
3/4/2006 3

Architectural Features in VLIW Processors

• VLIW processors rely on the compiler to identify a packet of
instructions that can be issued in the same cycle
– Compiler takes responsibility for scheduling instructions so that their

dependences are satisfied

• Optimizations such as loop unrolling, and software pipelining expose
more ILP, allowing the compiler to build issue packets

• Architectural support helps compiler expose/exploit more ILP

r1 = L r4 r2 = Add r1,M f1 = Mul f1,f2 r5 = Add r5,4

3/4/2006 4

Basic Compiler Techniques (S1): Loop Unrolling

(Recap)
• Consider the example from last week:

for (i=1000; i>0; i--)
x[i] = x[i] + s

L1: L.D F0, 0(R1)
ADD.D F4, F0, F2
S.D F4, 0(R1)
DADDUI R1, R1, #-8
BNE R1, R2, L1

10stall
9BNE R1, R2, L1
8stall
7DADDUI R1, R1, #-8
6S.D F4, 0(R1)
5stall
4stall
3ADD.D F4, F0, F2
2stall
1L.D F0, 0(R1)L1
Issue CycleInstruction

3 cycles

3/4/2006 5

Basic Compiler Techniques: Loop Unrolling (cont’d)

• Loop unrolling optimization: Replicate loop body multiple times,
adjusting the loop termination code

L1: L.D F0, 0(R1)
ADD.D F4, F0, F2
S.D F4, 0(R1)
L.D F6, -8(R1)
ADD.D F8, F6, F2
S.D F8, -8(R1)
L.D F10, -16(R1)
ADD.D F12, F10, F2
S.D F12, -16(R1)
L.D F14, -24(R1)
ADD.D F16, F14, F2
S.D F16, -24(R1)
DADDUI R1, R1, #-32
BNE R1, R2, L1 14S.D F16, 8(R1)

13BNE R1, R2, L1
12S.D F12, 16(R1)
11DADDUI R1, R1, #-32
10S.D F4, -8(R1)
9S.D F4, 0(R1)
8ADD.D F16, F14, F2
7ADD.D F12, F10, F2
6ADD.D F8, F6, F2
5ADD.D F4, F0, F2
4L.D F14, -24(R1)
3L.D F10, -16(R1)
2L.D F6, -8(R1)
1L.D F0, 0(R1)L1
Issue
Cycle

Instruction

3/4/2006 6

Basic Compiler Techniques: Loop Unrolling(cont’d)

• Unroll loop 5 times
L1: L.D F0, 0(R1)

ADD.D F4, F0, F2
S.D F4, 0(R1)
L.D F6, -8(R1)
ADD.D F8, F6, F2
S.D F8, -8(R1)
L.D F10, -16(R1)
ADD.D F12, F10, F2
S.D F12, -16(R1)
L.D F14, -24(R1)
ADD.D F16, F14, F2
S.D F16, -24(R1)
L.D F18, -32(R1)
ADD.D F20, F18, F2
S.D F20, -32(R1)
DADDUI R1, R1, #-40
BNE R1, R2, L1

ADD.D F20, F18, F2
ADD.D F16, F14, F2
ADD.D F12, F10, F2
ADD.D F8, F6, F2
ADD.D F4, F0, F2

FP Instruction

12S.D F20, 8(R1)
11BNE R1, R2, L1
10S.D F16, 16(R1)
9DADDUI R1, R1, #-40
8S.D F12, -16(R1)
7S.D F4, -8(R1)
6S.D F4, 0(R1)
5L.D F18, -32(R1)
4L.D F14, -24(R1)
3L.D F10, -16(R1)
2L.D F6, -8(R1)
1L.D F0, 0(R1)L1

Integer Instruction

Provide instructions for VLIW

3/4/2006 7

Hardware Support for VLIW

• To expose more parallelism at compile time
– Conditional or predicated instructions

• Predication registers in IA64
– Allow the compiler to group instructions across branches

• To allow compiler to speculate, while ensuring program correctness
– Result of speculated instruction will not be used in final computation if

mispredicted
– Speculative movement of instructions (before branches, reordering of

loads/stores) must not cause exceptions
• HW allows exceptions from speculative instructions to be ignored

– Poison bits and Reorder Buffers

– HW tracks memory dependences between loads and stores
• LDS (speculative load) and LDV (load verify) instructions

– Check for intervening store
• Variant: LDV instruction can point to fix-up code

3/4/2006 8

HW Support for Speculative Operations (H1)

• Speculative operations in HPL-PD architecture from HP Labs written
identically to their non-speculative counterparts, but with an “E”
appended to the operation name.
– E.g., DIVE, ADDE, PBRRE

Poison bits: If an exceptional condition occurs during a speculative
operation, the exception is not raised

– A bit is set in the result register to indicate that such a condition occurred
– Speculative bits are simply propagated by speculative instructions
– When a non-speculative operation encounters a register with the

speculative bit set, an exception is raised

3/4/2006 9

(H1) Compiler Use of Speculative Operations

• Here is an optimization that uses speculative instructions:

– Also the effect of the DIV latency is reduced
– If a divide-by-zero occurs, an exception will be raised by ADD

. . .
v1 = DIV v1,v2
v3 = ADD v1,5

. . .

. . .

. . .
. . .

v3 = ADD v1,5
. . .

. . .
v1 = DIVE v1,v2

. . .

. . .

3/4/2006 10

HW Support for Predication (H2)

• Conditional or predicated instructions
– Instruction is “conditionally” executed, else no-op
– Originally: a separate set of (simple) instructions
– Now: more general support

• In HPL-PD, most operations can be predicated
– they can have an extra operand that is a one-bit predicate register.

r2 = ADD r1,r3 if p2
– If the predicate register contains 0, the operation is not performed
– The values of predicate registers are typically set by “compare-to-

predicate” operations
p1 = CMPP<= r4,r5

3/4/2006 11

Compiler Uses of Predication

• if-conversion

• To aid code motion by instruction scheduler
– e.g. hyperblocks

3/4/2006 12

Uses of Predication: If-conversion

• If-conversion replaces conditional branches with predicated operations
• For example, the code generated for:

if (a < b)
c = a;

else
c = b;

if (d < e)
f = d;

else
f = e;

might be the two VLIW instructions:

P1 = CMPP.< a,b P2 = CMPP.>= a,b P3 = CMPP.< d,e P4 = CMPP.>= d,e
c = a if p1 c = b if p2 f = d if p3 f = e if p4

3/4/2006 13

Compare-to-predicate instructions

• In previous slide, there were two pairs of almost identical instructions
– just computing complement of each other

• HPL-PD provides two-output CMPP instructions

p1,p2 = CMPP.W.<.UN.UC r1,r2

3/4/2006 14

(H2) If-conversion, revisited

• Using two-output CMPP instructions, the code generated for:

if (a < b)
c = a;

else
c = b;

if (d < e)
f = d;
else
f = e;

might instead be:

p1,p2 = CMPP.W.<.UN.UC a,b p3,p4 = CMPP.W.<.UN.UC d,e

c = a if p1 c = b if p2 f = d if p3 f = e if p4

Only two CMPP operations,
occupying less of the VLIW
instruction.

3/4/2006 15

}

Uses of Predication: Hyperblock Formation

• In hyperblock formation, if-conversion is used to form larger blocks of
operations than the usual basic blocks
– tail duplication used to remove some incoming edges in middle of block
– if-conversion applied after tail duplication
– larger blocks greater opportunity for code motion to increase ILP

Basic Blocks
Tail Duplication If-conversion to

form hyperblock

Predicated Operations

3/4/2006 16

HW Support for Memory Disambiguation (H3)

• Here’s a desirable optimization (due to long load latencies):

• However, this optimization is not valid if the load and store reference
the same location
– i.e., if r2 and r3 contain the same address
– this cannot be determined at compile time

• HPL-PD solves this by providing run-time memory disambiguation

. . .
Store r3, 4
r1 = L r2
r1 = ADD r1,7

r1 = L r2
. . .

Store r3, 4
r1 = ADD r1,7

3/4/2006 17

(H3) HW Support for Memory Disambiguation (cont’d)

HPL-PD provides two special instructions to replace a load instruction:

• r1 = LDS r2 ; speculative load
– Initiates a load like a normal load instruction
– A log entry can made in a table to store the memory location

• r1 = LDV r2 ; load verify
– Checks to see if store to memory location has occurred since the LDS
– If so, the new load is issued and the pipeline stalls. Otherwise, it’s a no-op

The previous optimization becomes

. . .
Store r3, 4
r1 = L r2
r1 = ADD r1,7

r1 = LDS r2
. . .

Store r3, 4
r1 = LDV r2
r1 = ADD r1,7

r1 = L r2
. . .

Store r3, 4
r1 = ADD r1,7

3/4/2006 18

More Sophisticated Compiler Optimizations:
Software Pipelining (S2)
• Software Pipelining is the technique of scheduling instructions across

several iterations of a loop
– reduces pipeline stalls on sequential pipelined machines
– exploits instruction level parallelism on superscalar and VLIW machines
– intuitively, iterations are overlaid so that an iteration starts before the

previous iteration have completed

sequential
loop

pipelined
loop

3/4/2006 19

(S2) Software Pipelining Example

• Source code:
for(i=0;i<n;i++) sum += a[i]

• Loop body in assembly:

• Unroll loop and
allocate registers

r1 = L r0
--- ;stall
r2 = Add r2,r1
r0 = add r0,4

r1 = L r0
--- ;stall
r2 = Add r2,r1
r0 = Add r0,12
r4 = L r3
--- ;stall
r2 = Add r2,r4
r3 = add r3,12
r7 = L r6
--- ;stall
r2 = Add r2,r7
r6 = add r6,12
r10 = L r9
--- ;stall
r2 = Add r2,r10
r9 = add r9,12

3/4/2006 20

(S2) Software Pipelining Example (cont’d)

• Schedule unrolled Instructions, exploiting VLIW (or not)

r1 = L r0
r4 = L r3
r2 = Add r2,r1 r7 = L r6
r0 = Add r0,12 r2 = Add r2,r4 r10 = L r9
r3 = add r3,12 r2 = Add r2,r7 r1 = L r0
r6 = add r6,12 r2 = Add r2,r10 r4 = L r3
r9 = add r9,12 r2 = Add r2,r1 r7 = L r6
r0 = Add r0,12 r2 = Add r2,r4 r10 = L r9
r3 = add r3,12 r2 = Add r2,r7 r1 = L r0
r6 = add r6,12 r2 = Add r2,r10 r4 = L r3
r9 = add r9,12 r2 = Add r2,r1 r7 = L r6

. . .
r0 = Add r0,12 r2 = Add r2,r4 r10 = L r9
r3 = add r3,12 r2 = Add r2,r7
r6 = add r6,12 Add r2,r10
r9 = add r9,12

Identify
repeating
pattern
(kernel)

3/4/2006 21

(S2) Software Pipelining Example (cont)

Loop becomes:

r1 = L r0
r4 = L r3
r2 = Add r2,r1 r7 = L r6
r0 = Add r0,12 r2 = Add r2,r4 r10 = L r9
r3 = Add r3,12 r2 = Add r2,r7 r1 = L r0
r6 = Add r6,12 r2 = Add r2,r10 r4 = L r3
r9 = Add r9,12 r2 = Add r2,r1 r7 = L r6
r0 = Add r0,12 r2 = Add r2,r4 r10 = L r9
r3 = Add r3,12 r2 = Add r2,r7
r6 = Add r6,12 Add r2,r10
r9 = Add r9,12

epilog

prolog

kernel

3/4/2006 22

Constraints on Software Pipelining

The instruction-level parallelism in a software pipeline is limited by
• Resource Constraints

– VLIW instruction width, functional units, bus conflicts, etc.

• Dependence Constraints
– particularly loop carried dependences between iterations
– arise when

• the same register is used across several iterations
• the same memory location is used across several iterations

Memory Aliasing

3/4/2006 23

(S2) Aliasing-based Loop Dependences

Source code:
for(i=3; i<n;i++)

a[i] = a[i-3] + c;
load
add
store
incra3incradependence spans three iterations

“distance = 3”

Assembly:

load
add
store
incra3incra

load
add
store
incra3incra

load
add
store
incra3incra

load
add
store
incra3incra

load
add
store
incra3incra

load
add
store
incra3incra

kernel
1 cycle

Pipeline:

3/4/2006 24

Dynamic Memory Aliasing

• What if the code were:

for(i=A;i<n;i++)
a[i] = a[i-k] + c;

where k is unknown at compile time?
– The dependence distance is the value of k (“dynamic” aliasing)

• k = 0 (no dependence), k > 0 (true dependence with distance k),
k < 0 (anti-dependence with distance | k |)

– The worst case is k = 1

• What can the compiler do?
– Assume the worst, and generate the most pessimistic pipelined schedule
– Generate different versions of the software pipeline for different distances

• branch to the appropriate version at run-time
• possible code explosion, cost of branch

3/4/2006 25

Summary: VLIW Processors

• Architectural features enable aggressive compiler optimizations
– To pack multiple instructions per VLIW packet
– Loop unrolling and software pipelining

• Hardware support
– Speculative instructions
– Conditional/Predicated instructions
– Run-time memory disambiguation
– Hardware support for preserving exception behavior

– Poison bits, reorder buffer

• Limiting factors
– Increased code size: requires aggressive unrolling; not full instructions
– VLIW lock step => 1 hazard and all instructions stall
– Binary code compatibility is practical weakness

