(Review) Cache Organization

« Cacheisthe name given to thefirst level of the memory hierarchy,
encountered once the address |eaves the CPU

— It servesasatemporary place where frequently-used values can be stored
* Retainsthe same name asin memory (different from registers)

— To avoid having to go to memory every time this value is needed
» Caches are faster (hence more expensive, limited in size) than DRAM

« Cachesstore values at the granularity of cache blocks (lines)
— Larger than asingle word: efficiency and spatial locality concerns
— Cache hit if value in cache, else cache miss

» Effect of caches on CPU execution time

CPU time = (CPU execution clock cycles+ Memory stall clock cycles) x clock cycle time
Memory stall clock cycles= (Reads x Read miss rate x Read miss penalty +
Writes x Write miss rate x Write miss penalty)
= Memory accesses x Miss rate x Miss penalty

3/9/2006

Four Questions for Memory Hierarchy Designers

Q1. Where can a block be placed in the upper level?
(Block placement)
— Fully Associative, Set Associative, Direct Mapped

Q2. How isablock found if it isin the upper level?
(Block identification)

— Tag per block

Q3: Which block should be replaced on a miss?
(Block replacement)

— Random, LRU

Q4: What happens on awrite?
(Write strategy)
— Write Back or Write Through (with Write Buffer)

3/9/2006

Question 1: Block Placement

Block

no.

Cache

Block

no.

Memory

3/9/2006

Set associative:
block 12 can go
anywhere in set 0

Fully associative:
block 12 can go

Direct mapped:
block 12 can go
only into block 4

01234567 Block 01234567 01234567

Set Set Set Set
Block frame address

1111111112
012345678901234567890

* Fully associative: block

can be placed anywhere

» Direct map: each block

has one place

 Set associative: block

can be placed anywhere
in aset
Range of cachesisredly a

continuum of levels of
set associativity

Most caches today are
direct-mapped (1-way),
2-way or 4-way
associative

Question 2: Block Identification

« Caches have atag on each block frame that gives the block address
— All possible tags, where the block may be present, are checked in parallel

e Quick check of whether ablock containsdata: \Valid bit
» QOrganization determines which (subset of) blocks need to be checked
— View memory address as below

Block address Block
Tag Index offset

. AN i
Selects “block” withinset | Selectsthe “set”

-—
Lower associativity Larger blocks

— Fully-associative caches. Only tag

3/9/2006

Question 3: Block Replacement

* When anew block needs to be brought in (on demand), an existing
cache block may need to be freed up

e Three commonly-used schemes
(we only select a block within the appropriate “set”)

— Random: Easiest to implement
— Least-recently used (LRU)
— First-in, first-out (FIFO): used as an approximation to LRU

* LRU outperforms Random and FIFO on smaller caches
— FIFO outperforms Random

» Differences not as big for larger caches
— Bigger benefit from avoiding missesin the first place

3/9/2006

Question 4: Write Strategy

* Whenismemory updated with the contents of a store?

» |ssue: Reads dominate cache traffic (writes typically 10% of accesses)
— Optimization for read: Do tag checking and data transfer in parallel
— Cannot do this for writes (also, only sub-portion of block needs update)

e Two write policies
— Write through
 Information written to both cache and memory
« Simplifies replacement procedure (block is clean)
» Also, simplifies data coherency (later in the course)
— Write back

 Information only written to the cache
» Dirty bit keeps track of which blocks have data that needs to be sync-ed

» Multiple writes lead to less number of wrtes to memory
* Reduces memory bandwidth requirement (hence power)
— Variants, With or without write-allocate (usually used with write back)

e Write stallsin write-through caches reduced using write buffers
3/9/2006

lmproving Cache Performance

CPU time = (CPU execution clock cycles+ Memory stall clock cycles) x clock cycle time
Memory stall clock cycles= (Reads x Read miss rate x Read miss penalty +
Writes x Write miss rate x Write miss penalty)
= Memory accesses x Miss rate x Miss penalty

e Above assumes 1-cycleto hit in cache
— Hard to achieve in current-day processors (faster clocks, larger caches)
— More reasonable to also include hit time in the performance equation

Average memory accesstime = Hit Time + Missrate x Miss Penalty

.. I\ J
Small/simple caches Larger block size Multilevel caches Nonblocki ng caches
Avoiding address Larger cache size Critical word first Hardware prefetching
translation Higher associativity Read miss beforewrite Compiler prefetching
Pipelined cache access \y/ay prediction miss @
Trace caches Compiler optimizations ~Merging write buffers

@ Victim caches

3/9/2006 @ 10

A.l. Reducing Miss Penalty via Multilevel Caches

* |dea: Have multiple levels of caches
— Tradeoff between size (cache effectiveness) and cost (access time)

 For a2-level cache
Average memory access time = Hit time (L1) + Missrate (L1) x Miss penalty (L1)
Miss penalty (L1) = Hit time (L2) + Missrate (L2) x Miss penalty (L2)

 Distinguish between two kinds of miss rates
— Loca missrate = Missrate (L1) or Missrate (L2)

— Global miss rate = Number of misses/total number of memory accesses
= Missrate (L1), but Missrate (L1) x Missrate(L2)

o Example: 1000 references, 40 missesin L1 cacheand 20in L2
— Local missrates: 4% (L 1), 50% (L2) = 20/40
— Global missrates: 4% (L1), 2% (L2)
— Avg. memory accesstime=1+ 4% x (10 + 50% x 100) = 3.4 cycles

3/9/2006 11

Multilevel Caches (cont’d)

1,0()!:‘}/Q L S - F
99% 99% 98%
90% | 13 marmans 96% ™ | —— Local miss rate
80% I . | —#— Global miss rate
—&— Single cache miss rate
70% il G GG
0% [e e e
MiSS rate 50? | 64 KB Ll CaCheSfor
Instruction, data
40% I . pn
Unified L2 cache
% i T 34%
Whpr
10% b 50— 4% 4% 4% 3% 2% 2% 2% 1% 1%
0% L 4% 4% _ . W30, T 30 ,

4 8 16 32 64 128 256 512 1024 2048 4096
Cache size (KB)

Doesn’t make much sense to have L2 caches smaller than L1 caches

L2 needs to be significantly bigger to have reasonable miss rates
— Cost of big L2 issmaller than big L1

Exclusive and cooperative caches

3/9/2006

12

A.2. Reduce Miss Penalty via
Critical Word First and Early Restart

o |dea: Don't wait for full block to be loaded before restarting CPU

— Early restart: request the wordsin ablock in order. As soon asthe
requested word of the block arrives, send it to the CPU and let the CPU

continue execution

— Critical Word First: Request the missed word first from memory and send

it to the CPU as soon as it arrives; let the CPU continue execution while
filling the rest of the words in the block
» Also called wrapped fetch and requested word first

 Drawbacks
— Generally useful only in large blocks

— Programs exhibiting spatial locality a problem; tend to want next
sequential word, so limited benefit by early restart

3/9/2006

13

A.3. Reducing Miss Penalty by giving Reads Priority
over Writes on Misses

« Write buffers ensure that writes to memory do not stall the processor
e On the other hand, processor is blocked till read returns

o Solution: Give read misses priority

Challenges

e Write-through with write buffers may result in RAW conflicts
— Solution 1: Wait for write buffer to empty (not great)

— Solution 2: Check write buffer contents before read; if no conflicts, let the
memory access continue

* Write-back caches: Read miss may require replacing adirty block
— Normal: Write dirty block to memory, and then do the read

— Better alternative: Copy the dirty block to awrite buffer, then do the read,
and then do the write

» CPU dtall less since restarts as soon as read is done

3/9/2006 14

A.4. Reducing Miss Penalty using
Merging Write Buffers

* Normal mode of operation of awrite buffer
— Absorb write from CPU, commit it to memory in the background

e Problem (particularly in write-through caches)
— Small write-buffers may end up stalling processor if they fill up
— Processor needs to wait till write committed to memory

o Solution: Merge cache-block entries in the write buffer
— Multiword writes are usually faster than writes performed one at atime

— Writes usually modify one word in ablock; If awrite buffer already
contains some words from the given data block we will merge current
modified word with the block parts alreadv in the buffer

Write address V v ' Vv Write address V vV \ Vv
100 1 |Mem[100] | 0 0 0 100 1 |Mem[100] | 1 |Mem[108]| 1 [Mem[116]| 1 | Mem[124]
108 1 |Mem[108] | 0 0 0
116 1 |Mem[116] | 0 0 0
124 1 |Mem[124] | o 0 0

3/9/2006 15

A.5. Reducing Miss Penalty viaa“Victim Cache”

« How to combine the fast hit time of direct-mapped caches, yet till

avoid conflict misses?

 Remember what was recently discarded, just in caseit is heeded again

— Jouppi [1990]: 4-entry victim cache reduced conflict misses by
20% - 95% for a4 KB direct mapped data cache

— Used in Alpha, HP machines

CPU
address

!

Tag

L, Data

S

Data Data

™ in out

Victim cache

3/9/2006

/

Write
buffer

Lower-level memory i 16

B. Reducing Cache Misses

Classifying Misses. 3 Cs
e Compulsory (Also called cold start or first reference misses)

— Thefirst accessto ablock is not in the cache, so the block must be

brought into the cache.
(Missesin even an Infinite Cache)

o Capacity
— The cache may not contain all blocks needed during program execution,
so misses will occur due to blocks being discarded and later retrieved
(Missesin Fully Associative Size X Cache)

e Conflict (Also called collision or interference misses)

— Additional misses that occur because another block is occupying cache

(the rest of the cache might be unused)
(Missesin N-way Associative, Size X Cache)

3/9/2006

17

3Cs Absolute Miss Rate (SPEC92)

3/9/2006

14
° lway T

Conflict misses

0.12
0.1
0.08
8-way

0.06 _
Capacity
0.04

0.02
— ©
—i

Cache Size (KB) Compulsory

18

3Cs Relative Miss Rate

 Assumes fixed block size for each size cache

100%
80% Conflict
40%
20%
0%
—i o™ O Q
—i

Cache Size (KB) Compulsory

3/9/2006 o

How Can We Reduce Misses?

e 3 Cs. Compulsory, Capacity, Conflict

e |f weassume that total cache size is not changed, what happens if we

1. Change block size
Which of 3Csisobviously affected?

2. Change associativity
Which of 3Csisobvioudy affected?

3. Change compiler
Which of 3Csisobvioudy affected?

3/9/2006

20

B.1. Reducing Miss Rate viaLarger Block Sizes

25%

20% -

. 15%
Miss °

Rate

5%

0% -+

—— — —

(o} AN <
— % © Q 8
— (Q\|

Block Size (bytes)

—&— 4K

— 16K

— 7 64K

— T 256K

« Small blocks: Data accesses spread over multiple blocks
o Largeblocks: Not all the datais useful, but displaces useful data

» Also note larger blocks mean higher miss penalty

3/9/2006

21

B.2. Reducing Miss Rate via Higher Associativity

2:1 Cache Rule

— Miss Rate of adirect-mapped cache size of size N ~
Miss Rate of a 2-way cache of size N/2

|s this actually the case?
— Issue: Increasein clock cycletime (CCT) may diminish benefits

Higher associativity leads to higher hit time and can outweigh the benefit

Average memory access time for SPEC92 vs. associativity
— CCT = 1.0for 1-way, 1.36 for 2-way, 1.44 for 4-way, 1.52 for 8-way

Sze (KB) Associativity
1-way 2-way 4-way 8-way

25 cyclesto 4 3.44 3.25 3.22 3.28
access memory 8 2.69 2.58 2.55 2.62
16 2.23 2.40 2.46 2.53

32 2.06 2.30 2.37 2.45

64 1.92 2.14 2.18 2.25

128 1.52 1.86 1.92 2.00

256 1.32 1.66 1.74 1.82

3/9/2006 512 1.20 1.55 1.59 1.66 22

B.3. Reducing Miss Rate via Way Prediction and
Pseudoassociativity

« How to combine fast hit time of direct-mapped caches with the lower
conflict misses of set-associative caches?

— Previoudly looked at Victim Caches

« Way prediction: Predict which block in aset islikely to be accessed by
the next memory access hitting this set
— Tag comparison only with this block (cheaper as opposed to with all)
» Higher cost to check non-predicted blocks
— Simplest prediction: remember the last word accessed
— Used in Alpha 21264 (1-cycleif correct prediction (85%), 3-cycleso.w.)

e Pseudoassociative or Column associative

— Access proceeds as in direct-mapped cache

— On amiss, check another location (“pseudoset”) before going to memory
* Countsasa“dower hit”
* If most hits become slow hits, degrading performance is possible

— Used in MIPS R10000 L2 cache, similar in UltraSPARC
3/9/2006 23

B.4. Reducing Miss Rate by Compiler Optimizations

« Compiler optimizations can help reduce both instruction and data
cache misses (for afixed cache organization)

e |nstruction misses

— Reorder procedures in memory so as to reduce conflict misses
» Ensure that procedures used frequently do not map to same blocks/sets

» Conflicts determined by profiling
» Reduced I-cache misses by 75% in an 8KB cache (McFarling 1989)

— Cache-line alignment of basic blocks
» Decreaseslikelihood of cache miss on sequential code

e Datamisses
— Severa optimizations that reorder data access patterns

— Two examples
» Loop interchange
» Blocking

3/9/2006 24

Loop Interchange Example

[* Before */

for (k = 0; k < 100; k = k+1)
(i1l =2 > x[i][i];
[* After */
for (k = 0; k < 100; k = k+1)
for (i =0; 1 <5000; i =1i+1)

for (j =0; j < 100; j = j+1)
x[1][)] =2 * x[i][j];

o “After” version accesses memory sequentially instead of in
strides of 100 words
— Improved spatial locality: use al of the words in fetched blocks

3/9/2006

25

Blocking Example

[* Before */

for (i =0; i <N i =i+l)
for (=0; j <N j =j+1)
{r =0;
for (k = 0; k <N k = k+1){
r=r + y[i][kl*z[Kk][];};
x(1]['] =r;
};

Capacity misses depend on N, cache size
if al three matricesfit and there are
no conflict misses, best performance

if cache can hold one NxN matrix and
one row of N elements, theny and z can
be in the cache

else, missesfor both y and z
worst case: 2N3 + N2 misses

3/9/2006

26

Blocking Example (cont’ d)

[* After */ Blocking factor: computein
. foor (=0 <N = blocks of BB
N/B r (kk = 0; kk < N kk = kk+B) Bchosensuchthatlr_owof
for (i =0, i <N i =i¢+l) FELLERB DY
(¢ . < v +B-1 N - R can fit in the cache. This
NB (X) or (L =11, m n(LN -) ensures that y and z
+ {r =0; blocks are resident
NB (y) for (k = kk; k<m n(kk+B-1,N); k = k+1) {
EZ(Z) r=r + y[i][kl*z[K][];}; Capacity misses:
L (P10] = x[ill] +r; 2N3/B + N2
}
| k J
@ 0 1 2 3 4 5 @ 0 1 2 3 4 5 @ 0 1 2 3 4 5
0 0 0
1 1 1
2 2 2
i k
3 3 3
4 4 4
5 5 5

3/9/2006 27

C. Using Parallelism to Reduce Miss Penalty/Rate

o |dea: Permit multiple “outstanding” memory operations
— Can overlap memory access latencies
— Can benefit from activity done on behalf of other operations

Three commonly-employed schemes
* Non-blocking caches

e Hardware prefetching

« Software prefetching

3/9/2006

28

C.1. Non-blocking Caches to Reduce Stalls on Misses

Decoupled instruction and data caches allow CPU to continue fetching
Instructions while waiting on a data cache miss

— L1 cache misses can be tolerated by superscalar out-of-order machines

« Non-blocking or lockup-free caches allow data cache to continue to
supply cache hits during amiss
— requires out-of-order execution CPU
e “hitunder miss’ reduces the effective miss penalty by working during
miss vs. ignoring CPU requests
e “hit under multiple miss’ or “miss under miss” may further lower the
effective miss penalty by overlapping multiple misses
— Significantly increases the complexity of the cache controller as there can
be multiple outstanding memory accesses
— Typically aso requires multiple memory banks
— Pentium Pro allows 4 outstanding memory misses

3/9/2006 29

Vaue of Hit-Under-Miss for SPEC92
8K B direct-mapped cache, 32B blocks, 16-cycle penalty

Hit under 1 miss
76%

Percentage
of the average 60% i il aancaus s s st utn i o asamin it e st s
memory
stall time

Floating-point

3/9/2006

C.2. Reducing Misses by Hardware Prefetching

of Instructions & Data

e Instruction Prefetching

Alpha 21064 fetches 2 blocks
(requested and subsequent) on a
miss

Extrablock in “stream buffer”
On miss, check stream buffer

 Workswith data blocks too

Hardware identifies stream of
accesses and then prefetches them

Can compute stride by comparing
current and previous access

UltraSPARC |11 supportsup to 8
simultaneous prefetches

» Prefetching relies on having extra
memory bandwidth that can be
used without penalty

3/9/2006

How well does this work?
Jouppi [1990]
— (for instructionsw.r.t. a4KB

direct-mapped cache)

1-block stream buffer catches 15-
25% of misses, 4-block stream
buffer: 50%, 16-block stream
buffer: 72%

(for dataw.r.t. a4KB direct-
mapped cache)

1-block buffer: 25%, 4 streams:
43% different streams prefetching
at different adresses

Palacharla & Kessler [1994]
— for scientific programs, 8 stream

buffers got 50% to 70% of misses
from a system with 2 64K B, 4-way
set associative caches (one for
Instructions one for data)

31

C.3. Reducing Misses by Software Prefetching of Data

o Compiler caninsert special instructions to request prefetching

e Two variants
— Load datainto register (HP PA-RISC |oads)
— Load datainto cache (MIPS 1V, PowerPC, SPARC v. 9)

| ssues

» Special prefetching instructions typically cannot cause faults (aform of
speculative execution: non-faulting vs. faulting)

» Processor must be able to proceed while prefetched datais being
fetched to make this approach valuable

— I.e.,, non-blocking data caches

 |ssueing the prefetch instructions takes time
— Iscost of prefetch issues < savings in reduced misses?
— Higher superscalar reduces difficulty of issue bandwidth

3/9/2006 32

D. Reducing Cache Hit Time

« Obvious approach: Smaller and ssimpler (low associativity) caches

— Notable that L1 cache sizes have not increased
o Alpha21264/21364; UltraSPARC II/I11; AMD K6/Athlon

Other techniques

e Avoiding address translation during cache lookup

— Alternative 1: Index caches using “virtual addresses’
» Needsto cope with several problems

Protection (performed during address transl ation)
Reuse of virtual addresses across processes (flushing cache after context switch)

Aliasing/synonyms: Two processes refer to the same physical address (resultsin
having multiple copies of the same data)

1/O (typically uses physical addresses)

— Alternative 2: Use part of the page offset to index the cache

3/9/2006

does not change between virtual and physical addresses

33

D.1. Virtually Indexed, Physically Tagged Caches

* Overlap indexing of cache with tranglation of virtual addresses
— Tag comparison done with physical addresses

Implications

Block address Block
Tag Index offset

» Direct-mapped caches can be no bigger than page size

o Set-associative caches
— Page offset can be viewed as (Index + block offset) above
— Cache size = 2pageoifsat x Set associativity
— &0, increased associativity allows larger cache sizes
e Pentium |1l (8KB pages): 2-way set-associative 16 KB cache
* IBM 3033 (4KB pages): 16-way set-associative 64 KB cache

3/9/2006

D.2. Trace Caches

e A challenge in multiple-issue processorsis to supply enough
Instructions every cycle without dependencies
— Challenge: fetching across branches
— Cache impact is significant with large cache blocks

e Option 1: Combine branch prediction with instruction prefetching
— Instructions stored according to memory addresses

e Option 2: A separate cache that stores and provides a dynamic
sequence of instructions including taken branches (Trace Cache)

— Pros
» Effective use of cache block: no wasted words, no conflicts, ...

— Cons
» Complicated address mapping mechanisms
» Same instruction may be stored multiple times

— Used in the Intel NetBurst microarchitecture (Pentium 4)
3/9/2006 35

Cache Optimization Summary

Technique MP MR HT Complexity
Multilevel caches + 2
Early Restart & Critical Word 1st + 2
Priority to Read Misses + 1
Merging write buffer + 1
Victim Caches + + 2
Larger Block Size — + 0
Higher Associativity + — 1
Pseudo-Associative Caches + 2
Compiler Reduce Misses + 0
Non-Blocking Caches 3
HW Prefetching of Instr/Data 2/3
Compiler Controlled Prefetching + + 3
Avoiding Address Trandlation + 2
Trace Cache 3

3/9/2006 36

Lab Assignment 2: Branch prediction

* To understand techniques for reducing pipeline stalls from control hazards
1.a. 2 bit local predictor
1.b. (2,2) correlating predictor

Prediction Actual
Taken Mot Taken
Taken | cyele 2 cyele
Mot Taken 2 cyele 0 cvele

2. Branch Target Buffer (BTB) and
3. Return Address Stack (RAS)

Actual Ourcome
BTE result Predicted Direction Taken Mot Taken
Hit (comect target) Taken 0 cvecls 2 cycle
Hit (mmspredicted Taken 1 cvele 2 cvele
target)
Miss Taken 1 cvele 2 cyvele
Miss Mot Taken 2 cvele 0 cvele

3/9/2006

|F: Instruction Fetch

Il Check to seeif you can proceed (stall)
/I fetch instruction pointed to by fetch_pc

/Il Increment fetch_pc for next inst.
/I For non-CTRL instructions

fetch _pc < fetch pc +
sizeof(md_inst_t)

/[For CTRL instructions
I (MD_OP FLAGS(op) & F CTRL)
if (btb_enabled)
btb_fetch pc = bpred lookup(pred,
[* branch address */ if id_s.PC,
[* target address */ O,
[* opcode */ op,
[* call?*/ MD_IS CALL(op),
/[* return?*/ MD_IS RETURN(op),
[* update */ & update rec,
[* RSB index */ & stack_recover_idx

)

3/9/2006

// BTB miss. branch is predicted not-taken
if id s.prediction < 0
fetch _pc <fetch _pc + sizeof(md _inst_t)

// BTB miss: branch is predicted taken
If_id_s.prediction < 1
fetch _pc <fetch _pc + sizeof(md _inst_t)
// BTB hit
If_id_s.prediction & 2
fetch_pc < btb _fetch _pc
// BTB not enabled
fetch_pc < fetch pc + sizeof(md_inst_t)

if id sNPC < fetch pc

38

|D: Instruction Decode

/I Check to seeif you can proceed
/I Check for hazards
id_stall = check _hazards(inl, in2,
In3, outl, out2)

// Return if data hazard; otherwise
/[functionally ssimulate theinstruction

/I Increment PC (registers)

regs.regs PC =regs.regs NPC
regs.regs NPC += sizeof(md_inst_t)

3/9/2006

/[For CTRL instructions
if ('btb_enabled)
btb _fetch pc < bpred lookup(pred,

[* branch address */ if_id _s.PC,
[* target address */ O,
[* opcode */ op,
[* cal?*/ MD_IS CALL(op),
[* return?*/ MD_IS RETURN(op),
[* update */ & update rec,
/* RSB index */ & stack_recover_idx
)

Il prediction == Taken
Id_ex_s.prediction < 1
If stall <1 Il stall 1F thiscycle
fetch _pc < target PC

I/ prediction == Not Taken
Id_ex_s.prediction < 0

39

ID: Instruction Decode (Cont’ d)

/| BTB isenabled // Update predictor
/Il BTB miss: predicted Taken bpred_update(pred,
id_ex_s.prediction €1 /: branch*address*/ if id s.PC,
if stall € 1// stall IF thiscycle j :Zrkgeit?j/r(ef;;?jgfcp’c!: i id sPC
fetch pc < target PC sizeaf(md_i ns?_t)j),
[* pred taken?*/ (f(_atch _pc!= (if id sPC+
// BTB miss: predicted Not Taken sizeof(md_inst_t))),
id_ex_s.prediction €< 0 [* correct pred?*/ (fetch_pc == regs.regs PC),
[* opcode */op,
// BTB hit ; predictor update pointer */& update rec
Id_ex_s.prediction < 1
/I'11 BTB target mispredicted /| Store branch target in id_ex_sNPC
It (If_id_s.NPC!=target_PC) // such that fetch_pc can be updated if
iIf_stall € 1/ ¢all IFthiscycle required in EX stage
fetch_pc < target PC id_ex_s.NPC & regs.regs PC

3/9/2006 40

Hazard Detetcion

// Forwar ding enabled

[/ RAW: id_ex_sinstruction conflictswith a MEM instruction in ex_mem_s

/[All other results are available because of forwarding
hval < (ex_mem sbusy &&
(MD_OP FLAGS(ex_ mem s.op) & F MEM) &&
(((inl!=NA) &&
((in1 == ex_mem s.outl) ||
(inl == ex_mem_s.out2))) ||
((in2!=NA) &&
((iIn2 == ex_mem s.outl) ||
(in2 == ex_mem_s.out2))) ||
((iIn3!'=NA) &&
((in3 ==ex_mem s.outl) ||
(in3 == ex_mem _s.out2))))

)

/I No need to check for WAW or WAR hazards
3/9/2006

41

EX: Instruction Execute

// Need thisfor mispredicted branches

branch_was taken < (id _ex sNPC !=(id ex_s.PC + sizeof(md _inst_t)))

if (branch_was taken!=id _ex_s.prediction)
fetch pc €< id _ex sNPC
if id sbusy € FALSE // squash speculatively fetched instruction
if stall <1 // stall IF thiscycle

3/9/2006

42

