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Recap

• Computers execute billions of instructions, so instruction throughput is 
what matters

• Main idea behind pipelining: Divide instruction execution across
several stages

– each stage accesses only a subset of the CPU’s resources
• Example: Classic 5-stage RISC pipeline

IF ID EX MEM WB
• Simultaneously have different instructions in different stages

– Ideally, can issue a new instruction every cycle
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Recap (Cont’d)
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Pipelined Implementation of a RISC ISA
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Pipeline stage: Instruction Fetch (IF)
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Pipeline stage: Instruction Decode (ID)
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Pipeline stage: Execute (EX)
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EX/MEM.IR ID/EX.IR;
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Load/store instruction
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EX/MEM.B ID/EX.B;
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Pipeline stage: Memory access (MEM)
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Pipeline stage: Write Back (WB)
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Pipeline Hazards

• Should we expect a CPI of 1 in practice?
• Unfortunately, the answer to the question is NO.
• Limit to pipelining: Hazards

– Prevent next instruction from executing during its designated clock cycle

• Three classes of hazards
Structural: Hardware cannot support this combination of instructions - two 

instructions need the same resource.
Data: Instruction depends on result of prior instruction still in the pipeline
Control: Pipelining of branches & other instructions that change the PC

• Common solution is to stall the pipeline until the hazard is resolved, 
inserting one or more “bubbles” in the pipeline

– To do this, hardware or software must detect that a hazard has occurred
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Pipeline Hazards (A): Structural Hazards

• Occur when two or more instructions need the same resource
• Common methods for eliminating structural hazards are:

– Duplicate resources  
– Pipeline the resource
– Reorder the instructions

• It may be too expensive to eliminate a structural hazard, in which case 
the pipeline should stall

– no new instructions are issued until the hazard has been resolved

• What are some examples of structural hazards? 
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One Memory Port Structural Hazard
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Pipeline Speedup Example: One or Two Memory Ports 

• Two machines
– Machine A: Dual ported memory 
– Machine B: Single ported memory, but its pipelined implementation has a 

clock rate that is 1.05 times faster
– Ideal CPI = 1 for both
– Loads are 40% of instructions executed (cause stalls in machine B)

• Which is faster?

SpeedupA = (Pipeline Depth/(1 + 0)) x 1
= Pipeline Depth

SpeedupB = (Pipeline Depth/(1 + 0.4 x 1)) x 1.05
= 0.75 x Pipeline Depth

Machine A is 1.33 times faster 

pipelined

unpipelined

TimeCycle
TimeCycle

CPIstallPipelineCPIIdeal
depthPipelineCPIIdealSpeedup ×

+
×=
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Pipeline Hazards (B): Data Hazards

Three generic types of data hazards

• Read After Write (RAW)
– InstrJ tries to read operand before

InstrI (I < J) writes it
– Called a dependence

• Write After Read (WAR)
– InstrJ writes operand before InstrI

reads it
– Called an anti-dependence

• Name dependence (renaming)
• No value being transmitted

• Write After Write (WAW)
– InstrJ writes operand before InstrI

writes it
– Called an output dependence

• Name dependence (renaming)
• No value being transmitted

I: add r1,r2,r3
J: sub r4,r1,r3

I: sub r4,r1,r3 
J: add r1,r2,r3

I: sub r1,r4,r3 
J: add r1,r2,r3
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Data Hazards and Pipeline Stalls

• Do all kinds of data hazards translate into pipeline stalls?

• NO, whether or not a data hazard results in a stall depends on the
pipeline structure

• For the simple five-stage RISC pipeline
– Only RAW hazards result in a pipeline stall

• Instruction reading a register needs to wait until it is written
– WAR and WAW hazards cannot occur because

• All instructions take 5 stages
• Reads happen in the 2nd stage (ID)
• Writes happen in the 5th stage (WB)
• No way for a write from a subsequent instruction to interfere with the read (or 

write) of a prior instruction

• For more complicated pipelines (later in the course)
– Both WAR and WAW hazards are possible if instructions execute out of 

order or access (read) data later in the pipeline
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add r1r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or  r8, r1,r9

xor r10,r1,r11

RAW Hazards in the 5-stage Pipeline
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add r4,r1r1,r3

sub r1,r2,r3

or  r8r8,r2,r3

xor r8,r4,r5

Absence of WAR and WAW Hazards
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Reducing Impact of RAW Hazards: Data Forwarding

• Data forwarding (also called bypassing or short-circuiting)
– Directly transfers data from each stage to earlier pipeline stages

• Result is accessible before it gets written into the register file. 

Instr i: add r1,r2,r3 (result ready after EX stage)
----------------------

Instr j: sub r4,r1,r5 (result needed in EX stage)

• To support data forwarding, additional hardware is required.  
– Multiplexers to allow data to be transferred back
– Control logic for the multiplexers
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Hardware Changes for Forwarding
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add r1r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or  r8,r1,r9

xor r10,r1,r11

Avoidance of RAW Hazards Using Forwarding
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lw r1r1,0(r2)

sub r4,r1,r6

and r6,r1,r7

or  r8,r1,r9

Forwarding Does Not Eliminate All Hazards
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Cope with this by stalling the EXE stage till results are available
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Pipeline Hazards (C): Control Hazards

• Control hazards occur due to instructions changing the PC
– can result in a large performance loss

• A branch is either
– Taken: PC ←PC + Imm
– Not Taken: PC ← PC + 4

• Cannot fetch the next instruction till value of PC is known

• Simplest solution is to stall the pipeline upon detecting a branch
– ID stage detects the branch
– Don’t know if the branch is taken until the EX stage
– New PC is not changed until the end of the MEM stage, after determining 

if the branch is taken and the new PC value
– If the branch is taken, we need to repeat some stages and fetch new 

instructions 
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(Review) Pipelined Implementation of a RISC ISA

L
M
D

M
U

X

M
em

ory

M
U

X
M

U
X

D
ata

M
em

ory

M
U

X

Sign
Extend

4

Adder

Next SEQ PC

PC

Next PC

WB Data

RD

RS1

RS2

Imm

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

R
eg

File

A
LU

Zero?



2/1/2006 109

beq r1,r3,36

and r2,r3,r5

or  r6,r1,r7

add r8,r1,r9

xor r10,r1,r11

3 Cycle Stall on Branch-Induced Control Hazards
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Impact of Branch Stalls

• If CPI = 1, 30% branches 
– Stall 3 cycles => new CPI = (1 + 0.3*3) = 1.9!
– 50% of these branches taken => new CPI = 1 + 0.15*3 + 0.15*2 = 1.7

• Penalty would be worse for current-day (longer) pipelines 
– IF and ID-like stages are each multiple-cycle

• How do we reduce impact of branch stalls?
• Two part solution:

– Determine branch taken or not sooner, AND
– Compute taken branch address earlier
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Next SEQ PC

Pipelined Implementation of a RISC ISA:
Reducing Branch Penalty to 1 cycle
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Branch Behavior in Programs

• Based on SPEC benchmarks on DLX (CA-AQA, 2nd Edition)
– Branches occur with a frequency of 14% to 16% in integer programs and 

3% to 12% in floating point programs.
– About 75% of the branches are forward branches
– 60% of forward branches are taken
– 80% of backward branches are taken

• Why are branches (especially backward branches) more likely to be 
taken than not taken? 
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Dealing with Branch Stalls

• Approach 1: Stall until branch direction is clear

• Approach 2: Predict Branch Not Taken
– Execute successor instructions in sequence
– PC+4 already calculated, so use it to get next instruction; chances are the 

branch is not taken
– “Squash” instructions in pipeline if branch actually taken

• Can do this because CPU state not updated till late in the pipeline

WBMEMEXIDIFi+4
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Clock Number
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Dealing with Branch Stalls (cont’d)

• Approach 3: Predict Branch Taken
– Most branches are taken
– But haven’t yet calculated target address in a 5-stage RISC pipeline

• So, will still incur a 1-cycle latency
• Makes sense on machines where branch target is known before outcome

– (later: Branch Target Buffers)

• Approach 4: Delayed Branch
– Define branch to take place AFTER n following instructions

branch instruction
sequential successor1
sequential successor2
........
sequential successorn

branch target if taken

n branch delay slots
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• Instructions in the branch delay slot(s) get executed whether or not
branch is taken

• Heavily used in early RISC machines
– 1 delay-slot suffices for a 5-stage pipeline (target available at end of ID)
– Machines with deep pipelines require additional delay slots to avoid 

branch penalties
• Benefits are unclear
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Scheduling the Branch Delay Slot

Where does the instruction for the delay slot come from?

 Nullifying or 
cancelling
branches

– Converts delay 
slot instruction 
into a nop
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Evaluating Branch Alternatives

• Assumptions
– 14% of instructions are branches
– 30% of branches are not taken
– 50% of delay slots can be filled with useful instructions

Scheduling Branch CPI speedup v. speedup v.
scheme penalty unpipelined stall

Slow stall pipeline 3 1.42 3.5 1.0
Fast stall pipeline 1 1.14 4.4 1.26
Predict taken 1 1.14 4.4 1.26
Predict not taken         0.7 1.10 4.5 1.29
Delayed branch 0.5 1.07 4.7 1.34

• A compiler can reorder instructions to further improve speedup

Pipeline speedup = Pipeline depth
1 +Branch frequency×Branch penalty
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Importance of Avoiding Branch Stalls

• Crucial in modern microprocessors, which issue/execute multiple 
instructions every cycle
– Need to have a steady stream of instructions to keep the hardware busy
– Stalls due to control hazards dominate

• So far, we have looked at static schemes for reducing branch penalties
– Same scheme applies to every branch instruction

• Potential for increased benefits from dynamic schemes
– Can choose most appropriate scheme separately for each instruction

• Branches to top of loop have different behavior (Taken) than 
“if (x == 0) return;” (Not Taken)

– Can “learn” appropriate scheme based on observed behavior

– Dynamic (hardware) branch prediction schemes
• For both direction (T or NT) and target prediction
• Key element of all modern microprocessors


