
4/12/2006 3

Interconnection Networks

• How do we move data between processors?
• Design Options:

– Topology
– Routing
– Switching (circuit or packet)
– Flow control
– Deadlock

4/12/2006 4

Interconnection Networks Classification

• Dynamic networks
– Made of switching elements and communication links
– Mostly used in shared address space systems for connecting processing

nodes and memory units
– Also called indirect networks

• Static networks
– Made of point-to-point communication links among processors
– Mostly used in message passing systems
– Also called direct networks

4/12/2006 5

Crossbar

• Crossbar Switching Networks
– Non-blocking: No connections block any connections between other

processors and memory units; Performance wise scalable
– Low latency and high throughput
– Number of switching elements (cost): O(P2)

• Not scalable (cost)
– Cray Y-MP

P

P

P

P

M MM M

4/12/2006 6

Bus

• Bus based Networks
– Processors and memory units are connected through a “bus”
– Simple, cost-effective for small-scale multiprocessors
– Bus bandwidth limits the number of processors

• Not scalable (performance)

PP

M M MM

$ $

P

$

P

$

4/12/2006 7

Multistage

• An intermediate class of networks which lies between crossbar and bus
based networks
– Performance: more scalable than bus
– Cost: more scalable than crossbar

• Built from small (e.g., 2x2 crossbar) switch nodes, with a regular
interconnection pattern

• Also used in message passing systems (e.g., IBM SP2)

P

P

P

P

P

P

M

M

M

M

M

M

.

.

.

.

.

.
.

Stage
1

Stage
2

Stage
n

4/12/2006 8

Omega Network

• All stages are same, logP stages
• Uses 2x2 crossbar in each switch
• Cost: O(P log P) switching elements

– better in comparison with O(P2) for crossbars
• Single path from source to destination
• Can add extra stages and pathways to minimize collisions and

increase fault tolerance
• Blocking network

4/12/2006 9

Omega Network (Cont’d)

Each switch is a 2x2 crossbar
(Broadcast possible too)

Stage i
if source and destination

differ in ith bit, “cross”
Otherwise, “straight”
src(010) dest(110)
100 Cross Straight Straight

Straight Cross

XOR

4/12/2006 10

Butterfly Network (Cont’d)

Destination a2a1a0
In stage i switch

– Send to upper port if ai=0
– Send to lower port if ai=1

Destination 101 Lower Upper Lower

4/12/2006 11

Evaluation Criteria

• Latency/Bandwidth (small and large messages)
• Bisection Width and Bisection Bandwidth

– Minimum links/volume of communication allowed between any two
halves of network with equal number of nodes

• Node degree
– the number of links connected to a node (processor)

• Diameter
– Maximum distance between any two processors (maximum latency)

• Connectivity and Partitionability
– Arc connectivity: Minimum number of arcs that must be removed from

network to break it into two disconnected networks
• Cost and scalability
• Symmetry and Homogeneity
• Fault tolerance

4/12/2006 12

Fully Connected

• Not scalable
• Equivalent of crossbar (direct vs. indirect networks)
• Deg = k-1, Diameter = 1, Bisect = k*k/4, Links = k*(k-1)/2

4/12/2006 13

Linear Array / Ring

• Cheap: Cost is O(N)
• High overall bandwidth
• High latency O(N)
• Examples: KSR machine, Hector
• Linear array

•Diameter = N, Degree = 2, Bisection width = 1, Bandwidth = N-1, Mean latency =
N/2, Asymmetric, Heterogeneous

• Ring
•D = N/2, Deg=2, Bisect = 2, BW=N, Latency = N/2, Symmetric, Homogeneous

P P P P P

4/12/2006 14

2-D Mesh / Torus

• Deg = 4, Diam = 2*Sqrt(N), Bisect= Sqrt(N), Easy to build, scalable
• With wraparound links called Torus

P P P P P

P P P P P

P P P P P

Src

Dest

4/12/2006 15

Trees

• Cheap: Cost is O(N)
• Latency is O(logN)
• Deg = 1, 2, 3, Diam = 2logN, Bisect = 1, Asymmetric
• Easy to layout as planar graphs
• For random permutations, root can become bottleneck.

4/12/2006 16

Fat Trees

• To avoid root being bottleneck, notion of Fat-Trees (used in CM-5)
• Expand bandwidth at each higher level, increases bisection

4/12/2006 17

Hypercubes

• Also called binary n-cubes
• Number of nodes N = 2n

• Latency: O(logN)
• Minimizes hops
• Deg = n, Diam = n, Bisect = 2(n-1), Nodes = 2n, Links = n*2(n-1)

• Good bisection BW but tough to layout in 3D space
• Popular in early message-passing computers (e.g., intel iPSC, NCUBE)
• Other topologies can be embedded in hypercubes (tree, mesh)

4/12/2006 18

k-ary n-cubes

• Generalization of hypercubes: k nodes (rather than just 2 nodes) in a string
• Total number of nodes N = kn

• Allows for wider channels but requires more hops

4/12/2006 19

Switching Alternatives

• Circuit Switching
• Packet Switching
• Store-and-forward
• Cut-through

– Virtual cut-through
– wormhole

4/12/2006 20

Store and Forward

• Message passes from node to node
• Each node stores the entire message
• After examining the message header, the node forwards it on the

appropriate link
• If a blockage appears, messages are held until it clears (multiple

messages may accumulate)

4/12/2006 21

Virtual Cut Through

• Messages are passed as a train of packets through a series of nodes
• Only get buffered if they are blocked; accumulate in node at location of lead

packet
• Saves intermediate stores and sends, and cuts down on buffer space
• Wormhole Routing Similar to virtual cut-through

– When message is blocked, trailing packets (flits) are stored at their current node.
– Limits buffer size to a single packet in each direction

4/12/2006 22

Routing

• For sending a message from a source node to a destination node,
routing algorithms determines which path is taken

• Various properties/classifications:

• Minimal vs. Non-minimal
– Minimal: always select shortest path
– Non-minimal: may route the message along a longer path (for example to

avoid congestion)

4/12/2006 23

Deterministic vs. Adaptive Routing

• Deterministic: a unique path is determined solely based on source and
destination

• Adaptive: Current state of the network is also used to determine the
route

4/12/2006 24

Dimension Ordered Routing

• Based on numbering scheme determined by dimension of channel
• Deterministic
• Routes can be quickly determined
• Called XY-routing for 2D meshes

– Message is first sent along X dimension until reaches the column of
destination

– Message is then sent along Y dimension until reaches destination

• For hypercubes dimension ordered routing is called E-cube routing

4/12/2006 25

Deadlock

• How can it arise?
– necessary conditions:

• shared resource
• incrementally allocated
• non-preemptible

• Think of a channel as a shared resource that is acquired
incrementally

– source buffer then dest. Buffer
– channels along a route

• Deadlock free
– No traffic pattern can lead to a situation where no packets move forward

4/12/2006 26

Deadlock Example

4/12/2006 27

Deadlock Free

• How do you avoid it?
– constrain how channel resources are allocated
– ex: dimension order

• XY-routing

• Removing one of the turns is enough
• Another approach: add virtual channels

– Improve the performance too
• Show that there are no cycles in Channel Dependence Graph

X

X

4/12/2006 28

Routing Design Summary

• Routing Algorithms restrict the set of routes within the topology
– simple mechanism selects turn at each hop
– Virtual cut through and Wormhole routings

• Deadlock-free if channel dependence graph is acyclic
– limit turns to eliminate dependences
– add separate channel resources to break dependences
– combination of topology, algorithm, and switch design

• Deterministic vs. adaptive routing

