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Outline

• Motivation and Introduction
• Course organization
• Administrative stuff

– workload and grading
• Brief overview of SimpleScalar toolset

• Fundamentals of computer design
– Target markets
– Technology trends
– Cost vs. price
– Measuring and reporting performance
– Quantitative principles of computer design
– Price performance

[ Hennessy/Patterson CA:AQA (3rd Edition): Chapter 1]
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Growth in Microprocessor Performance

Microprocessors emergence (late 70s):
Improvements in IC technology
35% improvement each year

Reduced Instruction Set Ccomputer (early 80s):
Instruction level parallelism
Use of caches

Commercial success:
Mass production
High level programming
Standardized OS

Technology
Architecture and organization
Compiler
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From the Intel 386 to the Pentium 4

Intel 386, introduced 1985
275,000 transistors, 1 micron
16 MHz clock speed

Intel Pentium III, introduced 1999
9.5M transistors, 0.25 micron
600 MHz clock speed

Intel 4 Prescott, introduced late 04
125M transistors, 0.09 micron
2.8-3.8 GHz clock speed
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Intel Pentium III Microarchitecture

ROB

L2 cache

ID

IFU

DCU

DTLB

ITLB

BTB

MIS

RS

SIMD

RAT

IEU

FEU

MIUMOB

IFU: Instruction fetch unit
ID: Instruction dispatch
MIS: Micro-instruction 

sequencer
BTB: Branch target buffer
RAT: Register alias table
RS: Reservation station
IEU: Int. execution unit
FEU: FP execution unit
DCU: Data cache unit
ROB: Reorder Buffer
MOB: Memory Ordering
Buffer

MIU: Mem Interface unit
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Instruction Set Architecture

Computer Architecture Topics

Pipelining, Hazard Resolution,
Superscalar, Reordering, ILP, 
Branch Prediction, Speculation

Cache Design
Block size, 
Associativity

L1 Cache

L2 Cache

DRAM

Disks and Tape

Coherence,
Bandwidth,
Latency

Emerging Technologies,
Interleaving

RAID

VLSI

Input/Output
and Storage

Memory
Hierarchy

Processor 
Design

Addressing modes, formats
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Computer Architecture Topics

M

Interconnection Network

PMPMPMP
° ° °

Topologies, Routing, Bandwidth, Latency, Reliability

Network Interfaces

Shared Memory or
Message Passing

Networks, Interconnections, and Multiprocessors 



What is Ahead?

• Today’s desktop microprocessors (e.g., Pentium 4 Extreme Edition)
– 178 million transistors, 90 nanometer technology, 3.73 GHz clock speed
– Internally: “hyper-pipelining”, multithreading, 128-bit SIMD instructions

• The future
– Greater instruction level parallelism
– Bigger caches, and more levels of cache
– Multiple processors per chip (“multicore”)

• Complete systems on a chip 
– Reducing the power consumption 
– High performance interconnects

• Breakdown into desktop, enterprise, and embedded target markets
– Different performance criteria

• This course provides the background for you to design, analyze, and 
effectively use such systems
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Topic Coverage

• Textbook
– Hennessy and Patterson, 

Computer Architecture: A Quantitative Approach, 3rd Edition, 2003

• Fundamentals of Computer Design (Chapter 1) 1 lecture
• Instruction Set Architecture (Chapter 2) 0.5 lectures
• Pipelining Basics (Appendix A) 2 lectures
• Instruction Level Parallelism (Chapters  3 and 4) 5 lectures
• Memory Hierarchy (Chapter 5) 2 lectures
• Multiprocessors (Chapter 6) 1.5 lectures
• Interconnection Networks (Chapter 8) 2 lectures

• Other topics such as multicore and power-aware architectures
• Relevant computer architecture research papers 
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Course Workload

• Lectures 
(Reading assignments from text)

• Four programming assignments (50% of course grade)
Build a simulator for a multiple-issue, out-of-order execution 
microprocessor in stages (Pentium III class)

 Use this simulator to understand impact of architectural techniques

• Homework assignments (20% of course grade)

• Final exam (30% of course grade)
• Sample questions will be provided in class

• Academic misconduct taken very seriously
http://www.cs.nyu.edu/web/Academic/Graduate/academic_integrity.html
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SimpleScalar Toolset

• Comprehensive collection of tools for evaluating new architectural techniques
– Possible to define new instruction-set architectures (support for Alpha, PISA)
– Modules for writing own execution-driven simulators

• bpred, caches, statistics collection, program loading, functional unit construction, …
– Many papers at recent architecture conferences use SimpleScalar

Simulator
Core
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SimpleScalar Toolset (cont’d)

• For the course assignments we will be using a small subset of the tools
– You will be using an instructional ISA called PISA

• Closely resembles MIPS 64 (described in the textbook)
– PISA executables produced using GNU cross-compiler tools

• Goal of the assignments: To understand the issues involved in 
implementing and to assess the potential benefits from architectural 
techniques used in modern-day microprocessors
– E.g., Branch prediction in modern-day microprocessors

• At what stage during instruction execution is branch prediction used?
– It takes some time to figure out that an instruction is a branch

• How should the branch predictor be updated with information about seen 
branches?

• What impact does prediction have on performance?
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Background Survey

• Programming in C/C++
– Required for using the SimpleScalar toolset

• Use of Unix systems
– SimpleScalar installs available for SPARC/Solaris and x86/Linux

• Prior coursework
– Logic design: 

• Bits, gates, combinational and sequential logic
• Adders, multipliers

– Computer organization and assembly-level programming
• ALUs, MIPS-like data path (without pipelining)
• Register versus memory operations
• Buses, I/O



Fundamentals of Computer Design
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Context for Designing New Architectures

What is the target market?
• Desktop computing

– General-purpose applications
– Performance improvements must be traded off against cost
– Performance metric of interest is usually response time

• Enterprise servers
– Cost is important but not as much of a concern
– Performance is paramount, metric of interest is usually (not always) 

throughput

• Embedded computers
– Cost is paramount
– Power concerns
– Specialized applications
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Designing New Architectures: Other Considerations

• Application Area
– Special Purpose / General Purpose
– Scientific (FP intensive) / 

Commercial (Integer Intensive)

• Level of Software Compatibility 
Required

– Object Code / Binary Compatible
– Assembly Language
– Programming Language

• Operating System Requirements
– Size of Address Space
– Memory Management / Protection
– Context Switch Capability
– Interrupts and Traps

• Standards: 
– IEEE 754 Floating Point 
– I/O Bus 
– Networks 

• Technology Improvements
– Increased Processor Performance
– Larger Memory and I/O devices
– Software/Compiler Innovations



Technology Trends

• Helps an architect plan for the evolution of an architecture

Four implementation technologies of interest
• Integrated circuit logic

– Transistor density: increases by ~35% per year
– Die size: increases by ~10-20% per year
– Transistor count/die: increases by ~55% per year

• Semiconductor DRAM
– Capacity increases by ~40-60% per year
– Cycle time has not decreased as much: ~33% over 10 years
– Bandwidth has increased: about ~66% more over 10 years

• also, changes to the interface have helped further improve bandwidth

• Magnetic disk technology
– Recently, capacity improving by ~100% every year

• Network technology
– Legacy protocols; more improvements in bandwidth, less in latency
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Technology Trends: Microprocessor Capacity
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Transistor Performance, Wires, and Power

• Driving factor in integrated circuit technology is feature size
– Decreased from 10 microns (1971) to 0.065 microns 

• Transistor count/density improves quadratically with feature size
– But, performance only increases linearly

• Need to reduce operating voltage to ensure correct operation at small sizes

• Unfortunately, wires do not improve in performance with decreasing 
feature size

– Signal delay proportional to product of resistance and capacitance
– Both increase as feature size decreases
– Modern-day processors spend large fraction of time cycle just propagating 

signals between different portions of the chip
• 2 (out of 20) stages of the Pentium 4 pipeline dedicated for this

• Power requirements grow dramatically with decreasing feature size
– Pentium 4 consumes ~100 watts
– Is becoming a major bottleneck
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Cost vs. Price

• Price: How much the finished good sells for
• Cost: Amount spent to produce it (including overhead)

• Price affected by
– time (maturity of process)
– volume (amortization of non-recurring costs)
– commoditization (competition)

• Cost affected by
– Yield
– Direct costs (labor, purchasing, scrap, warranty)
– Gross margin (indirect costs: R&D, marketing, sales, maintenance, 

building rentals …)

• Read Section 1.4 for additional details



Measurement and Evaluation

• Architecture is an iterative process:
– Search the possible design space
– Make selections 
– Evaluate the selections made

• Good measurement tools are required to accurately evaluate the 
selection

• Hennessy and Patterson argue for what has now become widely 
accepted: A quantitative approach for evaluating selections
– most accurate measure of performance is the execution time of 

representative real programs (benchmarks)
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Performance Factors

• Instruction Count (IC): Number of instructions/program
• Cycles per instruction (CPI)

– Sometimes the reciprocal is used: Instructions per cycle (IPC)
• The number of seconds per cycle is the clock period

– clock rate is the multiplicative inverse of the clock period

CPU time =  Seconds     =        Instructions  x     Cycles      x   Seconds
Program Program            Instruction        Cycle

CPU time =  Seconds     =        Instructions  x     Cycles      x   Seconds
Program Program            Instruction        Cycle



Aspects of CPU Performance

Instr. Count CPI       Clock Rate

Program

Compiler

Instr. Set

Organization

Technology

CPU time =  Seconds     =        Instructions  x     Cycles      x   Seconds
Program Program            Instruction        Cycle

CPU time =  Seconds     =        Instructions  x     Cycles      x   Seconds
Program Program            Instruction        Cycle

X

X

X X

X X

X
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Comparing CPU Time

• A 500 MHz Pentium III processor takes 2 ms to run a program with
200,000 instructions. 

• A 300 MHz UltraSparc processor takes 1.8 ms to run the same 
program with 230,000 instructions. 

• Which processor is faster and by how much? 
– The UltraSparc is 2/1.8 = 1.11 times as fast, or 11% faster.

• What is the CPI for each processor for this program?
• CPI           = Cycles / Instruction Count

= CPU time X Clock Rate / Instruction Count
• CPIPentium = 2*10-3 X 500*106 / 2*105 = 5.00
• CPISPARC = 1.8*10-3 X 300*106 / 2.3*105 = 2.35

CPU time =  Seconds     =        Instructions  x     Cycles      x   Seconds
Program Program            Instruction        Cycle

CPU time =  Seconds     =        Instructions  x     Cycles      x   Seconds
Program Program            Instruction        Cycle



Cycles Per Instruction

• Implication: Invest resources where time is spent!

CPU time = CycleTime * Σ CPIi *  ICi
i  = 1

n

“Instruction Frequency”

CPU time = Cycle Time * Number of cycles

“Average Cycles per Instruction”

CPI  = Σ CPIi *  Fi where   Fi =          ICi

Instruction Count
i  = 1

n



Example: Calculating CPI

Typical Mix

Base Machine (Reg / Reg)
Op Freq Cycles Fi*CPIi (% Time)
ALU 50% 1 .5 (33%)
Load 20% 2 .4 (27%)
Store 10% 2 .2 (13%)
Branch 20% 2 .4 (27%)

1.5



Example (cont’d)

• Add register / memory ALU operations:
– One source operand in memory
– One source operand in register
– Cycle count of 2

• Store cycle count to increase to 3

• What fraction of the loads must be eliminated for this to pay off, 
assuming the clock rate is not affected? What metric should be 
considered?
Op Freq Cycles   CPI Freq Cycles   CPI

ALU .50 1 .5 .5 – X 1 .5 – X
Load .20 2 .4 .2 – X 2 .4 – 2X
Store .10 2 .2 .1 3 .3
Branch .20 2 .4 .2 2 .4
Reg/Mem X 2 2X

1.00 1.5 1 – X (1.6 – X)/(1 – X)



Programs to Evaluate Processor Performance

• (Toy) Benchmarks
– 10-100 line program
– e.g.: sieve, puzzle, quicksort

• Synthetic Benchmarks
– Attempt to match average frequencies of real workloads
– e.g., Whetstone, dhrystone

• Kernels
– Time critical excerpts

• Real Benchmarks
– Ideal: exactly the programs one would like to run on the architecture
– More generally: a collection of programs that possess the characteristics of 

the real workload



SPEC: System Performance Evaluation Cooperative

• First Round SPEC CPU89
– 10 programs yielding a single number

• Second Round SPEC CPU92
– SPEC CINT92 (6 integer programs) and SPEC CFP92 (14 fp programs)
– Compiler flags can be set differently for different programs

• Third Round SPEC CPU95
– new set of programs: SPEC CINT95 (8 integer programs) and SPEC 

CFP95 (10 floating point) 
– Single flag setting for all programs

• Fourth Round SPEC CPU2000
– new set of programs:  SPEC CINT2000 (12 integer programs) and SPEC 

CFP2000 (14 floating point) 
– Single flag setting for all programs; C, C++, Fortran 77, and Fortran 90
– Report both baseline (same compile options for all) and best (best compile 

options or each program) performance
• Fifth Round SPEC CPU2006 (not available yet; formerly CPU2004)
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SPEC 2000

• 12 integer programs:
– 2 Compression
– 2 Circuit Placement and Routing
– C Programming Language 

Compiler
– Combinatorial Optimization
– Chess, Word Processing
– Computer Visualization
– PERL Programming Language
– Group Theory Interpreter
– Object-oriented Database. 

• Written in C (11) and C++ (1)

• 14 floating point programs:
– Quantum Physics 
– Shallow Water Modeling
– Multi-grid Solver
– 3D Potential Field
– Parabolic / Elliptic PDEs
– 3-D Graphics Library
– Computational Fluid Dynamics
– Image Recognition
– Seismic Wave Simulation
– Image Processing
– Computational Chemistry
– Number Theory / Primality

Testing
– Finite-element Crash Simulation
– High Energy Nuclear Physics
– Pollutant Distribution

• Written in Fortran (10) and C (4)
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Other SPEC Benchmarks

• JAVA
– JVM98 (JVM); jAppServer2004 (J2EE app servers); JBB2005 

(typical Java  business apps; order processing app for a wholesale 
supplier)

• Network File Systems
– SFS97_R1 (NFS)

• WEB
– WEB2005 (World Wide Web applications)

• HPC
– HPC2002 (large, industrial applications; OpenMP and MPI)

• Graphics
– APC (graphics applications)

• For more information about the SPEC benchmarks see spec.org.
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Implication of the Quantitative Approach

• Make the common case fast
– One of the principles behind RISC: Reduced Instruction Set Computers

• Identify most frequently-used instructions
– Implement them in hardware

• Emulate other instructions (slowly) in software
– Pretty much every technique used in current-day microprocessors

• Is there a way of quantifying the gains one is likely to see by 
improving some portion of the design?
– What is the best one can hope to do?

• General principle for the above: Amdahl’s Law
(sometimes also called Amdahl’s curse)



Exec. timenew =  Exec. timeold x [ (1 – f ) + f/s ] 

Speedup (E) =  Exec. Timeold = 1 ≤ 1
Exec. Timenew [1 – f + f/s ] (1 – f)

Exec. timenew =  Exec. timeold x [ (1 – f ) + f/s ] 

Speedup (E) =  Exec. Timeold = 1 ≤ 1
Exec. Timenew [1 – f + f/s ] (1 – f)

Amdahl's Law

• Speedup due to enhancement E:

• Suppose that enhancement E accelerates a fraction f of the task by a 
factor s, and the remainder of the task is unaffected

• New execution time and the overall speedup?

Speedup (E) =  Execution time without E     =        Performance with E
Execution time with E                    Performance without E

Speedup (E) =  Execution time without E     =        Performance with E
Execution time with E                    Performance without E



Example of Amdahl’s Law

• Floating point instructions improved to run 2x; but only 10% of the 
time was spent on these instructions

• How much improvement in performance should one expect?

• The new machine is 5.3% faster for this mix of instructions

Exec. timenew =  Exec. timeold x [ (1 – f ) + f/s ] 

Speedup (E) =  Exec. Timeold = 1 ≤ 1
Exec. Timenew [1 – f + f/s ] (1 – f)

Exec. timenew =  Exec. timeold x [ (1 – f ) + f/s ] 

Speedup (E) =  Exec. Timeold = 1 ≤ 1
Exec. Timenew [1 – f + f/s ] (1 – f)

Exec. timenew =  Exec. timeold x [ (1 – 0.1) + 0.1/2 ] = Exec. timeold x 0.95

Speedup (E) =  Exec. Timeold = 1 = 1.053
Exec. Timenew 0.95



Summary

• A fundamental rule in computer architecture is to make the common 
case fast

• The most accurate measure of performance is the execution time of 
representative real programs (benchmarks)

• Execution time is dependent on the number of instructions per program, 
the number of cycles per instruction, and the clock rate

• When designing computer systems, both cost and performance need to 
be taken into account

• See Section 1.7 of the textbook for several examples of performance 
and price-performance in desktop, server, and embedded computers


