
3/4/2006 26

Memory Hierarchy Design
(Moving Outside the Processor)

3/4/2006 27

Why Worry About the Memory Hierarchy?

• The course to this point has focused on processor performance issues
– CPU cost/performance, ISA, Pipelined and dynamic execution

60% per year

7% per year

CPU-DRAM
performance gap
(50% per year)

No cache First Intel processor
w/ cache

2-level cache
on chip

3/4/2006 28

Processor-Memory Performance Gap “Tax”

• Fraction of processor area/transistors taken up by caches (~1997)

Processor % Area %Transistors
(cost) (power)

Alpha 21164 37% 77%
StrongArm SA110 61% 94%
Pentium Pro 64% 88%

Pentium Pro:
2 dies per package: Proc/I$/D$ + L2$

• Caches have no inherent value, only try to close performance gap

3/4/2006 29

(Review) Cache Organization

• Cache is the name given to the first level of the memory hierarchy,
encountered once the address leaves the CPU

– It serves as a temporary place where frequently-used values can be stored
• Retains the same name as in memory (different from registers)

– To avoid having to go to memory every time this value is needed
• Caches are faster (hence more expensive, limited in size) than DRAM

• Caches store values at the granularity of cache blocks (lines)
– Larger than a single word: efficiency and spatial locality concerns
– Cache hit if value in cache, else cache miss

• Effect of caches on CPU execution time

CPU time = (CPU execution clock cycles + Memory stall clock cycles) x clock cycle time
Memory stall clock cycles = (Reads x Read miss rate x Read miss penalty +

Writes x Write miss rate x Write miss penalty)
= Memory accesses x Miss rate x Miss penalty

3/4/2006 30

Four Questions for Memory Hierarchy Designers

Q1: Where can a block be placed in the upper level?
(Block placement)
– Fully Associative, Set Associative, Direct Mapped

Q2: How is a block found if it is in the upper level?
(Block identification)
– Tag per block

Q3: Which block should be replaced on a miss?
(Block replacement)
– Random, LRU

Q4: What happens on a write?
(Write strategy)
– Write Back or Write Through (with Write Buffer)

3/4/2006 31

Question 1: Block Placement

• Fully associative: block
can be placed anywhere

• Direct map: each block
has one place

• Set associative: block
can be placed anywhere
in a set

Range of caches is really a
continuum of levels of
set associativity

Most caches today are
direct-mapped (1-way),
2-way or 4-way
associative

3/4/2006 32

Question 2: Block Identification

• Caches have a tag on each block frame that gives the block address
– All possible tags, where the block may be present, are checked in parallel

• Quick check of whether a block contains data: Valid bit
• Organization determines which (subset of) blocks need to be checked

– View memory address as below

– Fully-associative caches: Only tag

Selects the “set”Selects “block” within set

Larger blocksLower associativity

3/4/2006 33

Question 3: Block Replacement

• When a new block needs to be brought in (on demand), an existing
cache block may need to be freed up

• Three commonly-used schemes
(we only select a block within the appropriate “set”)
– Random: Easiest to implement
– Least-recently used (LRU)
– First-in, first-out (FIFO): used as an approximation to LRU

• LRU outperforms Random and FIFO on smaller caches
– FIFO outperforms Random

• Differences not as big for larger caches
– Bigger benefit from avoiding misses in the first place

3/4/2006 34

Question 4: Write Strategy

• When is memory updated with the contents of a store?
• Issue: Reads dominate cache traffic (writes typically 10% of accesses)

– Optimization for read: Do tag checking and data transfer in parallel
– Cannot do this for writes (also, only sub-portion of block needs update)

• Two write policies
– Write through

• Information written to both cache and memory
• Simplifies replacement procedure (block is clean)
• Also, simplifies data coherency (later in the course)

– Write back
• Information only written to the cache
• Dirty bit keeps track of which blocks have data that needs to be sync-ed
• Multiple writes lead to less number of wrtes to memory
• Reduces memory bandwidth requirement (hence power)

– Variants: With or without write-allocate (usually used with write back)
• Write stalls in write-through caches reduced using write buffers

3/4/2006 35

The Alpha 21264 Data Cache

• 64KB cache, 64B blocks
• 2-way set associative, write-

back, write allocate

• 44-bit physical address
– 9-bit index

• Identifies 2 blocks from 512
sets

– 29-bit tag
• Identifies which of 2 blocks

• Tag checking and data
extraction proceed in parallel

• Figure shows steps involved in
a “read hit”

3/4/2006 36

Improving Cache Performance

CPU time = (CPU execution clock cycles + Memory stall clock cycles) x clock cycle time
Memory stall clock cycles = (Reads x Read miss rate x Read miss penalty +

Writes x Write miss rate x Write miss penalty)
= Memory accesses x Miss rate x Miss penalty

• Above assumes 1-cycle to hit in cache
– Hard to achieve in current-day processors (faster clocks, larger caches)
– More reasonable to also include hit time in the performance equation
 Average memory access time = Hit Time + Miss rate x Miss Penalty

Small/simple caches
Avoiding address

translation
Pipelined cache access
Trace caches

Larger block size
Larger cache size
Higher associativity
Way prediction
Compiler optimizations

Multilevel caches
Critical word first
Read miss before write

miss
Merging write buffers
Victim caches

Nonblocking caches
Hardware prefetching
Compiler prefetching

A
B

C

D

3/4/2006 37

A.1. Reducing Miss Penalty via Multilevel Caches

• Idea: Have multiple levels of caches
– Tradeoff between size (cache effectiveness) and cost (access time)

• For a 2-level cache
Average memory access time = Hit time (L1) + Miss rate (L1) x Miss penalty (L1)
Miss penalty (L1) = Hit time (L2) + Miss rate (L2) x Miss penalty (L2)

• Distinguish between two kinds of miss rates
– Local miss rate = Miss rate (L1) or Miss rate (L2)
– Global miss rate = Number of misses/total number of memory accesses

= Miss rate (L1), but Miss rate (L1) x Miss rate(L2)

• Example: 1000 references, 40 misses in L1 cache and 20 in L2
– Local miss rates: 4% (L1), 50% (L2) = 20/40
– Global miss rates: 4% (L1), 2% (L2)
– Avg. memory access time = 1 + 4% x (10 + 50% x 100) = 3.4 cycles

3/4/2006 38

Multilevel Caches (cont’d)

• Doesn’t make much sense to have L2 caches smaller than L1 caches
• L2 needs to be significantly bigger to have reasonable miss rates

– Cost of big L2 is smaller than big L1
• Exclusive and cooperative caches

64 KB L1 caches for
instruction, data

Unified L2 cache

3/4/2006 39

A.2. Reduce Miss Penalty via
Critical Word First and Early Restart

• Idea: Don’t wait for full block to be loaded before restarting CPU
– Early restart: request the words in a block in order. As soon as the

requested word of the block arrives, send it to the CPU and let the CPU
continue execution

– Critical Word First: Request the missed word first from memory and send
it to the CPU as soon as it arrives; let the CPU continue execution while
filling the rest of the words in the block

• Also called wrapped fetch and requested word first

• Drawbacks
– Generally useful only in large blocks
– Programs exhibiting spatial locality a problem; tend to want next

sequential word, so limited benefit by early restart

3/4/2006 40

A.3. Reducing Miss Penalty by giving Reads Priority
over Writes on Misses

• Write buffers ensure that writes to memory do not stall the processor
• On the other hand, processor is blocked till read returns

• Solution: Give read misses priority

Challenges
• Write-through with write buffers may result in RAW conflicts

– Solution 1: Wait for write buffer to empty (not great)
– Solution 2: Check write buffer contents before read; if no conflicts, let the

memory access continue

• Write-back caches: Read miss may require replacing a dirty block
– Normal: Write dirty block to memory, and then do the read
– Better alternative: Copy the dirty block to a write buffer, then do the read,

and then do the write
• CPU stall less since restarts as soon as read is done

3/4/2006 41

A.4. Reducing Miss Penalty using
Merging Write Buffers

• Normal mode of operation of a write buffer
– Absorb write from CPU, commit it to memory in the background

• Problem (particularly in write-through caches)
– Small write-buffers may end up stalling processor if they fill up
– Processor needs to wait till write committed to memory

• Solution: Merge cache-block entries in the write buffer
– Multiword writes are usually faster than writes performed one at a time
– Writes usually modify one word in a block; If a write buffer already

contains some words from the given data block we will merge current
modified word with the block parts already in the buffer

3/4/2006 42

A.5. Reducing Miss Penalty via a “Victim Cache”

• How to combine the fast hit time of direct-mapped caches, yet still
avoid conflict misses?

• Remember what was recently discarded, just in case it is needed again
– Jouppi [1990]: 4-entry victim cache reduced conflict misses by

20% - 95% for a 4 KB direct mapped data cache
– Used in Alpha, HP machines

3/4/2006 43

B. Reducing Cache Misses

Classifying Misses: 3 Cs
• Compulsory (Also called cold start or first reference misses)

– The first access to a block is not in the cache, so the block must be
brought into the cache.
(Misses in even an Infinite Cache)

• Capacity
– The cache may not contain all blocks needed during program execution,

so misses will occur due to blocks being discarded and later retrieved
(Misses in Fully Associative Size X Cache)

• Conflict (Also called collision or interference misses)
– Additional misses that occur because another block is occupying cache

(the rest of the cache might be unused)
(Misses in N-way Associative, Size X Cache)

3/4/2006 44

Cache Size (KB)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
1 2 4 8

16 32 64

12
8

1-way

2-way

4-way

8-way

Capacity

Compulsory

3Cs Absolute Miss Rate (SPEC92)

Conflict misses

3/4/2006 45
Cache Size (KB)

0%

20%

40%

60%

80%

100%
1 2 4 8

16 32 64

12
8

1-way

2-way
4-way

8-way

Capacity

Compulsory

3Cs Relative Miss Rate

• Assumes fixed block size for each size cache

Conflict

3/4/2006 46

How Can We Reduce Misses?

• 3 Cs: Compulsory, Capacity, Conflict

• If we assume that total cache size is not changed, what happens if we

1. Change block size
Which of 3Cs is obviously affected?

2. Change associativity
Which of 3Cs is obviously affected?

3. Change compiler
Which of 3Cs is obviously affected?

3/4/2006 47

Block Size (bytes)

Miss
Rate

0%

5%

10%

15%

20%

25%

16 32 64

12
8

25
6

1K

4K

16K

64K

256K

B.1. Reducing Miss Rate via Larger Block Sizes

• Small blocks: Data accesses spread over multiple blocks
• Large blocks: Not all the data is useful, but displaces useful data
• Also note larger blocks mean higher miss penalty

3/4/2006 48

B.2. Reducing Miss Rate via Higher Associativity

• 2:1 Cache Rule
– Miss Rate of a direct-mapped cache size of size N ~

Miss Rate of a 2-way cache of size N/2
• Is this actually the case?

– Issue: Increase in clock cycle time (CCT) may diminish benefits

• Higher associativity leads to higher hit time and can outweigh the benefit
• Average memory access time for SPEC92 vs. associativity

– CCT = 1.0 for 1-way, 1.36 for 2-way, 1.44 for 4-way, 1.52 for 8-way

1.661.591.551.20512
1.821.741.661.32256
2.001.921.861.52128
2.252.182.141.9264
2.452.372.302.0632
2.532.462.402.2316
2.622.552.582.698
3.283.223.253.444

8-way4-way2-way1-way
AssociativitySize (KB)

25 cycles to
access memory

3/4/2006 49

B.3. Reducing Miss Rate via Way Prediction and
Pseudoassociativity

• How to combine fast hit time of direct-mapped caches with the lower
conflict misses of set-associative caches?
– Previously looked at Victim Caches

• Way prediction: Predict which block in a set is likely to be accessed by
the next memory access hitting this set

– Tag comparison only with this block (cheaper as opposed to with all)
• Higher cost to check non-predicted blocks

– Simplest prediction: remember the last word accessed
– Used in Alpha 21264 (1-cycle if correct prediction (85%), 3-cycles o.w.)

• Pseudoassociative or Column associative
– Access proceeds as in direct-mapped cache
– On a miss, check another location (“pseudoset”) before going to memory

• Counts as a “slower hit”
• If most hits become slow hits, degrading performance is possible

– Used in MIPS R10000 L2 cache, similar in UltraSPARC

3/4/2006 50

B.4. Reducing Miss Rate by Compiler Optimizations

• Compiler optimizations can help reduce both instruction and data
cache misses (for a fixed cache organization)

• Instruction misses
– Reorder procedures in memory so as to reduce conflict misses

• Ensure that procedures used frequently do not map to same blocks/sets
• Conflicts determined by profiling
• Reduced I-cache misses by 75% in an 8KB cache (McFarling 1989)

– Cache-line alignment of basic blocks
• Decreases likelihood of cache miss on sequential code

• Data misses
– Several optimizations that reorder data access patterns
– Two examples

• Loop interchange
• Blocking

3/4/2006 51

Loop Interchange Example

/* Before */
for (k = 0; k < 100; k = k+1)

for (j = 0; j < 100; j = j+1)
for (i = 0; i < 5000; i = i+1)

x[i][j] = 2 * x[i][j];
/* After */
for (k = 0; k < 100; k = k+1)

for (i = 0; i < 5000; i = i+1)
for (j = 0; j < 100; j = j+1)

x[i][j] = 2 * x[i][j];

• “After” version accesses memory sequentially instead of in
strides of 100 words

– Improved spatial locality: use all of the words in fetched blocks

3/4/2006 52

Blocking Example

/* Before */
for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)
{r = 0;
for (k = 0; k < N; k = k+1){

r = r + y[i][k]*z[k][j];};
x[i][j] = r;
};

Capacity misses depend on N, cache size
if all three matrices fit and there are
no conflict misses, best performance
if cache can hold one NxN matrix and
one row of N elements, then y and z can
be in the cache
else, misses for both y and z
worst case: 2N3 + N2 misses

3/4/2006 53

Blocking Example (cont’d)

/* After */
for (jj = 0; jj < N; jj = jj+B)
for (kk = 0; kk < N; kk = kk+B)
for (i = 0; i < N; i = i+1)

for (j = jj; j < min(jj+B-1,N); j = j+1)
{r = 0;
for (k = kk;k<min(kk+B-1,N);k = k+1) {

r = r + y[i][k]*z[k][j];};
x[i][j] = x[i][j] + r;
};

Blocking factor: compute in
blocks of BxB

B chosen such that 1 row of
B and 1 BxB matrix
can fit in the cache. This
ensures that y and z
blocks are resident

Capacity misses:
2N3/B + N2

N2/B2

NB (x)
+
NB (y)
+
B2 (z)

3/4/2006 54

C. Using Parallelism to Reduce Miss Penalty/Rate

• Idea: Permit multiple “outstanding” memory operations
– Can overlap memory access latencies
– Can benefit from activity done on behalf of other operations

Three commonly-employed schemes
• Non-blocking caches
• Hardware prefetching
• Software prefetching

3/4/2006 55

C.1. Non-blocking Caches to Reduce Stalls on Misses

• Decoupled instruction and data caches allow CPU to continue fetching
instructions while waiting on a data cache miss

– L1 cache misses can be tolerated by superscalar out-of-order machines

• Non-blocking or lockup-free caches allow data cache to continue to
supply cache hits during a miss
– requires out-of-order execution CPU

• “hit under miss” reduces the effective miss penalty by working during
miss vs. ignoring CPU requests

• “hit under multiple miss” or “miss under miss” may further lower the
effective miss penalty by overlapping multiple misses

– Significantly increases the complexity of the cache controller as there can
be multiple outstanding memory accesses

– Typically also requires multiple memory banks
– Pentium Pro allows 4 outstanding memory misses

3/4/2006 56

Value of Hit-Under-Miss for SPEC92
8KB direct-mapped cache, 32B blocks, 16-cycle penalty

Floating-point

76%

51%

39%

81%

78%

3/4/2006 57

C.2. Reducing Misses by Hardware Prefetching
of Instructions & Data

• Instruction Prefetching
– Alpha 21064 fetches 2 blocks

(requested and subsequent) on a
miss

– Extra block in “stream buffer”
– On miss, check stream buffer

• Works with data blocks too
– Hardware identifies stream of

accesses and then prefetches them
– Can compute stride by comparing

current and previous access
– UltraSPARC III supports up to 8

simultaneous prefetches

• Prefetching relies on having extra
memory bandwidth that can be
used without penalty

How well does this work?
• Jouppi [1990]

– (for instructions w.r.t. a 4KB
direct-mapped cache)
1-block stream buffer catches 15-
25% of misses, 4-block stream
buffer: 50%, 16-block stream
buffer: 72%

– (for data w.r.t. a 4KB direct-
mapped cache)
1-block buffer: 25%, 4 streams:
43% different streams prefetching
at different adresses

• Palacharla & Kessler [1994]
– for scientific programs, 8 stream

buffers got 50% to 70% of misses
from a system with 2 64KB, 4-way
set associative caches (one for
instructions one for data)

3/4/2006 58

C.3. Reducing Misses by Software Prefetching of Data

• Compiler can insert special instructions to request prefetching
• Two variants

– Load data into register (HP PA-RISC loads)
– Load data into cache (MIPS IV, PowerPC, SPARC v. 9)

Issues
• Special prefetching instructions typically cannot cause faults (a form of

speculative execution: non-faulting vs. faulting)
• Processor must be able to proceed while prefetched data is being

fetched to make this approach valuable
– i.e., non-blocking data caches

• Issueing the prefetch instructions takes time
– Is cost of prefetch issues < savings in reduced misses?
– Higher superscalar reduces difficulty of issue bandwidth

3/4/2006 59

D. Reducing Cache Hit Time

• Obvious approach: Smaller and simpler (low associativity) caches
– Notable that L1 cache sizes have not increased

• Alpha 21264/21364; UltraSPARC II/III; AMD K6/Athlon

Other techniques
• Avoiding address translation during cache lookup

– Alternative 1: Index caches using “virtual addresses”
• Needs to cope with several problems

– Protection (performed during address translation)
– Reuse of virtual addresses across processes (flushing cache after context switch)
– Aliasing/synonyms: Two processes refer to the same physical address (results in

having multiple copies of the same data)
– I/O (typically uses physical addresses)

– Alternative 2: Use part of the page offset to index the cache
does not change between virtual and physical addresses

3/4/2006 60

D.1. Virtually Indexed, Physically Tagged Caches

• Overlap indexing of cache with translation of virtual addresses
– Tag comparison done with physical addresses

Implications

• Direct-mapped caches can be no bigger than page size
• Set-associative caches

– Page offset can be viewed as (Index + block offset) above
– Cache size = 2page offset x Set associativity
– So, increased associativity allows larger cache sizes

• Pentium III (8KB pages): 2-way set-associative 16 KB cache
• IBM 3033 (4KB pages): 16-way set-associative 64 KB cache

3/4/2006 61

D.2. Trace Caches

• A challenge in multiple-issue processors is to supply enough
instructions every cycle without dependencies

– Challenge: fetching across branches
– Cache impact is significant with large cache blocks

• Option 1: Combine branch prediction with instruction prefetching
– Instructions stored according to memory addresses

• Option 2: A separate cache that stores and provides a dynamic
sequence of instructions including taken branches (Trace Cache)

– Pros
• Effective use of cache block: no wasted words, no conflicts, …

– Cons
• Complicated address mapping mechanisms
• Same instruction may be stored multiple times

– Used in the Intel NetBurst microarchitecture (Pentium 4)

3/4/2006 62

Cache Optimization Summary

Technique MP MR HT Complexity
Multilevel caches + 2
Early Restart & Critical Word 1st + 2
Priority to Read Misses + 1
Merging write buffer + 1
Victim Caches + + 2
Larger Block Size – + 0
Higher Associativity + – 1
Pseudo-Associative Caches + 2
Compiler Reduce Misses + 0
Non-Blocking Caches + 3
HW Prefetching of Instr/Data + + 2/3
Compiler Controlled Prefetching + + 3
Avoiding Address Translation + 2
Trace Cache + 3

