
1 
 

Computer Architecture 
Lecture 1: 

Digital logic circuits 

The digital computer is a digital system that performs various computational tasks. Digital computers 
use the binary number system, which has two digits: 0 and 1. A binary digit is called a bit. 

A computer system is sometimes subdivided into two functional entities:  hardware and software.  

The hardware of the computer consists of all the electronic components and electromechanical devices 
that comprise the   physical entity of the device.  

Computer software consists of the instructions and data that the computer manipulates to perform 
various data-processing tasks. Program A sequence of instructions for the computer is called a 
program. The data that are manipulated by the program constitute the data base.  

Computer organization is concerned with the way the hardware   components operate and the way they 
are connected together to form the computer system. The various components are assumed to be in 
place and the task is to investigate the organizational structure to verify that the computer parts   
operate as intended. 

Computer design is concerned with the hardware design of the computer.  Once the computer 
specifications are formulated, it is the task of the designer to develop hardware for the system. 
Computer design is concerned with the determination of what hardware should be used and how the 
parts should be connected. This aspect of computer hardware is sometimes referred to as computer 
implementation. 

Computer architecture is concerned with the structure and behavior of the computer as seen by the user. 
It includes the information formats, the instruction set, and techniques for addressing memory. The 
architectural design of a computer system is concerned with the specifications of the various   
functional modules, such as processors and memories, and structuring them together into a computer 
system. 

Logic Gates: 

Gates are blocks of hardware that produce signals of binary 1 or 0 when input logic requirements are 
satisfied. 

Boolean Algebra: 

Boolean algebra is an algebra that deals with binary variables and logic   operations. The variables are 
designated by letters such as A, B, x, and y. The three  

Boolean function basic logic operations are AND, OR, and complement. A Boolean function can be 
expressed algebraically with binary variables, the logic operation symbols, parentheses, and equal sign. 
For a given value of the variables, the Boolean function can be either 1 or 0. Consider, for example, the 
Boolean function F = x + y'z 

 



2 
 

Complement of a Function: 

(a)f = ABC + ABC + A'C  

(B)F = AB + A'C  

Figure 1-6 Two logic diagrams for the same Boolean function.  

Complement of a Function  

From the general DeMorgan's theorem we can derive a simple procedure for obtaining the complement 
of an algebraic expression. This is done by changing all OR operations to AND operations and all AND 
operations to OR operations and then complementing each individual letter variable. As an example, 
consider the following expression and its complement:  

F = AB + CD' + B'D  

F' = (A' + B')(C + D)(B + D') 

Combinational Circuits  

A combinational circuit is a connected arrangement of logic gates with a set of inputs and outputs.  

 

Full-Adder: 

C = xy + (x'y + xy')z 

Realizing that x'y + xy' = x(By and including the expression for output S, we obtain the two Boolean 
expressions for the full-adder:  

S=x®y®z  

C = xy + (x®y)z 

 

 



3 
 

Sequential Circuits: 

A sequential circuit is an interconnection of flip-flops and gates. 

 

Digital Components: 

Integrated Circuits 

An integrated circuit IC (abbreviated IC) is a small silicon semiconductor crystal, called a chip, 
containing the electronic components for the digital gates. 

Decoders: 

A decoder is a combinational circuit that converts binary information from the n coded inputs to a 
maximum of 2" unique outputs. 

 

 Figure  3-8 decoder. 

Encoders: 

An encoder is a digital circuit that performs the inverse operation of a decoder. An encoder has 2" (or 
less) input lines and n output lines. 

 



4 
 

These conditions can be expressed by the following Boolean functions:  

A0 = D, + D3 + D5 + D7  

A1 = D2 + D3 + D6 + D7  

A2 = D4 + D5 + D6 + D7 

Multiplexer: is a combinational circuit that receives binary information from one of 2" input data lines 
and directs it to a single output line. 

 

Registers 

register is a group of flip-flops with each flip-flop capable of storing one bit  of information. An n-bit 
register has a group of n flip-flops and is capable of  storing any binary information of n bits. 

Ex: 4 bit register 

 

Shift Registers 

A register capable of shifting its binary information in one or both directions is called a shift register. 

 

 4 bit shift register 

 



5 
 

Memory Unit 

A memory unit is a collection of storage cells together with associated circuits needed to transfer 
information in and out of storage. The memory stores binary word information in groups of bits called 
words. 

Random-Access Memory 

In random-access memory (RAM) the memory cells can be accessed for information transfer from any 
desired random location. 

 

Read-Only memory 

the name implies, a read-only memory (ROM) is a memory unit that performs the read operation only; 
it does not have a write capability.  

 

 

 

 

 

 

 



6 
 

Lecture 2: 

Register Transfer and Microoperations 

-Register Transfer Language  

Digital system: is an interconnection of digital hardware modules that accomplish a specific 
information-processing task. 

The modules are constructed from such digital components as registers, decoders, arithmetic elements, 
and control logic. The various modules are interconnected with common data and control paths to form 
a digital computer system. 

The operations executed on data stored in registers are called microoperations. A microoperation is an 
elementary operation performed on the information stored in one or more registers. 

The internal hardware organization of a digital computer is best defined by specifying:  

1. The set of registers it contains and their function.  

2. The sequence of microoperations performed on the binary information stored in the registers.  

3. The control that initiates the sequence of microoperations. 

Registers transfer language: 

The symbolic notation used to describe the microoperation transfers register transfer among registers is 
called a register transfer language. The term “registers transfer" implies the availability of hardware 
logic circuits that can perform a stated microoperation and transfer the result of the operation to the 
same or another register. 

Register Transfer 

Information transfer from one register to another is designated in symbolic form by means of a 
replacement operator. The statement  R2 ← Rl  

denotes a transfer of the content of register Rl into register R2. It designates a replacement of the 
content of R2 by the content of Rl. By definition, the content of the source register Rl does not change 
after the transfer. 

 



7 
 

 If we want the transfer to occur only under a predetermined control  condition. This can be shown by 
means of an if-then statement.  

If (P = 1) then (R2 ← Rl) 

Control function   

It is sometimes convenient to separate the control variables from the register transfer operation by 
specifying a control function. 

P: R2 ←Rl 

 

 

Bus and Memory Transfers 

A typical digital computer has many registers, and paths must be provided to transfer information from 
one register to another. The number of wires will be excessive if separate lines are used between each 
register and all other registers in the system. A more efficient scheme for transferring information 
between common bus registers in a multiple-register configuration is a common bus system. 



8 
 

 

 

Three-State Bus Buffers: 

 

 

 

 



9 
 

Memory Transfer 

Read: DR ←M[AR] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



10 
 

Lecture 3: 

Binary Adder 

To implement the add microoperation with hardware, we need the registers that hold the data and the 
digital component that performs the arithmetic addition. 

 

Binary Adder-Subtractor 

The subtraction of binary numbers can be done most conveniently by means of complements 

 

Binary Incrementer 

 

Arithmetic Circuit 

The output of the binary adder is calculated from the following arithmetic sum:  

D = A + Y + Cin 



11 
 

 

 

 

 

 

 

 

 

 

 



12 
 

Logic Microoperations 

 

Hardware Implementation 

 

Shift Microoperations 

 

 



13 
 

Hardware Implementation 

 

Arithmetic Logic Shift Unit 

 



14 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



15 
 

Lecture 4: 

Basic Computer Organization and Design 

 Instruction code is a group of bits that instruct the computer to perform a specific operation. It is 
usually divided into parts, each having its own particular interpretation. The most basic part of an 
instruction code is its operation code operation part. 
 
Stored Program Organization 
 

 
 
-Computers that have a single-processor register usually assign to it the name accumulator (AC) and 
label it AC. 
Indirect Address:It is sometimes convenient to use the address bits of an instruction code not as an 
address but as the actual operand. When the second part of an instruction code specifies an operand, the 
instruction is said to have an immediate operand. 
The effective address to be the address of the operand in a computation-type instruction or the target 
address in a branch-type instruction. 

 



16 
 

 
Computer Registers 
 
-Computer instructions are normally stored in consecutive memory locations and are executed 
sequentially one at a time. 
 

 
 
 
 

 
Common Bus System 
 
Paths must be provided to transfer information from one register to another and between memory and 
registers. The number of wires will be excessive if connections are made between the outputs of each 
register and the inputs of the other registers. 
 



17 
 

 
 

- The input data and output data of the memory are connected to the common bus, but the 
memory address is connected to AR. 

- DR←AC and AC ←DR 
- can be executed at the same time. This can be done by placing the content of AC on the bus 

(with S2SiS0 = 100), enabling the LD (load) input of DR, transferring the content of DR 
through the adder and logic circuit into AC, and enabling the LD (load) input of AC, all during 
the same clock cycle. The two transfers occur upon the arrival of the clock pulse transition at 
the end of the clock cycle. 

 
Computer Instructions 
The operation code (opcode) part of the instruction contains three bits and the meaning of the 
remaining 13 bits depends on the operation code encountered. A memory-reference instruction uses 12 
bits to specify an address and one bit to specify the addressing mode J. 
 



18 
 

 
 

 
 
 
 
 
 
 
 
 



19 
 

Lecture 5: 
 
Instruction Set Completeness 
The set of instructions are said to be complete if the computer includes a sufficient number of 
instructions in each of the following categories:  
1. Arithmetic, logical, and shift instructions  
2. Instructions for moving information to and from memory and processor registers  
3. Program control instructions together with instructions that check status conditions  
4. Input and output instructions 
Timing and Control 
The clock pulses are applied to all flip-flops and registers in the system, including the flip-flops and 
registers in the control unit. The clock pulses do not change the state of a register unless the register is 
enabled by a control signal. The control signals are generated in the control unit and provide control 
inputs for the multiplexers in the common bus, control inputs in processor registers, and 
microoperations for the accumulator. 

- In the hardwired organization, the control logic is implemented with gates, flip-flops, decoders, 
and other digital circuits. It has the advantage that it can be optimized to produce a fast mode of 
operation. 

- In the microprogrammed control, any required control changes or modifications can be done by 
updating the microprogram in control memory. 

- The sequence counter SC can be incremented or cleared synchronously. Most of the time, the 
counter is incremented to provide the sequence of timing signals out of the 4 x 16 decoder. 

 

 
 



20 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



21 
 

Lecture 6: 
Instruction Cycle: 
• The steps that the control unit carries out in executing aprogram are: 
(1) Fetch the next instruction to be executed from memory. 
(2) Decode the opcode. 
(3) Read operand(s) from main memory, if any. 
(4) Execute the instruction and store results, if any. 
(5) Go to step 1. 

Fetch and Decode: 

Initially, the program counter PC is loaded with the address of the first instruction in the program. The 
sequence counter SC is cleared to 0, providing a decoded timing signal T0. After each clock pulse, SC 
is incremented by one, so that the timing signals go through a sequence T0, Tu T2, and so on. 

T0: AR←PC  

T1: IR←M[AR], PC←PC + 1  

T2: D0/..., D7←Decode IR(12-14), AR←IR(O-ll), I←1R(15) 

Since only AR is connected to the address inputs of memory, it is necessary to transfer the address 
from PC to AR during the clock transition associated with timing signal T0. 

 



22 
 

- To provide the data path for the transfer of PC to AR we must apply timing signal T0 to achieve 
the following connection:  
1. Place the content of PC onto the bus by making the bus selection inputs S2SiS0 equal to 010.  
2. Transfer the content of the bus to AR by enabling the LD input of AR. 
The next clock transition initiates the transfer from PC to AR since T0 = 1. 
T1: IR←M[AR], PC←PC +1 

- The microoperation for the indirect address condition can be symbolized by the register transfer 
statement AR←M[AR]. 

- The three instruction types are subdivided into four separate paths. The selected operation is 
activated with the clock transition associated with timing signal T3. This can be symbolized as 
follows:  
D7'IT3: AR←M[AR]  
D7'I'T3: Nothing  
D7I'T3: Execute a register-reference instruction  
D7IT3: Execute an input-output instruction 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



23 
 

Lecture 7: 
Register-Reference Instructions  

Register-reference instructions are recognized by the control when D7 = 1 and 1 = 0. These instructions 
use bits 0 through 11 of the instruction code to specify one of 12 instructions. These 12 bits are 
available in IR(O-ll). They were also transferred to AR during time T2. 

 

Memory -Reference Instructions 

The effective address of the instruction is in the address register AR and was placed there during timing 
signal T2 when I = 0, or during timing signal T3 when I=1. 

 

AND to AC  

This is an instruction that performs the AND logic operation on pairs of bits in AC and the memory 
word specified by the effective address. 

D0T4: DR←M[AR]  

D0T5: AC←AC +DR, SC←O 

ADD to AC  



24 
 

This instruction adds the content of the memory word specified by the effective address to the value of 
AC. The sum is transferred into AC and the output carry Cout is transferred to the £ (extended 
accumulator) flip-flop. 

D1T4: DR ←M[AR]  

D1Ts: AC ← AC + DR, E ←Cout, SC ← 0 

LDA: Load to AC  

This instruction transfers the memory word specified by the effective address to AC. The 
microoperations needed to execute this instruction are  

D2T4: DR ←M[AR]  

D2T5: AC ← DR, SC ← 0 

STA: Store AC  

This instruction stores the content of AC into the memory word specified by the effective address.  

D3T4: M[AR] ← AC, SC ←0 

BUN: Branch Unconditionally 

D4T4: PC ←AR, SC ←0 

BSA: Branch and Save Return Address 

 

D5T4: M[AR] ←PC, AR ← AR + 1  

D5T5: PC ←AR, SC ← 0 

ISZ: Increment and Skip if Zero 

D6T4: DR ←M[AR]  



25 
 

D6T5: DR ← DR + 1  

D6T6: M[AR] ← DR, if (DR = 0) then (PC ← PC + 1), SC ←0 

Input—Output and Interrupt 

- A computer can serve no useful purpose unless it communicates with the external environment. 
Instructions and data stored in memory must come from some input device. 

Input-Output Configuration 

 

 

Input-Output Instructions 

 

 
 
 
 
 
 
 
 



26 
 

Lecture 8: 
Program Interrupt 

- The process of communication just described is referred to as programmed control transfer. The 
computer keeps checking the flag bit, and when it finds it set, it initiates an information transfer. 
The difference of information flow rate between the computer and that of the input-output 
device makes this type of transfer inefficient. 

- To see why this is inefficient, consider a computer that can go through an instruction cycle in 1 
(is. Assume that the input-output device can transfer information at a maximum rate of 10 
characters per second. This is equivalent to one character every 100,000 µs. 

- An alternative to the programmed controlled procedure is to let the external device inform the 
computer when it is ready for the transfer. In the meantime the computer can be busy with other 
tasks. This type of transfer uses the interrupt facility. While the computer is running a program, 
it does not check the flags. 

 



27 
 

 

Interrupt Cycle 

T0'T1'T2'(IEN)(FGI + FGO): R ←1 

Can be done with the following sequence of microoperations:  

RT0: AR←O, TR←PC  

RT1: M[AR]←TR, PC ←0  

RT2:PC←PC + 1, IEN←0, R←0, SC←0 

Design of Basic Computer 

The basic computer consists of the following hardware components:  

1. A memory unit with 4096 words of 16 bits each  

2. Nine registers: AR, PC, DR, AC, IR, TR, OUTR, INPR, and SC  

3. Seven flip-flops: /, S, E, R, IEN, FGI, and FGO  

4. Two decoders: a 3 x 8 operation decoder and a 4 x 16 timing decoder  

5. A 16-bit common bus  

6. Control logic gates  

7. Adder and logic circuit connected to the input of AC 



28 
 

 

Control Logic Gates 

- The inputs to this circuit come from the two decoders, the J flip-flop, and bits 0 through 11 of 
IR. The other inputs to the control logic are: AC bits 0 through 15 to check if AC = 0 and to 
detect the sign bit in AC(15); DR bits 0 through 15 to check if DR = 0; and the values of the 
seven flip-flops.  

- The outputs of the control logic circuit are:  
1. Signals to control the inputs of the nine registers  
2. Signals to control the read and write inputs of memory  
3. Signals to set, clear, or complement the flip-flops  
4. Signals for S2, Si, and S0 to select a register for the bus  
5. Signals to control the AC adder and logic circuit 

Control of Registers and Memory 

- The control inputs of the registers are LD (load), INR (increment), and CLR (clear). 
- Suppose that we want to derive the gate structure associated with the control inputs of AR. We 

scan Table 5-6 to find all the statements that change the content of AR:  



29 
 

R'T0: AR←PC  

R'T2: AR←IR(O-ll)  

D7'IT3: AR←M[AR]  

RT0: AR←O  

D5T4: AR ←AR + 1 

The control functions can be combined into three Boolean expressions as follows:  

LD(AR) = R'T0 + R'T2 + D7'TT3  

CLR(AR) = RT0  

INR(AR) = D5T4 

- In a similar fashion we can derive the control gates for the other registers as well as the logic 
needed to control the read and write inputs of memory. 
Read = R'T1+ D7'IT3 + (D0 + D1 + D2 + D6)T4 

- The output of the logic gates that implement the Boolean expression above must be connected 
to the read input of memory. 

 

Control of Single Flip-flops  

- The control gates for the seven flip-flops can be determined in a similar manner. 
- EXAMPLE: IEN may change as a result of the two instructions ION and IOF.  

pB7: IEN←1  
pB6: lEN←O 
where p = D7IT3 and B7 and B6 are bits 7 and 6 of IR, respectively. Moreover, at the end of 
the interrupt cycle IEN is cleared to 0.  
RT2: IEN←0 



30 
 

 

Control of Common Bus 

 

So = X1 + x3 + x5 + x7  
Si = x2 + x3 + x6 + x7  
S2 = Xi + x5 + X6, + x7 

- x7 = R'T1 + D7'IT3 + (D0 + D1 + D2 + D6)T4 

 
Design of Accumulator Logic 

- In order to design the logic associated with AC, it is necessary to go over the register transfer 
statements and extract all the statements that change the content of AC. 

-  
- From this list we can derive the control logic gates and the adder and logic circuit. 



31 
 

 

Control of AC Register 

 

Adder and logic circuit  

- The adder and logic circuit can be subdivided into 16 stages, with each stage corresponding to 
one bit of AC. 

- One stage of the adder and logic circuit consists of seven AND gates, one OR gate and a full-
adder (FA) 



32 
 

-  

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

 



33 
 

LECTURE 9: 

Central Processing Unit 

CPU:The part of the computer that performs the bulk of data-processing operations is called the central 
processing unit and is referred to as the CPU. 

The CPU is made up of three major parts: 

1- The register set stores intermediate data used during the execution of the instructions.  
2- The arithmetic logic unit (ALU) performs the required microoperations for executing the 

instructions.  
3- The control unit supervises the transfer of information among the registers and instructs the 

ALU as to which operation to perform. 

 

General Register Organization 

The output of each register is connected to two multiplexers (MUX) to form the two buses A and B. 
The selection lines in each multiplexer select one register or the input data for the particular bus. 

 



34 
 

For example, to perform the operation R1←R2 + R3  

The control must provide binary selection variables to the following selector inputs:  

1. MUX A selector (SELA): to place the content of R2 into bus A.  

2. MUX B selector (SELB): to place the content of R3 into bus B.  

3. ALU operation selector (OPR): to provide the arithmetic addition A + B.  

4. Decoder destination selector (SELD): to transfer the content of the output bus into Rl. 

Control Word 

There are 14 binary selection inputs in the unit, and their combined value specifies a control word. 

The encoding of the register selections is specified in following Table. The 3-bit binary code listed in 
the first column of the table specifies the binary code for each of the three fields. The register selected 
by fields SELA, SELB, and SELD is the one whose decimal number is equivalent to the binary number 
in the code. 

 

- The ALU provides arithmetic and logic operations. In addition, the CPU must provide shift 
operations. The shifter may be placed in the input of the ALU to provide a preshift capability, 
or at the output of the ALU to provide postshifting capability. 

 



35 
 

Lecture10: 

Stack Organization 

A stack is a storage device that stores information in such a manner that the item stored last is the first 
item retrieved. The operation of a stack can be compared to a stack of trays. The last tray placed on top 
of the stack is the first to be taken off. 

- The register that holds the address for the stack is called a stack pointer (SP) because its value 
always points at the top item in the stack. 

Register Stack  

- A stack can be placed in a portion of a large memory or it can be organized as a collection of a 
finite number of memory words or registers. Following figure shows the organization of a 64-
word register stack. 

 

- Initially, SP is cleared to 0, EMTY is set to 1, and FULL is cleared to 0, so that SP points to the 
word at address 0 and the stack is marked empty and not full. If the stack is not full (if FULL = 
0), a new item is inserted with a push operation. The push operation is implemented with the 
following sequence of microoperations:  
SP←SP + 1 Increment stack pointer  
M[SP] ← DR Write item on top of the stack  

If (SP = 0) then (FULL ←1) Check if stack is full  

EMTY ←0 Mark the stack not empty 

- A new item is deleted from the stack if the stack is not empty (if pop EMTY = 0). The pop 
operation consists of the following sequence of micro- operations:  



36 
 

DR←M[SP]     Read item from the top of stack  

SP←SP - 1     Decrement stack pointer  

If (SP = 0) then (EMTY ←1)   Check if stack is empty  

FULL ← 0     Mark the stack not full 

Memory Stack  

Following Figure shows a portion of computer memory partitioned into three segments: program, data, 
and stack. The program counter PC points at the address of the next instruction in the program. The 
address register AR points at an array of data. 

 

We assume that the items in the stack communicate with a data register DR. A new item is inserted 
with the push operation as follows:  

SP←SP- 1  

M[SP)←DR  

The stack pointer is decremented so that it points at the address of the next word. A memory write 
operation inserts the word from DR into the top of the stack. A new item is deleted with a pop 
operation as follows:  

DR←M[SP]  

SP←SP + 1  



37 
 

The top item is read from the stack into DR. The stack pointer is then incremented to point at the next 
item in the stack. 

- The advantage of a memory stack is that the CPU can refer to it without having to specify an 
address, since the address is always available and automatically updated in the stack pointer. 

Reverse Polish Notation 

- stack organization is very effective for evaluating arithmetic expressions. The common 
mathematical method of writing arithmetic expressions imposes difficulties when evaluated by 
a computer. The common arithmetic expressions are written in infix notation, with each 
operator written between the operands. Consider the simple arithmetic expression A*B + C*D 

- The Polish mathematician Lukasiewicz showed that arithmetic expressions can be represented 
in prefix notation. This representation, often referred to as Polish notation, places the operator 
before the operands. The postfix notation, referred to as reverse Polish notation (RPN), places 
the operator after the operands. The following examples demonstrate the three representations:  

A + B Infix notation  

+AB Prefix or Polish notation  

AB+ Postfix or reverse Polish notation 

- The reverse Polish notation is in a form suitable for stack manipulation.  
- The expression A*B + C*D is written in reverse Polish notation as AB*CD*+ 

Evaluation of Arithmetic Expressions  

- Reverse Polish notation, combined with a stack arrangement of registers, is the most efficient 
way known for evaluating arithmetic expressions. This procedure is employed in some 
electronic calculators and also in some computers.  

- The stack is particularly useful for handling long, complex problems involving chain 
calculations. It is based on the fact that any arithmetic expression can be expressed in 
parentheses-free Polish notation. 

- The following numerical example may clarify this procedure. Consider the arithmetic 
expression (3*4) + (5*6)  

In reverse Polish notation, it is expressed as  34*56* + 

- Scientific calculators that employ an internal stack require that the user convert the arithmetic 
expressions into reverse Polish notation. Computers that use a stack-organized CPU provide a 
system program to perform the conversion for the user. 



38 
 

 

Instruction Formats 

The format of an instruction is usually depicted in a rectangular box symbolizing the bits of the 
instruction as they appear in memory words or in a control register. The bits of the instruction are 
divided into groups called fields. The most common fields found in instruction formats are:  

1. An operation code field that specifies the operation to be performed.  

2. An address field that designates a memory address or a processor register.  

3. A mode field that specifies the way the operand or the effective address is determined. 

-  Operands residing in processor registers are specified with a register address. 

- Computers may have instructions of several different lengths containing varying number of addresses. 
The number of address fields in the instruction format of a computer depends on the internal 
organization of its registers. Most computers fall into one of three types of CPU organizations:  

1. Single accumulator organization.  

2. General register organization.  

3. Stack organization. 

-- Three*Address Instructions  

Computers with three-address instruction formats can use each address field to specify either a 
processor register or a memory operand. The program in assembly language that evaluates X = (A + B) 
* (C + D) is shown below, together with comments that explain the register transfer operation of each 
instruction.  

ADD Rl, A, B  R1←M[A]+M[B]  

ADD R2, C, D  R2←M[C]+M[D]  

MUL X, Rl, R2  M[X]←R1*R2 

from memory and AC register. We will assume that the operands are in memory addresses A, B, C, and 
D, and the result must be stored in memory at address X.  

Three*Address Instructions  



39 
 

Computers with three-address instruction formats can use each address field to specify either a 
processor register or a memory operand. The program in assembly language that evaluates X = (A + B) 
* (C + D) is shown below,  together with comments that explain the register transfer operation of each 
instruction.  

ADD Rl, A, B R1^M[A]+M[B]  

ADD RE, C, D RE^M[C]+M[D]  

MUL X, Rl, RE M[X]^R1*RE  

It is assumed that the computer has two processor registers, Rl and R2. The symbol M[A] denotes the 
operand at memory address symbolized by A. The advantage of the three-address format is that it 
results in short programs when evaluating arithmetic expressions. The disadvantage is that the binary-
coded instructions require too many bits to specify three addresses.  

An example of a commercial computer that uses three-address instructions is the Cyber 170. The 
instruction formats in the Cyber computer are restricted to either three register address fields or two 
register address fields and one memory address field.  

---Two'Address Instructions  

Two-address instructions are the most common in commercial computers.  

Here again each address field can specify either a processor register or a memory word. The program to 
evaluate X = (A + B) * (C + D) is as follows:  

MOV Rl, A   R1←M[A] 

ADD Rl, B   Rl←Rl + M[B]  

MOV R2, C   R2←M[C]  

ADD R2,D   R2←R2 + M[D]  

MUL Rl ,R2  R1←R1*R2  

MOV X, R1  M[X]←R1 

--One'Address Instructions  

One-address instructions use an implied accumulator (AC) register for all data manipulation. For 
multiplication and division there is a need for a second register. However, here we will neglect the 
second register and assume that the AC contains the result of all operations. The program to evaluate  

X = (A + B)*(C + D)is 



40 
 

 

--Zero'Address Instructions  
A stack-organized computer does not use an address held for the instructions ADD and MUL. The 
PUSH and POP instructions, however, need an address held to specify the operand that communicates 
with the stack. The following program shows how X = (A + B) * (C + D) will be written for a stack- 
organized computer. (TOS stands for top of stack.) 

 
--RISC Instructions 
The instruction set of a typical RISC processor is restricted to the use of load and store instructions 
when communicating between memory and CPU. All other instructions are executed within the 
registers of the CPU without referring to memory. 
The following is a program to evaluate X = (A + B)*(C + D). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



41 
 

Lecture11: 

Addressing Modes  
The operation field of an instruction specifies the operation to be performed. This operation must be 
executed on some data stored in computer registers or memory words. 
Computers use addressing mode techniques for the purpose of accommodating one or both of the 
following provisions:  
1. To give programming versatility to the user by providing such facilities as pointers to memory, 
counters for loop control, indexing of data, and program relocation.  
2. To reduce the number of bits in the addressing field of the instruction. 

 
- The control unit of a computer is designed to go through an  instruction cycle that is divided 

into three major phases:  
    1. Fetch the instruction from memory.  
    2. Decode the instruction.  
    3. Execute the instruction. 
 

- There is one register in the computer called the program counter or PC that keeps track of the 
instructions in the program stored in memory. PC holds the address of the instruction to be 
executed next and is incremented each time an instruction is fetched from memory. 

- The mode field is used to locate the operands needed for the operation. 
- Implied Mode: In this mode the operands are specified implicitly in the definition of the 

instruction. For example, the instruction "complement accumulator" is an implied-mode 
instruction because the operand in the accumulator register is implied in the definition of the 
instruction. In fact, all register reference instructions that use an accumulator are implied-mode 
instructions. 

- Immediate Mode: In this mode the operand is specified in the instruction itself. 
 
Register Mode: In this mode the operands are in registers that reside within the CPU. The particular 
register is selected from a register field in the instruction. A k-bit field can specify any one of 2* 
registers. 
Register Indirect Mode: In this mode the instruction specifies a register in the CPU whose contents give 
the address of the operand in memory. 
Autoincrement or Autodecrement Mode: This is similar to the register indirect mode except that the 
register is incremented or decremented after (or before) its value is used to access memory. 
 
The effective address is defined to be the memory address obtained from the computation dictated by 
the given addressing mode. 
Direct Address Mode: In this mode the effective address is equal to the address part of the instruction. 
The operand resides in memory and its address is given directly by the address field of the instruction. 
 



42 
 

Indirect Address Mode: In this mode the address field of the instruction gives the address where the 
effective address is stored in memory. 
--- A few addressing modes require that the address field of the instruction be added to the content of a 
specific register in the CPU. The effective address in these modes is obtained from the following 
computation:  effective address = address part of instruction + content of CPU register 
Relative Address Mode: In this mode the content of the program counter is added to the address part of 
the instruction in order to obtain the effective address. 
Indexed Addressing Mode: In this mode the content of an index register is added to the address part of 
the instruction to obtain the effective address. The index register is a special CPU register that contains 
an index value. The address field of the instruction defines the beginning address of a data array in 
memory. 
Base Register Addressing Mode: In this mode the content of a base register is added to the address part 
of the instruction to obtain the effective address. This is similar to the indexed addressing mode except 
that the register is now called a base register instead of an index register. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



43 
 

Lecture12: 

Data Transfer and Manipulation 
The instruction set of different computers differ from each other mostly in the way the operands are 
determined from the address and mode fields. 
Most computer instructions can be classified into three categories:  
1. Data transfer instructions  
2. Data manipulation instructions  
3. Program control instructions  
Data transfer instructions cause transfer of data from one location to another without changing the 
binary information content.  
Data manipulation instructions are those that perform arithmetic, logic, and shift operations.  
Program control instructions provide decision-making capabilities and change the path taken by the 
program when executed in the computer. 
Data Transfer Instructions  

- Data transfer instructions move data from one place in the computer to another without 
changing the data content. The most common transfers are between memory and processor 
registers, between processor registers and input or output, and between the processor registers 
themselves. 

 
Data Manipulation Instructions  
- Data manipulation instructions perform operations on data and provide the computational 
capabilities for the computer. The data manipulation instructions in a typical computer are 
usually divided into three basic types:  
1. Arithmetic instructions  
2. Logical and bit manipulation instructions  
3. Shift instructions 

Arithmetic Instructions  
The four basic arithmetic operations are addition, subtraction, multiplication, and division. Most 
computers provide instructions for all four operations. 



44 
 

 
Logical and Bit Manipulation Instructions  
Logical instructions perform binary operations on strings of bits stored in registers. They are useful for 
manipulating individual bits or a group of bits that represent binary-coded information. 

 
 
Shift Instructions  
Instructions to shift the content of an operand are quite useful and are often provided in several 
variations. 

 
 
Program Control  
Instructions are always stored in successive memory locations. When processed in the CPU, the 
instructions are fetched from consecutive memory locations and executed. 



45 
 

 
Status Bit Conditions  
It is sometimes convenient to supplement the ALU circuit in the CPU with a status register where 
status bit conditions can be stored for further analysis. Status bits are also called condition-code bits or 
flag bits. 
The four status bits are symbolized by C, S, Z, and V. The bits are set or cleared as a result of an 
operation performed in the ALU.  
1. Bit C (carry) is set to 1 if the end cany C8 is 1. It is cleared to 0 if the cany isO.  
2. Bit S (sign) is set to 1 if the highest-order bit F? is 1. It is set to 0 if the bit is 0.  
3. Bit Z (zero) is set to 1 if the output of the ALU contains all 0's. It is cleared to 0 otherwise. In other 
words, Z = 1 if the output is zero and Z = 0 if the output is not zero.  
4. Bit V (overflow) is set to 1 if the exclusive-OR of the last two carries is equal to 1, and cleared to 0 
otherwise. This is the condition for an overflow when negative numbers are in 2's complement.  
For the 8-bit ALU, V = 1 if the output is greater than +127 or less than -128. 

 
 
 
 
 
 
 
 
 
 
 
 



46 
 

Conditional Branch Instructions 

 
- Some computers consider the C bit to be a borrow bit after a subtraction operation A — B. A 

borrow does not occur if A ^ B, but a bit must be borrowed from the next most significant 
position if A < B. The condition for a borrow is the complement of the carry obtained when the 
subtraction is done by taking the 2's complement of B. For this reason, a processor that 
considers the C bit to be a borrow after a subtraction will complement the C bit after adding the 
2's complement of the subtrahend and denote this bit a borrow. 

Subroutine Call and Return  
- A subroutine is a self-contained sequence of instructions that performs a given computational 

task. 
- The instruction that transfers program control to a subroutine is known by different names. The 

most common names used are call subroutine, jump to subroutine, branch to subroutine, or 
branch and save address. 

- The instruction is executed by performing two operations: 
 (1) the address of the next instruction available in the program counter (the return address) is 
stored in a temporary location so the subroutine knows where to return 
 (2) control is transferred to the beginning of the subroutine. 

Different computers use a different temporary location for storing the return address.  
- Some store the return address in the first memory location of the subroutine, some store it in a 

fixed location in memory, some store it in a processor register, and some store it in a memory 
stack. The most efficient way is to store the return address in a memory stack. The advantage of 



47 
 

using a stack for the return address is that when a succession of subroutines is called, the 
sequential return addresses can be pushed into the stack. The return from subroutine instruction 
causes the stack to pop and the contents of the top of the stack are transferred to the program 
counter. 

- A subroutine call is implemented with the following microoperations:  
SP ←SP - 1    Decrement stack pointer  
M[SP] ←PC    Push content of PC onto the stack  
PC ← effective address  Transfer control to the subroutine  

- If another subroutine is called by the current subroutine, the new return address is pushed into 
the stack, and so on. The instruction that returns from the last subroutine is implemented by the 
microoperations:  
PC←M[SP]    Pop stack and transfer to PC  
SP ←SP + 1    Increment stack pointer 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



48 
 

 
Lecture13: 

Program Interrupt 
 

- Program interrupt refers to the transfer of program control from a currently running program to 
another service program as a result of an external or internal generated request. Control returns 
to the original program after the service program is executed. 

- The interrupt procedure is, in principle, quite similar to a subroutine call except for three 
variations: 
 (1) The interrupt is usually initiated by an internal or external signal rather than from the 
execution of an instruction (except for software interrupt as explained later);  
(2) the address of the interrupt service program is determined by the hardware rather than from 
the address field of an instruction; and  
(3) an interrupt procedure usually stores all the information 

-  The state of the CPU at the end of the execute cycle (when the interrupt is recognized) is determined 
from:  
1. The content of the program counter  
2. The content of all processor registers  
3. The content of certain status conditions 
 

- program status word The collection of all status bit conditions in the CPU is sometimes called 
a program status word or PSW. The PSW is stored in a separate hardware register and contains 
the status information that characterizes the state of the CPU. 

 
Types of Interrupts  

- There are three major types of interrupts that cause a break in the normal execution of a 
program. They can be classified as:  

1. External interrupts  
2. Internal interrupts  
3. Software interrupts 

- External interrupts come from input-output (I/O) devices, from a timing device, from a circuit 
monitoring the power supply, or from any other external source. 
- Internal interrupts arise from illegal or erroneous use of an instruction or data. Internal interrupts are 
also called traps. Examples of interrupts caused by internal error conditions are register overflow, 
attempt to divide by zero, an invalid operation code, stack overflow, and protection violation. 
- A software interrupt is initiated by executing an instruction. Software interrupt is a special call 
instruction that behaves like an interrupt rather than a subroutine call. It can be used by the programmer 
to initiate an interrupt procedure at any desired point in the program. 
Reduced Instruction Set Computer (RISC) 
 



49 
 

- An important aspect of computer architecture is the design of the instruction set for the 
processor. The instruction set chosen for a particular computer determines the way that machine 
language programs are constructed. 

- A computer with a large number of instructions is classified as a complex instruction set 
computer, abbreviated CISC. 

- In the early 1980s, a number of computer designers recommended that  
- Computers use fewer instructions with simple constructs so they can be executed much faster 

within the CPU without having to use memory as often. This type of computer is classified as a 
reduced instruction set computer or RISC. 

 
CISC Characteristics  

- The design of an instruction set for a computer must take into consideration not only machine 
language constructs, but also the requirements imposed on the use of high-level programming 
languages. 

- the major characteristics of CISC architecture are:  
1. A large number of instructions—typically from 100 to 250 instructions  
2, Some instructions that perform specialized tasks and are used  infrequently. 
3. A large variety of addressing modes—typically from 5 to 20 different modes  
4. Variable-length instruction formats  
5. Instructions that manipulate operands in memory 

 
RISC Characteristics  

- The concept of RISC architecture involves an attempt to reduce execution time by simplifying 
the instruction set of the computer. The major characteristics of a RISC processor are:  

1. Relatively few instructions  
2. Relatively few addressing modes  
3. Memory access limited to load and store instructions  
4. All operations done within the registers of the CPU  
5. Fixed-length, easily decoded instruction format  
6. Single-cycle instruction execution  
7. Hardwired rather than microprogrammed control 
-  Other characteristics attributed to RISC architecture are:  
1. A relatively large number of registers in the processor unit  
2. Use of overlapped register windows to speed-up procedure call and return  
3. Efficient instruction pipeline  
4. Compiler support for efficient translation of high-level language programs into machine language 
programs. 
 
Overlapped Register Windows  

- Procedure call and return occurs quite often in high-level programming languages. When 
translated into machine language, a procedure call produces a sequence of instructions that save 



50 
 

register values, pass parameters needed for the procedure, and then calls a subroutine to execute 
the body of the procedure. 

- A characteristic of some RISC processors is their use of overlapped register windows to provide 
the passing of parameters and avoid the need for saving and restoring register values. 

- The system has a total of 74 registers. Registers RO through R9 are global registers that hold 
parameters shared by all procedures. The other 64 registers are divided into four windows to 
accommodate procedures A,B,C, and D. Each register window consists of 10 local registers and 
two sets of six registers common to adjacent windows. Local registers are used for local 
variables. 

- In general, the organization of register windows will have the following relationships:  
number of global registers = G  
number of local registers in each window = L  
number of registers common to two windows = C  
number of windows = W 
 

 
- The number of registers available for each window is calculated as follows:  

window size = L + 2C + G  
The total number of registers needed in the processor is register file = (L + C)W + G  
In the example of Fig above we have G = 10, L = 10, C = 6, and W = 4. The window size is 10 
+ 12 + 10 = 32 registers, and the register file consists of (10 + 6) x 4 + 10 = 74 registers. 



51 
 

Lecture14: 

Microprogrammed Control(Control Unit) 
Control Memory 
Control Unit 
Initiate sequences of microoperations  
Control signal (that specify microoperations) in a bus-organized systemgroups of bits that select the 
paths in multiplexers, decoders, and arithmetic logic units 
Two major types of Control Unit 

- Hardwired Control : The control logic is implemented with gates, F/Fs, decoders, and other 
digital circuits 

-  Fast operation, - Wiring change(if the design has to be modified) 
- Microprogrammed Control : 

The control information is stored in a control memory, and the control memory is programmed to 
initiate the required sequence of microoperations  
+ Any required change can be done by updating the microprogram in control memory,             
   - Slow operation 
Control Word 
The control variables at any given time can be represented by a string of 1’s and 0’s. 
Microprogrammed Control Unit 
A control unit whose binary control variables are stored in memory (control memory). 

- Microinstruction : Control Word in Control Memory  
The microinstruction specifies one or more microoperations  

- Microprogram :A sequence of microinstruction 
Dynamic microprogramming : Control Memory = RAM  

- RAM can be used for writing (to change a writable control memory)  
- Microprogram is loaded initially from an auxiliary memory such as a magnetic disk  

Static microprogramming : Control Memory = ROM  
- Control words in ROM are made permanent during the hardware production.   

Microprogrammed control Organization :  
1) Control Memory 
- A memory is part of a control unit : Microprogram  
- Computer Memory (employs a microprogrammed control unit) 

Main Memory : for storing user program (Machine instruction/data) 
Control Memory : for storing microprogram (Microinstruction) 

2) Control Address Register 
Specify the address of the microinstruction 

3) Sequencer (= Next Address Generator) 
Determine the address sequence that is read from control memory 
Next address of the next microinstruction can be specified several way depending on the 
sequencer input  

4) Control Data Register (= Pipeline Register ) 



52 
 

Hold the microinstruction read from control memory 
Allows the execution of the microoperations specified by the control word simultaneously with 
the generation of the next microinstruction 

- RISC Architecture Concept 
RISC(Reduced Instruction Set Computer) system use hardwired control rather than microprogrammed 
control   

-   Address Sequencing 
- Address Sequencing = Sequencer : Next Address Generator  

Selection of address for control memory 
- Routine  

Microinstruction are stored in control memory in groups  
- Mapping 

Instruction Code             Address in control memory(where routine is located) 
- Address Sequencing Capabilities : control memory address  

1) Incrementing of the control address register 

2) Unconditional branch or conditional branch, depending on status bit conditions  

3) Mapping process ( bits of the instruction address for control memory ) 

4) A facility for subroutine return 
- Selection of address for control memory : 

Multiplexer 
 CAR Increment 
 JMP/CALL 
 Mapping 
 Subroutine Return 
CAR : Control Address Register. CAR receive the address from 
  4different paths 
 1)  Incrementer  
 2)  Branch address from control memory 
 3)  Mapping Logic 
 4) SBR : Subroutine Register ,SBR : Subroutine Register(Return Address can not be stored in ROM) 
 
 
 
 
 
 
 
 
 
 
 

Instruction code

Mapping
logic

Multiplexers

Control address register
(CAR)

Control memory

Incrementer

Subroutine
regiser
(SBR)

Branch
logic

Status
bits

Clock

select

MUX

Select a status

bit

Branch address

Microoperations



53 
 

 
 

 Conditional Branching 
Status Bits 

» Control the conditional branch decisions generated in the Branch Logic  
Branch Logic 

» Test the specified condition and Branch to the indicated address if the 
condition is met ; otherwise, the control address register is just 
incremented. 

Status Bit Test 와 Branch Logic  
» 4 X 1 Mux 와 Input Logic 

 Mapping of Instruction :  
4 bit Opcode = specify up to 16 distinct instruction  
Mapping Process : Converts the 4-bit Opcode to a 7-bit control memory address  

» 1) Place a “0” in the most significant bit of the address 
» 2) Transfer 4-bit Operation code bits 
» 3) Clear the two least significant bits of the CAR (Microinstruction) 

Mapping Function : Implemented by Mapping ROM or PLD  
Control Memory Size : 128 words (= 27) 

 
 Subroutine 

Subroutines are programs that are used by other routines 
- Subroutine can be called from any point within the main body of the microprogram  
Microinstructions can be saved by subroutines that use common section of microcode 

) Memory Reference, Operand,  Effective Address Subroutine 

Subroutine은 ORG 64, 즉 1000000 - 1111111에 위치(Routine은 0000000 - 0111111) 
Subroutine must have a provision for  

» storing the return address during a subroutine call  
» restoring the address during a subroutine return 

Last-In First Out(LIFO) Register Stack  
   
 
 
 
 
 
 
 
 
 
 



54 
 

 
Lecture15: 

Microprogram Example 
 Computer Configuration :  

2 Memory : Main memory(instruction/data), Control memory(microprogram) 
» Data written to memory come from DR, and Data read from memory can 

go only to DR 
4 CPU Register and ALU : DR, AR, PC, AC, ALU 

» DR can receive information from AC, PC, or Memory (selected by MUX) 
» AR can receive information from PC or DR (selected by MUX) 
» PC can receive information only from AR 
» ALU performs microoperation with data from AC and DR  

2 Control Unit Register : SBR, CAR 
  

 Instruction Format  
Instruction Format :  

» I : 1 bit for indirect addressing 
» Opcode : 4 bit operation code 
» Address : 11 bit address for system memory 

Computer Instruction :  
 Microinstruction Format :  

3 bit Microoperation Fields : F1, F2, F3  
» 총 21개 Microoperation : 
»  3  microoperation  

3 , 000(no operation) 
» two or more conflicting microoperations can not be specified 

simultaneously)010 001 000 
     Clear AC to 0 and subtract DR from AC at the same time 

» Symbol DRTAC(F1 = 100) 
stand for a transfer from DR to AC (T = to) 

 
 

 

 

 

 

 
 

Memory
2048×16

Arithmetic
logic and
shift unit

AC

DR

MUX

AR

PC

MUX

Control memory
128×20

CARSBR

Control unit

Address

15                      0

15                      0

10               0

10               0

6         0 6         0



55 
 

2 bit Condition Fields: CD 
» 00 : Unconditional branch, U  
» 01 : Indirect address bit, I = DR(15) 
» 10 : Sign bit of AC, S = AC(15) 
» 11 : Zero value in AC, Z = AC = 0 

00 bit Branch Fields : BR 
01  JMP ,Condition = 0 : Condition = 1 :  
01 : CALL ,Condition = 0 : Condition = 1 :  
10 : RET  
11  MAP  

7 bit Address Fields : AD(128 word : 128 X 20 bit)  
 Symbolic Microinstruction  

 Label Field : Terminated with a colon ( : ) 
 Microoperation Field : one, two, or three symbols, separated by commas  
 CD Field : U, I, S, or Z 
 BR Field : JMP, CALL, RET, or MAP 
 AD Field  
a. Symbolic Address : Label ( = Address ) 
 b. Symbol “NEXT” : next address 
   c. Symbol “RET” or “MAP” : AD field = 0000000    
ORG : Pseudoinstruction(define the origin, or first address of routine) 

 Fetch (Sub)Routine 
l Memory Map(128 words) :  

» Address 0 to 63 : Routines for the 16 instruction(4 instruction)  
» Address 64 to 127 : Any other purpose(Subroutines : FETCH, INDRCT) 

Microinstruction for FETCH Subroutine 
 
 

 
 
 

 
 
 
 
Design of Control Unit 

 Decoding of Microinstruction Fields :  
F1, F2, and F3 of Microinstruction are decoded with a 3 x 8 decoder 

Output of decoder must be connected to the proper circuit to initiate the corresponding microoperation  
F1 = 101 (5) : DRTAR  
F1 = 110 (6) : PCTAR 
Output 5 and 6 of decoder F1 are connected to the load input of AR (two input of OR gate) 

0)6,1,0(),1411()52(),100(
1],[






CARDRCARDRAR
PCPCARMDR

PCAR

Label Microoperation CD BR AD

ORG 64

FETCH: PCTAR U JMP NEXT

READ, INCPC U JMP NEXT

DRTAR U MAP 0



56 
 

Multiplexer select the data from DR when output 5 is active 
Multiplexer select the data from AC when output 5 is inactive 
Arithmetic Logic Shift Unit 
Control signal of ALU in hardwired control  
Control signal will be now come from the output of the decoders associated with the AND, ADD, and 
DRTAC.   
 
 
 
 
 
 
 
 
 
 
 
Microprogram Sequencer :  
Microprogram Sequencer select the next address for control memory 
MUX 1 Select an address source and route to CAR   
JMP 와 CAL 
JMP : AD가 MUX 1의 2CAR 
CALL : AD가 MUX 1의 2 CAR,CAR + 1(Return Address) 이 LOAD  SBR. 
MUX 2  

» Test a status bit and the result of the test is applied to an input logic 
circuit 

» One of 4 Status bit is selected by Condition bit (CD)   
Design of Input Logic Circuit 
Select one of the source address(S0, S1) for CAR 
Enable the load input(L) in SBR   
Input Logic Truth Table :  
Input : 
 I0, I1 from Branch bit (BR) 
 T from MUX 2 (T)  
Output :  
MUX 1 Select signal (S0, S1)  
S1 = I1I0’ + I1I0 = I1(I0’ + I0) = I1  
S0 = I1’I0’T + I1’I0T + I1I0  
     = I1’T(I0’ + I0) + I1I0  
     = I1’T + I1I0  
SBR Load signal (L)  
      L = I1’I0T 

 3×8 decoder

7  6  5  4  3  2  1  0

F1

 3×8 decoder

7  6  5  4  3  2  1  0

F2

 3×8 decoder

7  6  5  4  3  2  1  0

F3

Arithmetic
logic shift

unit

AC

Multiplexers

AR

From
PC

From
DR(0-10)

0 1

Load

Select

Clock

ADD

AND

DRTAC

Load

DRTARPCTAR

MUX 1

3      2      1     0

S 1

S 0

  Input
  logic

Io

I1

T

MUX 2

Select

CAR

Incrementer

SBR

Control memory

Microops CD ADBR

Clock

Test

Load

External
(MAP)

L

1

Z

S

I

Load SBR

I1 I0 T S1 S0 L

0 0 0 0 0 0 0 0

0 0 0 0 1 0 1 0

0 1 0 1 0 0 0 0

0 1 0 1 1 0 1 1

1 0 1 0 x 1 0 0

1 1 1 1 x 1 1 0

BR Field Input MUX 1


