandwidth (bus)
– solution: scalable interconnection network

• bandwidth scalable
• however, larger access latencies
• caching is key: coherence problem

– e.g., NYU Ultracomputer

• Distributed Memory (NUMA)
– message transactions across a

general-purpose network
• e.g. read-request, read-response

– caching of non-local data is key
• coherence costs

– e.g., Cray T3E (now X1), Origin 2000, Altix 3000

Evolution: Four Organizations (contd.)

M M M
° ° °

° ° °

Network

P

$

P

$

P

$

M ° ° °M M

Network

P

$

P

$

P

$

4/3/2006 22

Switch

P
$

XY

Z

External I/O

Mem
ctrl

and NI

Mem

Example of a NUMA: Cray T3E

• Scales up to 1024 processors, 480MB/s links
• Non-local references accessed using communication requests

– generated automatically by the memory controller
– no hardware coherence mechanism (unlike SGI Origin or SGI Altix)

4/3/2006 23

(2) Message Passing Architectures

• Programming model
– directly access only private address space (local memory),

communicate via explicit messages (send/receive)
– in simplest form, achieves pair-wise synchronization

– model is decoupled from basic hardware operations
• library or OS intervention for copying, buffer management, protection

ProcessP ProcessQ

AddressY

Address X

Send X, Q

Receive Y, PMatch

Local process
address spaceLocal process

address space

4/3/2006 24

Message Passing Architectures (cont’d)

• Complete computer as building block, including I/O
– communication via explicit I/O operations

• High-level block diagram similar to distributed-memory shared
address space machines

– but communication integrated at IO level, needn’t be into memory system
– like networks of workstations (clusters), but tighter integration
– easier to build than scalable shared address space machines

M ° ° °M M

Network

P

$

P

$

P

$

4/3/2006 25

Example of a Message Passing Machine: IBM SP

• Made out of essentially complete RS6000 workstations
• Network interface integrated in I/O bus (bandwidth limited by I/O bus)

Memory bus

MicroChannel bus

I/O

i860 NI

DMA

D
R

A
M

IBM SP-2 node

L2 $

Power 2
CPU

Memory
controller

4-way
interleaved

DRAM

NIC

4/3/2006 26

000001

010011

100

110

101

111

Evolution of Message-Passing Machines

• Early machines: FIFO on each link
– HW close to programming model

• synchronous operations
– replaced by DMA

• enables non-blocking operations
• buffered by system at destination

• Today: diminishing role of topology
– topology important for store-and-forward routing
– introduction of pipelined (cut-through) routing made it less so

• Virtual cut through, wormhole routing
– cost is in node-network interface

4/3/2006 27

Message Passing Model
• Whole computers (CPU, memory, I/O devices) communicate as

explicit I/O operations
– Essentially NUMA but integrated at I/O devices vs. memory system

• Send specifies local buffer + receiving process on remote
computer

• Receive specifies sending process on remote computer + local
buffer to place data

– Usually send includes process tag
and receive has rule on tag: match 1, match any

4/3/2006 28

Advantages shared-memory communication
model

• Compatibility with SMP hardware
• Ease of programming when communication patterns are complex or vary

dynamically during execution
• Ability to develop apps using familiar SMP model, attention only on

performance critical accesses
• Lower communication overhead, better use of BW for small items, due to

implicit communication and memory mapping to implement protection in
hardware, rather than through I/O system

• HW-controlled caching to reduce remote comm. by caching of all data, both
shared and private.

4/3/2006 29

Advantages message-passing communication
model

• The hardware can be simpler (esp. vs. NUMA)
• Communication explicit => simpler to understand; in shared memory it can

be hard to know when communicating and when not, and how costly it is
• Explicit communication focuses attention on costly aspect of parallel

computation, sometimes leading to improved structure in multiprocessor
program

• Synchronization is naturally associated with sending messages
• Easier to use sender-initiated communication, which may have some

advantages in performance

• Can support either SW model on either HW base

4/3/2006 30

Amdahl’s Law and Parallel Computers

• Amdahl’s Law (FracX: original % to be speed up)
Speedup = 1 / [(FracX/SpeedupX + (1-FracX)]

• A portion is sequential => limits parallel speedup
– Speedup <= 1/ (1-FracX)

• Ex. What fraction sequential to get 80X speedup from 100 processors?

80 = 1 / [(FracX/100 + (1-FracX)]
0.8*FracX + 80*(1-FracX) = 80 - 79.2*FracX = 1
FracX = (80-1)/79.2 = 0.9975

Only 0.25% sequential allowed!

4/3/2006 31

Shared Memory Multiprocessors

• Symmetric multiprocessors (SMPs)
– uniform access to all of main memory from any processor

• Dominates the server market
– building blocks for larger systems
– arriving to desktop

• Attractive for both parallel programs and throughput servers
– fine-grain resource sharing
– automatic data movement and coherent replication in caches

Uniform access via loads and stores
– private caches reduce access latency, bandwidth demands on bus
– however, introduce the cache coherency problem

• values in different caches need to be kept consistent

4/3/2006 32

I/O devices

Memory

P1

$ $ $

P2 P3

5

u = ?

4

u = ?

1

u:5

u:5 2

u:5

3

u = 7

The Cache Coherence Problem

• Processors see stale values
– with write-back caches, value written back to memory depends on which

cache flushes or writes back value (and when)
– clearly not a desirable situation!

4/3/2006 33

So What Should Happen?

• Intuition for a coherent memory system
 reading a location should return latest value written (by any process)

• What does latest mean?
– several alternatives (even on uniprocessors)

• source program order, program issue order, order of completion, etc.
– how to make sense of order among multiple processes?

must define a meaningful semantics

• Is cache coherence a problem on uniprocessors?
• Yes!

– interaction between caches and I/O devices
• infrequent software solutions work well

– uncacheable memory, flush pages, route I/O through caches

– however, the problem is performance-critical in multiprocessors
• needs to be treated as a basic hardware design issue

4/3/2006 34

Order Among Multiple Processes: Intuition

• Assume a single shared memory, no caches
– every read/write to a location accesses the same physical location

• operation completes when it does so
– so, memory imposes a serial or total order on operations to the location

• operations to the location from a given processor are in program order
• the order of operations to the location from different processors is some

interleaving that preserves the individual program orders

• With caches
 “latest” ≡ most recent in a serial order that maintains these properties
– for the serial order to be consistent, all processors must see writes to the

location in the same order (if they bother to look)

4/3/2006 35

Formal Definition of Coherence

 A memory system is coherent if the results of any execution of a
program are such that for each location, it is possible to construct a
hypothetical serial order of all operations to the location that is
consistent with the results of the execution and in which:
– operations issued by any particular process occur in the order issued by

that process, and
– the value returned by a read is the value written by the last write to that

location in the serial order

• Two necessary features:
– write propagation: value written must become visible to others
– write serialization: writes to a location seen in the same order by all

4/3/2006 36

Cache Coherence Using a Bus

Two fundamentals of uniprocessor systems
• Bus transactions

– three phases: arbitration, command/address, data transfer
– all devices observe addresses, one is responsible for providing data

• Cache state transitions
– every block is a finite state machine
– two states in write-through, write no-allocate caches: valid, invalid
– write-back caches have one more state: modified (“dirty”)

• Multiprocessors extend both these somewhat to implement coherence
– “snoop” on bus events and take action
– cache controller receives inputs from two sides: processor and bus

• actions: update state, respond with data, generate new bus transactions
– protocol implemented by cooperating state machines

Will discuss another Coherence scheme later: Directory-Based Schemes

4/3/2006 37

I/O devicesMem

P1

$

Bus snoop

$

Pn

Cache-memory
transaction

Coherence with Write-through Caches

• Snoop on write transactions and invalidate/update cache
– memory is always up-to-date (write-through)
– invalidation causes next read to miss and fetch new value from memory

(write propagation)
– bus transactions impose serial order writes are seen in the same order

(write serialization)

4/3/2006 38

Basic Snooping Protocols

• Write Invalidate Protocol:
– Multiple readers, single writer
– Write to shared data: an invalidate is sent to all caches which snoop and

invalidate any copies
– Read Miss:

• Write-through: memory is always up-to-date
• Write-back: snoop in caches to find most recent copy

• Write Broadcast Protocol (typically write through):
– Write to shared data: broadcast on bus, processors snoop, and update any copies
– Read miss: memory is always up-to-date

• Write serialization: bus serializes requests!
– Bus is single point of arbitration

4/3/2006 39

Basic Snooping Protocols Comparison

• Write Invalidate versus Broadcast:
– Invalidate requires one transaction for multiple writes to the same word
– Invalidate uses spatial locality: one transaction for writes to different words in

the same block
– Broadcast has lower latency between write and read

• Bus and memory bandwidth most in demand
– Invalidation is the protocol of choice
– For same reasons, write back caches are chosen over write-through caches

4/3/2006 40

CPU-Snoop Contention

• CPU accesses and bus transactions check cache “tags”
• Potential interference as one can stall the other
• Reduce the interference by

– Duplicating cache tags
• CPU will be using a different set of tags
• CPU may get stalled during cache access when snoop has detected a copy in

the cache and tags need to be updated
– Using multi-level caches with inclusion

• Content of primary cache (L1) is in secondary cache (L2)
• Most CPU activity directed to L1
• Snoop activity directed to L2
• If snoop gets a hit then it arbitrates L1 to update and possibly get data; this

will stall CPU
• Can be combined with “duplicate tags” approach to further reduce contention

4/3/2006 41

An Example Snooping Protocol

• Invalidation protocol, write-back cache
• Each block of memory is in one state:

– Clean in all caches and up-to-date in memory (Shared)
– OR Dirty in exactly one cache (Exclusive)
– OR Not in any caches

• Each cache block is in one state (track these):
– Shared : block can be read
– OR Exclusive : cache has only copy, its writeable, and dirty
– OR Invalid : block contains no data

• Read misses: cause all caches to snoop bus
• Writes to clean line are treated as misses

4/3/2006 42

Snooping-Cache State Machine: for CPU requests

State machine for CPU
requests for each cache block

Invalid
Shared

(read only)

Exclusive
(read/write)

CPU Read

CPU Write

CPU Read hit

Place read miss
on bus

Place Write
Miss on bus

CPU read miss
Write back block,
Place read miss
on bus

CPU Write
Place Write Miss on Bus

CPU Read miss
Place read miss
on bus

CPU Write Miss
Write back cache block
Place write miss on bus

CPU read hit
CPU write hit

4/3/2006 43

Snooping-Cache State Machine: for bus requests

State machine for bus requests
for each cache block

Invalid Shared
(read only)

Exclusive
(read/write)

Write Back Block
(abort memory access)

Write miss
for this block

Read miss
for this block

Write miss
for this block

Write Back Block; (abort
memory access)

4/3/2006 44

Snooping-Cache State Machine: combined

State machine
for CPU requests
for each cache block and
for bus requests
for each
cache block

Write Back
Block; (abort

memory access)

Place read miss
on bus

Invalid
Shared

(read only)

Exclusive
(read/write)

CPU Read

CPU Write

CPU Read hit

Place Write Miss on bus

CPU read miss
Write back block,
Place read miss
on bus CPU Write

Place Write Miss on Bus

CPU Read miss
Place read miss
on bus

CPU Write Miss
Write back cache block
Place write miss on bus

CPU read hit
CPU write hit

Write miss
for this block

Write miss
for this block

Read miss
for this block

Write Back
Block; (abort
memory access)

4/3/2006 45

Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1
P1: Read A1
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes initial cache state
is invalid and A1 and A2 map
to same cache block,
but A1 != A2

Processor 1 Processor 2 Bus Memory

Remote
Write

Write Back

Remote Write

Invalid Shared

Exclusive

CPU Read hit

Read
miss on bus

Write
miss on bus CPU Write

Place Write
Miss on Bus

CPU read hit
CPU write hit

Remote Read
Write Back

CPU Write Miss
Write Back

CPU Read Miss

4/3/2006 46

Example: Step 1
P1 P2 Bus Memory

step State Addr Value State Addr Value Action Proc. Addr Value Addr Value
P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1

P1: Read A1
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes initial cache state
is invalid and A1 and A2 map
to same cache block,
but A1 != A2.
Active arrow = Remote

Write
Write Back

Remote Write

Invalid Shared

Exclusive

Read
miss on bus

Write
miss on bus CPU Write

Place Write
Miss on Bus

CPU read hit
CPU write hit

Remote Read
Write Back

CPU Write Miss
Write Back

CPU Read Miss

CPU Read hit

4/3/2006 47

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

Example: Step 2

Assumes initial cache state
is invalid and A1 and A2 map
to same cache block,
but A1 != A2

Remote
Write

Write Back

Remote Write

Invalid Shared

Exclusive

Read
miss on bus

Write
miss on bus CPU Write

Place Write
Miss on Bus

CPU read hit
CPU write hit

Remote Read
Write Back

CPU Write Miss
Write Back

CPU Read Miss

CPU Read hit

4/3/2006 48

Example: Step 3
P1 P2 Bus Memory

step State Addr Value State Addr Value Action Proc. Addr Value Addr Value
P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1

P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 10
Shar. A1 10 RdDa P2 A1 10 10

P2: Write 20 to A1 10
P2: Write 40 to A2 10

10

Assumes initial cache state
is invalid and A1 and A2 map
to same cache block,
but A1 != A2.

Remote
Write

Write Back

Remote Write

Invalid Shared

Exclusive

Read
miss on bus

Write
miss on bus CPU Write

Place Write
Miss on Bus

CPU read hit
CPU write hit

Remote Read
Write Back

A1
A1

CPU Write Miss
Write Back

CPU Read Miss

CPU Read hit

4/3/2006 49

Example: Step 4

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 10
Shar. A1 10 RdDa P2 A1 10 10

P2: Write 20 to A1 Inv. Excl. A1 20 WrMs P2 A1 10
P2: Write 40 to A2 10

10

Assumes initial cache state
is invalid and A1 and A2 map
to same cache block,
but A1 != A2

Remote
Write

Write Back

Remote Write

Invalid Shared

Exclusive

Read
miss on bus

Write
miss on bus CPU Write

Place Write
Miss on Bus

CPU read hit
CPU write hit

Remote Read
Write Back

A1
A1
A1

CPU Write Miss
Write Back

CPU Read Miss

CPU Read hit

4/3/2006 50

Remote
Write

Write Back

Remote Write

Invalid Shared

Exclusive

Read
miss on bus

Write
miss on bus CPU Write

Place Write
Miss on Bus

CPU read hit
CPU write hit

Remote Read
Write Back

Example: Step 5

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 10
Shar. A1 10 RdDa P2 A1 10 10

P2: Write 20 to A1 Inv. Excl. A1 20 WrMs P2 A1 10
P2: Write 40 to A2 WrMs P2 A2 10

Excl. A2 40 WrBk P2 A1 20 20

A1

A1

Assumes initial cache state
is invalid and A1 and A2 map
to same cache block,
but A1 != A2

A1
A1
A1

CPU Write Miss
Write Back

CPU Read Miss

CPU Read hit

4/3/2006 51

Snooping Cache Variations: MESI Protocol

• Four sates:
– Modified/Exclusive/Shared/Invalid

• Exclusive now means exclusively cached but clean
– Upon loading, a line is marked E, subsequent read OK

• Modifies for exclusive writes:
– Writes mark M

• If another node's read is seen, mark S
• Write to an S, send I to all, mark M
• If another reads an M line, write it back, mark it S
• Read/write to an I misses

4/3/2006 52

Snooping Cache Variations: Berkeley Protocol

• The main idea is to allow cache to cache transfers on the shared bus
• It adds the notion of “owner”

– the cache that has the block in a Dirty state is the owner of that block:
The last one who writes, is the owner

• The owner responsible to transfer data if read occurs and to update
main memory
– If a block is not owned by any cache, memory is the owner

