
2/1/2006 87

Recap

• Computers execute billions of instructions, so instruction throughput is
what matters

• Main idea behind pipelining: Divide instruction execution across
several stages

– each stage accesses only a subset of the CPU’s resources
• Example: Classic 5-stage RISC pipeline

IF ID EX MEM WB
• Simultaneously have different instructions in different stages

– Ideally, can issue a new instruction every cycle

2/1/2006 88

Recap (Cont’d)

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

Time (clock cycles)

Instr.
order

IDIFi AL
U

IDi+1 IF

i+2 IF

MEM

AL
U

ID

i+3 Ifetch

WB

MEM

AL
U

Bubble

WB

MEM

Bubble

Reg

Ifetchi+4

WB

Bubble

AL
U

Reg

2/1/2006 89

Pipelined Implementation of a RISC ISA

Instruction
M

em
ory

M
U

X
M

U
X

D
ata

M
em

ory

M
U

X

Sign
Extend

Adder

Next SEQ PC

Next PC

RD

RS1

RS2

Imm

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

R
eg

File

A
LU

Zero?

M
U

X

4

IR

IF/ID ID/EX EX/MEM MEM/WB

PC A

B

IR

Imm

NPCNPC

IR IR

B

IR

cond

AO

LDM

AO

2/1/2006 90

Pipeline stage: Instruction Fetch (IF)

Instruction
M

em
ory

Adder

Next PC

Instruction
Fetch

M
U

X

4

IR

IF/ID

PC

IF/ID.IR Mem[PC];
IF/ID.NPC,PC

(if ((EX/MEM.opcode == branch) &
EX/MEM.cond)

{EX/MEM.ALUOutput} else {PC+4}
);

Branch target address (EX/MEM.ALUOutput register)
Branch comparison result (EX/MEM.cond register)

NPC

IR

2/1/2006 91

Pipeline stage: Instruction Decode (ID)

Sign
Extend

Next SEQ PC

RD

RS1

RS2

Imm

Instr. Decode
Reg. Fetch

R
eg

File

IF/ID ID/EX

ID/EX.A Regs[IF/ID.IR[rs]];
ID/EX.B Regs[IF/ID.IR[rt];
ID/EX.NPC IF/ID.NPC;
ID/EX.IR IF/ID.IR;
ID/EX.Imm sign-extend (IF/ID.IR[immediate field])

A

B

NPC

IR

IR

Imm

NPC

2/1/2006 92

Pipeline stage: Execute (EX)

M
U

X
M

U
X

Execute
Addr. Calc

A
LU

Zero?

ID/EX EX/MEM

ALU instruction
EX/MEM.IR ID/EX.IR;

EX/MEM.ALUOutput
ID/EX.A func ID/EX.B;
or
EX/MEM.ALUOutput
ID/EX.A op ID/EX.Imm;

Load/store instruction
EX/MEM.IR ID/EX.IR;

EX/MEM.ALUOutput
ID/EX.A + ID/EX.Imm;

EX/MEM.B ID/EX.B;

Branch instruction
EX/MEM.ALUOutput
ID/EX.NPC +
(ID/EX.Imm <<2);

EX/MEM.cond
(ID/EX.A ==0);

IRIR

B

B

A

ALUOutput

cond
NPC

Imm

2/1/2006 93

Pipeline stage: Memory access (MEM)

D
ata

M
em

ory

Memory
Access

EX/MEM MEM/WB

ALU instruction
MEM/WB.IR EX/MEM.IR;
MEM.WB.ALUOutput
EX/MEM.ALUOutput;

Branch target address
Branch comparison result

comp

IRIR

ALUOutput

ALUOutput

LMD

B

Load/store instruction
MEM/WB.IR EX/MEM.IR;

MEM/WB.LMD
Mem[EX/MEM.ALUOutput];
or
Mem[EX/MEM.ALUOutput]
EX/MEM.B;

2/1/2006 94

Pipeline stage: Write Back (WB)

M
U

X

Write
Back

MEM/WB

ALU instruction
Regs[MEM/WB.IR[rd]]
MEM.WB.ALUOutput;
or
Regs[MEM/WB.IR[rt]]
MEM.WB.ALUOutput;

To Register File
(reg. identifier & value)

ALUOutput

LMD

IR

Load instruction only
Regs[MEM/WB.IR[rt]]
MEM/WB.LMD

Pipeline Hazards

• Should we expect a CPI of 1 in practice?
• Unfortunately, the answer to the question is NO.
• Limit to pipelining: Hazards

– Prevent next instruction from executing during its designated clock cycle

• Three classes of hazards
Structural: Hardware cannot support this combination of instructions - two

instructions need the same resource.
Data: Instruction depends on result of prior instruction still in the pipeline
Control: Pipelining of branches & other instructions that change the PC

• Common solution is to stall the pipeline until the hazard is resolved,
inserting one or more “bubbles” in the pipeline

– To do this, hardware or software must detect that a hazard has occurred

2/1/2006 96

Pipeline Hazards (A): Structural Hazards

• Occur when two or more instructions need the same resource
• Common methods for eliminating structural hazards are:

– Duplicate resources
– Pipeline the resource
– Reorder the instructions

• It may be too expensive to eliminate a structural hazard, in which case
the pipeline should stall

– no new instructions are issued until the hazard has been resolved

• What are some examples of structural hazards?

2/1/2006 97

One Memory Port Structural Hazard

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

Time (clock cycles)

Instr.
order

RegIfetchi
(LD)

AL
U

Regi+1 Ifetch

i+2 Ifetch

DMem

AL
U

Reg

i+3 Ifetch

i+3 Ifetch

Reg

DMem

AL
U

BubbleBubblestall

Reg

DMem

Bubble

Reg

Ifetchi+4

Reg

Bubble

AL
U

Reg

2/1/2006 98

Pipeline Speedup Example: One or Two Memory Ports

• Two machines
– Machine A: Dual ported memory
– Machine B: Single ported memory, but its pipelined implementation has a

clock rate that is 1.05 times faster
– Ideal CPI = 1 for both
– Loads are 40% of instructions executed (cause stalls in machine B)

• Which is faster?

SpeedupA = (Pipeline Depth/(1 + 0)) x 1
= Pipeline Depth

SpeedupB = (Pipeline Depth/(1 + 0.4 x 1)) x 1.05
= 0.75 x Pipeline Depth

Machine A is 1.33 times faster

pipelined

unpipelined

TimeCycle
TimeCycle

CPIstallPipelineCPIIdeal
depthPipelineCPIIdealSpeedup ×

+
×=

2/1/2006 99

Pipeline Hazards (B): Data Hazards

Three generic types of data hazards

• Read After Write (RAW)
– InstrJ tries to read operand before

InstrI (I < J) writes it
– Called a dependence

• Write After Read (WAR)
– InstrJ writes operand before InstrI

reads it
– Called an anti-dependence

• Name dependence (renaming)
• No value being transmitted

• Write After Write (WAW)
– InstrJ writes operand before InstrI

writes it
– Called an output dependence

• Name dependence (renaming)
• No value being transmitted

I: add r1,r2,r3
J: sub r4,r1,r3

I: sub r4,r1,r3
J: add r1,r2,r3

I: sub r1,r4,r3
J: add r1,r2,r3

2/1/2006 100

Data Hazards and Pipeline Stalls

• Do all kinds of data hazards translate into pipeline stalls?

• NO, whether or not a data hazard results in a stall depends on the
pipeline structure

• For the simple five-stage RISC pipeline
– Only RAW hazards result in a pipeline stall

• Instruction reading a register needs to wait until it is written
– WAR and WAW hazards cannot occur because

• All instructions take 5 stages
• Reads happen in the 2nd stage (ID)
• Writes happen in the 5th stage (WB)
• No way for a write from a subsequent instruction to interfere with the read (or

write) of a prior instruction

• For more complicated pipelines (later in the course)
– Both WAR and WAW hazards are possible if instructions execute out of

order or access (read) data later in the pipeline

2/1/2006 101

add r1r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or r8, r1,r9

xor r10,r1,r11

RAW Hazards in the 5-stage Pipeline

Instr.
order

Reg AL
U

DMemIfetch Reg

Reg AL
U

DMemIfetch Reg

Reg AL
U

DMemIfetch Reg

Reg AL
U

DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

Time (clock cycles)

Reg AL
U

DMemIfetch Reg

Forwarding through the register file

2/1/2006 102

add r4,r1r1,r3

sub r1,r2,r3

or r8r8,r2,r3

xor r8,r4,r5

Absence of WAR and WAW Hazards

Instr.
order

Reg AL
U

DMemIfetch Reg

Reg AL
U

DMemIfetch Reg

Reg AL
U

DMemIfetch Reg

Reg AL
U

DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

Time (clock cycles)

Reg AL
U

DMemIfetch Reg

(WAR)

(WAW)

2/1/2006 103

Reducing Impact of RAW Hazards: Data Forwarding

• Data forwarding (also called bypassing or short-circuiting)
– Directly transfers data from each stage to earlier pipeline stages

• Result is accessible before it gets written into the register file.

Instr i: add r1,r2,r3 (result ready after EX stage)

Instr j: sub r4,r1,r5 (result needed in EX stage)

• To support data forwarding, additional hardware is required.
– Multiplexers to allow data to be transferred back
– Control logic for the multiplexers

2/1/2006 104

Hardware Changes for Forwarding

M
E

M
/W

B

ID
/E

X

E
X

/M
E

M
 Data

Memory

A
LU

m
ux

m
ux

R
egisters

NextPC

Immediate

m
ux

2/1/2006 105

add r1r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

Avoidance of RAW Hazards Using Forwarding

Instr.
order

Reg AL
U

DMemIfetch Reg

Reg AL
U

DMemIfetch Reg

Reg AL
U

DMemIfetch Reg

Reg AL
U

DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

Time (clock cycles)

Reg AL
U

DMemIfetch Reg

Split-phase access

2/1/2006 106

lw r1r1,0(r2)

sub r4,r1,r6

and r6,r1,r7

or r8,r1,r9

Forwarding Does Not Eliminate All Hazards

Instr.
order

Reg AL
U

DMemIfetch Reg

Reg AL
U

DMemIfetch Reg

Reg AL
U

DMemIfetch Reg

Reg AL
U

DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

Time (clock cycles)

Reg AL
U

DMemIfetch Reg

Split-phase access

Cope with this by stalling the EXE stage till results are available

2/1/2006 107

Pipeline Hazards (C): Control Hazards

• Control hazards occur due to instructions changing the PC
– can result in a large performance loss

• A branch is either
– Taken: PC ←PC + Imm
– Not Taken: PC ← PC + 4

• Cannot fetch the next instruction till value of PC is known

• Simplest solution is to stall the pipeline upon detecting a branch
– ID stage detects the branch
– Don’t know if the branch is taken until the EX stage
– New PC is not changed until the end of the MEM stage, after determining

if the branch is taken and the new PC value
– If the branch is taken, we need to repeat some stages and fetch new

instructions

2/1/2006 108

(Review) Pipelined Implementation of a RISC ISA

L
M
D

M
U

X

M
em

ory

M
U

X
M

U
X

D
ata

M
em

ory

M
U

X

Sign
Extend

4

Adder

Next SEQ PC

PC

Next PC

WB Data

RD

RS1

RS2

Imm

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

R
eg

File

A
LU

Zero?

2/1/2006 109

beq r1,r3,36

and r2,r3,r5

or r6,r1,r7

add r8,r1,r9

xor r10,r1,r11

3 Cycle Stall on Branch-Induced Control Hazards

Instr.
order

Reg AL
U

DMemIfetch Reg

Reg AL
U

DMemIfetch Reg

Reg AL
U

DMemIfetch Reg

Reg AL
U

DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

Time (clock cycles)

Reg AL
U

DMemIfetch Reg

New target available

Branch direction
known

2/1/2006 110

Impact of Branch Stalls

• If CPI = 1, 30% branches
– Stall 3 cycles => new CPI = (1 + 0.3*3) = 1.9!
– 50% of these branches taken => new CPI = 1 + 0.15*3 + 0.15*2 = 1.7

• Penalty would be worse for current-day (longer) pipelines
– IF and ID-like stages are each multiple-cycle

• How do we reduce impact of branch stalls?
• Two part solution:

– Determine branch taken or not sooner, AND
– Compute taken branch address earlier

2/1/2006 111

Next SEQ PC

Pipelined Implementation of a RISC ISA:
Reducing Branch Penalty to 1 cycle

L
M
D

M
U

X

M
em

ory

M
U

X
M

U
X

D
ata

M
em

ory

M
U

X

Sign
Extend

4

Adder

PC

Next PC

WB Data

RD

RS1

RS2

Imm

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

R
eg

File

A
LU

Zero?

Zero?

2/1/2006 112

Branch Behavior in Programs

• Based on SPEC benchmarks on DLX (CA-AQA, 2nd Edition)
– Branches occur with a frequency of 14% to 16% in integer programs and

3% to 12% in floating point programs.
– About 75% of the branches are forward branches
– 60% of forward branches are taken
– 80% of backward branches are taken

• Why are branches (especially backward branches) more likely to be
taken than not taken?

2/1/2006 113

Dealing with Branch Stalls

• Approach 1: Stall until branch direction is clear

• Approach 2: Predict Branch Not Taken
– Execute successor instructions in sequence
– PC+4 already calculated, so use it to get next instruction; chances are the

branch is not taken
– “Squash” instructions in pipeline if branch actually taken

• Can do this because CPU state not updated till late in the pipeline

WBMEMEXIDIFi+4

WBMEMEXIDIFi+3

WBMEMEXIDIFi+2

WBMEMEXIDIFi+1

WBMEMEXIDIFi

987654321

Clock Number
Instr.

WBMEMEXIDIFT+2

WBMEMEXIDIFT+1

WBMEMEXIDIFT

idleidleidleidleIFi+1

WBMEMEXIDIFi (T)

987654321

Clock Number
Instr.

2/1/2006 114

Dealing with Branch Stalls (cont’d)

• Approach 3: Predict Branch Taken
– Most branches are taken
– But haven’t yet calculated target address in a 5-stage RISC pipeline

• So, will still incur a 1-cycle latency
• Makes sense on machines where branch target is known before outcome

– (later: Branch Target Buffers)

• Approach 4: Delayed Branch
– Define branch to take place AFTER n following instructions

branch instruction
sequential successor1
sequential successor2
........
sequential successorn

branch target if taken

n branch delay slots

2/1/2006 115

• Instructions in the branch delay slot(s) get executed whether or not
branch is taken

• Heavily used in early RISC machines
– 1 delay-slot suffices for a 5-stage pipeline (target available at end of ID)
– Machines with deep pipelines require additional delay slots to avoid

branch penalties
• Benefits are unclear

WBMEMEXIDIFi+4

WBMEMEXIDIFi+3

WBMEMEXIDIFi+2

WBMEMEXIDIFD(i+1)

WBMEMEXIDIFi

987654321

Clock Number
Instr.

WBMEMEXIDIFT+2

WBMEMEXIDIFT+1

WBMEMEXIDIFT

WBMEMEXIDIFD(i+1)

WBMEMEXIDIFi (T)

987654321

Clock Number
Instr.

Branch Delay Slots

2/1/2006 116

Scheduling the Branch Delay Slot

Where does the instruction for the delay slot come from?

 Nullifying or
cancelling
branches

– Converts delay
slot instruction
into a nop

2/1/2006 117

Evaluating Branch Alternatives

• Assumptions
– 14% of instructions are branches
– 30% of branches are not taken
– 50% of delay slots can be filled with useful instructions

Scheduling Branch CPI speedup v. speedup v.
scheme penalty unpipelined stall

Slow stall pipeline 3 1.42 3.5 1.0
Fast stall pipeline 1 1.14 4.4 1.26
Predict taken 1 1.14 4.4 1.26
Predict not taken 0.7 1.10 4.5 1.29
Delayed branch 0.5 1.07 4.7 1.34

• A compiler can reorder instructions to further improve speedup

Pipeline speedup = Pipeline depth
1 +Branch frequency×Branch penalty

2/1/2006 118

Importance of Avoiding Branch Stalls

• Crucial in modern microprocessors, which issue/execute multiple
instructions every cycle
– Need to have a steady stream of instructions to keep the hardware busy
– Stalls due to control hazards dominate

• So far, we have looked at static schemes for reducing branch penalties
– Same scheme applies to every branch instruction

• Potential for increased benefits from dynamic schemes
– Can choose most appropriate scheme separately for each instruction

• Branches to top of loop have different behavior (Taken) than
“if (x == 0) return;” (Not Taken)

– Can “learn” appropriate scheme based on observed behavior

– Dynamic (hardware) branch prediction schemes
• For both direction (T or NT) and target prediction
• Key element of all modern microprocessors

