

Circles

In the Chapter

In this chapter, you will be studying the following points:

- The meaning of a tangent to a circle.
- The tangent to a circle is perpendicular to the radius through the point of contact.
- The lengths of the two tangents from an external point to a circle are equal.
- If the two circles touch each other, the point of contact lies on a line joining their centres.

NCERT TEXT BOOK QUESTION (SOLVED)

EXERCISE 10.1

Q.1. How many tangents can a circle have?

Ans. Infinite, as there are infinite number of points on the circumference but from a point on the circumference it can have only one tangent.

So, infinite tangents can be drawn to a circle.

Q.2. Fill in the blanks :

(i) A tangent to a circle intersects it in point (s).

(ii) A line intersecting a circle in two points is called a

(iii) A circle can haveparallel tangents at the most.

(iv) The common point of a tangent to a circle and the circle is called

Ans. (i) one, (ii) secant, (iii) two, (iv) point of contact.

Q.3. A tangent PQ at a point P of a circle of radius 5 cm meets a line through the centre O at a point Q so that OQ = 12 cm. Length PQ is :

(A) 12 cm (B) 1<u>3 cm</u>

(C) 8.5 cm (D) $\sqrt{119}$ cm.

Ans. (d) $\sqrt{119}$ cm.

 \Rightarrow

Reason : Radius and tangent are perpendicular to each other. Thus $\angle OPQ$ is a right angle,

 $OQ^{2} = OP^{2} + PQ^{2}$ $PQ^{2} = OQ^{2} - OP^{2}$

 \Rightarrow PQ = $\sqrt{119}$ cm.

Q.4. Draw a circle and two lines parallel to a given line such that one is a tangent and the other, a secant to the circle.

Ans. Firstly draw a circle with centre O and draw a line l. Now, we draw two parallel lines to l, such that one line m is tangent to the circle and another n is secant to the circle.

(160)

EXERCISE 10.2

Q.1. From a point Q, the length of the tangent to a circle is 24 cm and the distance of Q from the centre is 25 cm. The radius of the circle is

 (\mathbf{A}) 7 cm (B) 12 cm (C) 15 cm

(D) 24.5 cm

Ans. (a) Given that, the length of the tangent QP = 24 cm and OO = 25 cm. Joint OP.

We know, radius OP is perpendicular to the tangent PQ.

In right $\triangle OPQ$

		$OQ^2 =$	$OP^2 + PQ^2$
			(By Pythagores theorem)
\Rightarrow		$25^2 =$	$OP^2 + 24^2$
\Rightarrow		$OP^2 =$	625 - 576 = 49
\Rightarrow		OP =	7 cm
	~ ~		

Q.2. In Fig. 10.11, if TP and TQ are the two tangents to a circle with centre O so that $\angle POQ =$ 110°, then \angle PTQ is equal to

Ans. It is given that,

 $\angle POQ = 110^{\circ}$

Since, the tangent at any point of a circle is perpendicular to the radius through the point of contact.

90° ∴ ∠OPT _ ∠OQT = 90° and Now, in quadrilateral POQT $\angle POQ + \angle OQT + \angle PTQ + \angle OPT = 360^{\circ}$ (angle sum property of quadrilateral) $110^{\circ} + 90^{\circ} + \angle PTQ + 90^{\circ} = 360^{\circ}$ \Rightarrow

 $\angle PTO + 290^{\circ} = 360^{\circ}$ \Rightarrow $\angle PTQ = 70^{\circ}$ \Rightarrow Hence, right option is (B) Q.3. If tangents PA and PB from a point P to a circle with centre O are inclined to each other at angle of 80°, then \angle POA is equal to (A) 50° **(B) 60°** (C) 70° **(D) 80° Ans.** In $\triangle POA$ and $\triangle POB$ PA = PB(Tangents from externals point P) OB (radii of a circle) OA =OP =OP (common) and *.*.. $\Delta POA \cong$ ΔΡΟΒ (By SSS congruency) ∠OPA ∠OPB \Rightarrow = ∠OPA $\angle OPB = 40^{\circ}$ \Rightarrow = 0

Since, the tangent at any point of a circle is perpendicular to the radius through the point of contact.

 $\angle OAP = 90^{\circ}$ · · . Now, in $\triangle OPA$, $\angle OAP + \angle OPA + \angle POA = 180^{\circ}$ $90^\circ + 30^\circ + \angle POA = 180^\circ$ \Rightarrow $130 + \angle POA = 180^{\circ}$ \Rightarrow $\angle POA = 50^{\circ}$ \Rightarrow

So, right option is (a).

Q.4. Prove that the tangents drawn at the ends of a diameter of a circle are parallel.

Ans. Let AB be a diameter of a given circle and let LM and PQ be the tangent lines drawn to the

cirdcle at points A and B, respectively. Since, the tangent at a point to a circle is perpendicular to the radius through the point.

<i>.</i>	$AB \perp PQ$ and $AB \perp LM$
\Rightarrow	$\angle PAB = 90^{\circ}$
and	$\angle ABM = 90^{\circ}$
\Rightarrow	$\angle PAB = \angle ABM$
\Rightarrow	PQ LM
Hen	ce proved

Q.5. Prove that the perpendicular at the point of contact to the tangent to a circle passes through the centre.

Let AMB and CND be two parallel tangents to a circle with centre O. Join OM and ON. Draw OP || AB.

Now,
$$AM || OP$$

 $\Rightarrow \angle AMO + \angle POM = 180^{\circ}$
[Consecutive interior angles]
 $\Rightarrow 90 + \angle POM = 180^{\circ}$
 $\Rightarrow \angle POM = 90^{\circ}$
Similarly, $\angle PON = 90^{\circ}$
 $\cdot \angle POM + \angle PON = 90^{\circ} + 90^{\circ} = 180^{\circ}$

Hence, MON is a straight line passing through O.

Q.6. The length of a tangent from a point A at distance 5 cm from the centre of the circle is 4 cm. Find the radius of the circle.

Ans. Given, OP = 5 cm and AM = 4 cm

 $\mathsf{OM} \perp \mathsf{AM}$

(Radius is perpendicular to AM)

In right **AOMA** $OP^2 = OM^2 + MA^2$ (By Pythagoras theorem) 5^{2} $= OM^2 + 4^2$ \rightarrow

$$OM^2 = 25 - 16 = 9$$

 $OM = 3 cm$

 \Rightarrow

 \Rightarrow

Hence, radius of the circle is 3 cm

Q.7. Two concentric circles are of radii 5 cm and 3 cm. Find the length of the chord of the larger circle which touches the smaller circle.

Ans. Here, we draw two circles, C₁ and C₂ of radii $r_1 = 3$ cm and $r_2 = 5$ cm.

Now, we draw a chord AB such that it touches the circle C_1 at point D.

The centre of concentric circle is O.

Now, we draw a perpendicular bisector from O to AB which meets AB at D.

i.e.
$$AD = BD$$

In right $\triangle OBD$

$$OB^2 = OD^2 + DB^2$$

(By pythagoras theorem)

$$\Rightarrow \qquad 5^2 = 3^2 + DB^2$$

 $DB^2 = 25 - 9 = 16$ \Rightarrow

$$\Rightarrow$$
 DB = 4 cm

Length of chord = AB = 2, $AD = 2 \times 4 = 8$ cm *.*..

Q.8. A quadrilateral ABCD is drawn to circumscribe a circle (see Fig.). Prove that AB + CD = AD + BC

Ans. Using theorem, the lengths of tangents drawn from an external point to a circle are equal. Suppose, A is an external point, then

$$AP = AS \qquad \dots (i)$$
Suppose, B is an external point, then

$$BP = BQ \qquad \dots (ii)$$
Suppose, C is an external point, then

$$CO = RC \qquad \dots (iii)$$

Suppose, D is an external point, then

 $SD = RD \qquad ...(iv)$ On adding Eqs. (i), (ii), (iii) and (iv), we get (AP + BP) + (RC + RD) = (AS + BQ) + (CQ + SD) $\Rightarrow \qquad AB + CD = (AS + SD) + (BQ + CQ)$ $\Rightarrow \qquad AB + CD = AD + BC$ Hence proved

Hence proved.

Q.9. In Fig., XY and X' Y' are two parallel tangents to a circle with centre O and another tangent AB with point of contact C intersecting XY at A and X' Y' at B. Prove that $\angle AOB = 90^{\circ}$.

Ans. Since, tangents drawn from an external point to a circle are equal.

AP =AC *.*... Thus, in $\triangle APO$ and $\triangle ACO$, AP =AC AO =AO (common) OP =(Radius of circle) OC ... By SSS criterion of congruency, we have $\Delta APO \cong$ ΔΑCΟ ∠OAC \Rightarrow ∠PAO = ∠PAC 2∠CAO \Rightarrow = Similarly, we can prove that ∠CBO = ∠OBO ∠CBQ = 2∠CBO \Rightarrow Since XY || X'Y' $\angle PAC + \angle QBC = 180^{\circ}$ (Sum of interior angles on the same sides of transversal is 180°) $2\angle CAO + 2 \angle CBO = 180^{\circ}$ *.*.. ...(i) $\angle CAO + \angle CBO = 90^{\circ}$ \Rightarrow In $\triangle AOB$, $\Rightarrow \angle CAO + \angle CBO + \angle AOB = 180^{\circ}$ $\angle CAP + \angle CBO = 180^{\circ} - \angle AOB$...(ii) \Rightarrow : From Eqs. (i) and (ii), we get $180^\circ - \angle AOB = 90^\circ$ $\angle AOB = 90^{\circ}$

Q.10. Prove that the angle between the two tangents drawn from an external point to a circle is supplementary to the angle subtended by the linesegment joining the points of contact at the centre. **Ans. Given :** PA and PB are two tangents drawn from an external point P to a circle with centre O.

To prove : $\angle AOB + \angle APB = 180^{\circ}$ **Const. :** Join OA and OB.

Proof : The tangent at any point of circle is perpendicular to the radius through the point of contact.

∴ ∠OA	P =	90°	(i)
and ∠OBI	2 =	90°	(ii)

Adding (i)	and (ii), we	e get	

 $\angle OAP + \angle OBP = 180^{\circ}$

Now in quadrilateral AOBP,

 \Rightarrow

 \rightarrow

 $\angle OAP + \angle OBP + \angle APB + \angle AOB = 360^{\circ}$

 $180^\circ + \angle APB + \angle AOB = 360^\circ$

 $\angle APB + \angle AOB = 180^{\circ}$

Q.11. Prove that the parallelogram circumscribing a circle is a rhombus.

Ans. Let ABCD be a parallelogram and a circle with centre O. Let sides AB, BC, CD and AD of the parallelogram touch the circle at E, F, G and H respectively.

Since, the length of two tangents drawn from an external point to a circle are equal.

	r	1
	So, AE=AH	(i)
	BE=BF	(ii)
	CG = CF	(iii)
and	l DG=DH	(iv)
Ado	ding (i), (ii), (iii) and (iv),	we get
	AE + BE + GC + DG = A	AH + BF + CF + DH
\Rightarrow	(AE+BE)+(GC+DG)	=(AH+DH)+(FG+CF)
\Rightarrow	AB + CD	=AD+BC
\Rightarrow	AB + CD	=AD+BC
\Rightarrow	2 A B	= 2 BC

104 Liteskins' Complete NCERT Solutions Class-A Mathemat

$[ABCD is a \parallel gm So, AB = CD and BC = AD]$		
\Rightarrow	AB = BC	
Similarly,	BC=CD	
and	CD = AD	
Thus,	AB = BC = CD = DA	
Hence, ABCD is rhombus.		

Q.12. A triangle ABC is drawn to circumscribe a circle of radius 4 cm such that the segments BD and DC into which BC is divided by the point of contact D are of lengths 8 cm and 6 cm respectively (see Fig.). Find the sides AB and AC.

Ans. Let O be the incentre of DABC such that OD = OE = OF = 4 cm.

Also, BD = 6cm, CD = 8 cm.

Since, length of tangents drawn fom an external point are equal.

So, BD = BF = 6 cmand, CD = CE = 8 cm

Let the length of tangents drawn from first vertex be *x*.

 \Rightarrow AF = AE = x

[Tangents from external point A] Now, sides of triangle are

 $S = \frac{14 + x + 8 + x + 6}{2}$

 $S = \frac{2x+28}{2} = x = 14$

AB = x + 6 = c.BC = 6 + 8 = 15 = a

AC = x + 8 = b

and

We know that :
$$S = \frac{a+b+2}{2}$$

 \Rightarrow

$$\Rightarrow$$

Therefore,

Area of
$$\triangle ABC$$

= $\sqrt{s(s-a)(s-b)(s-c)}$

$$= \sqrt{(x-14)(x+14-14)(x+15-x-8)(x+14-x-6)}$$

= $\sqrt{x(x+14)(6)(8)}$
= $\sqrt{48x(x+14)}$...(i)
Also, area of DABC,

= Area of $\triangle BOC$ + Area of $\triangle AOC$ + Area of $\triangle AOB$

$$= \frac{1}{2} \times BC \times OD + \frac{1}{2} \times AC \times OE + \frac{1}{2} \times AB \times OF$$

= $\frac{1}{2} \times 14 \times 4 + \frac{1}{2} \times (x+8) \times 4 + \frac{1}{2} \times (x+6) \times 4$
= $28 + 2(x+8) + 2(x+6)$
= $28 + 2x + 16 + 2x + 12$
= $4x + 56$...(ii)
Comparing (i) and (ii), we get

$$\sqrt{48x(x+14)} = 4x + 56$$

Squaring both sides, we get

 $48x(x+14) = (4x+56)^2$ $48x (x + 14) = [4 (x + 14)]^2$ \Rightarrow $48x(x+14) = 16(x+14)^2$ \Rightarrow \Rightarrow $3x(x+14) = (x=14)^2$ \Rightarrow $3x(x+14) = (x+14)^2$ $3x(x+14) - (x+14)^2 = 0$ \Rightarrow (x+14) [(3x-(x+14))] = 0 \Rightarrow 3x - x - 14 = 0 \Rightarrow 2x - 14 = 0 \Rightarrow 2x = 14 \Rightarrow x = 7 \Rightarrow AB = x + 6Hence, =7+6=13 cm AC = x + 8and =7+8=15 cm

Q.13. Prove that opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.

Ans. Given : A circle with centre O touches the sides AB, BC, CD and DA of a quadrilatral ABCD at the points P, Q, R andS respectively.

Lifeskills' Complete NCERT Solutions Class-X Mathematics | 165

To prove : $\angle AOB + \angle COD = 180^{\circ}$ $\angle AOD + \angle BOC = 180^{\circ}$

Const. : Join OP, OQ, OR and OS.

Proof : Since, the two tangents drawn from an external point to a circle subtend equal angles at the centre.

 $\therefore \quad \angle 1 = \angle 2, \angle 3 = \angle 4, \angle 5 = \angle 6, \angle 7 = \angle 8$

Since sum of all the angles subtended at a point is 360°.

$\therefore \quad \angle 1 + \angle 2 + \angle 3 + \angle 4 + \angle 5 + \angle 6 + \angle 7 + \angle 8 = 360^{\circ}$

- $\Rightarrow 2(\angle 2 + 2 \angle 3 + 2 \angle 6 + 2 \angle 7) = 360^{\circ}$
- $\Rightarrow 2(\angle 2 + \angle 3 + \angle 6 + \angle 7) = 360^{\circ}$
- $\Rightarrow \ \angle 2 + \angle 3 + \angle 6 + \angle 7 = 180^{\circ}$
- $\Rightarrow (\angle 6 + \angle 7) + (\angle 2 + \angle 3) = 180^{\circ}$
- $\Rightarrow \angle AOB + \angle COD = 180^{\circ}$ Similarly, we can prove

 $\angle AOD + \angle BOC = 180^{\circ}$

Additional Questions

Q.1. If a chord AB subtends an angle of 60° at the centre of a circle, then angle between the tangents at A and B is also 60° .

Ans. We know that if a chord AB makes an angle of 60° at the centre, then the angle between the tangents at A and B is complementary.

Thus angle = 120° .

Hence our statement is false.

Q.2. The length of tangent from an external point P on a circle with centre O is always less than OP.

Ans. We know that the length of the tangent from an external point P on a circle with centre O is always less than OP.

Hence the statement is true.

Q.3. The angle between two tangents to a circle may be 0° .

Ans. We know that two tangents to a circle can be parallel. Thus the angle between two tangents to a circle can be 0° .

Hence the statement is true.

Q.4. Out of the two concentric circles, the radius of the outer circle is 5 cm and the chord AC of length 8 cm is a tangent to the inner circle. Find the radius of the inner circle.

Ans. Two concentric circles with centre O.

OA = 5 cm, AC = 8 cm, Ac = 8 cm.

We know that perpendicular from the centre of a circle bisects a chord.

 $\therefore \qquad AB = BC = 4 \text{ cm}$ Now $OB^2 = OA^2 - AB^2$

$$\Rightarrow$$
 OB² = (5)² - (4)²

$$\Rightarrow \qquad \text{OB} = \sqrt{25 - 16} = \sqrt{9} = 3.$$

Hence radius for the inner circle = 3 cm O.5. Prove that the tangents drawn at the end, of

a chord of a circle make equal

angles with the chord.

Ans. Given : A circle with centre O. AB is a chord. At A and B tangents AP and BP are drawn.

To prove : $\angle PAB = \angle PBA$

Proof : We know that tangents drawn from an external point to a circle are equal.

 \therefore PA = PB

 \therefore In $\triangle PAB$, $\angle PAB = \angle PBA$

(isosceles Δ theorem)

Q.6. Prove that a diameter AB of a circle bisects all those chords which are parallel to the tangent at the point A.

Ans. Given : A circle in which AOB is a diameter. O being the cente of the circle.

PA || LM (a chord)

To prove : AB bisect LM at Q.

Proof : PA is tangent to the circle and OA is a radius through the point of contact.

 \therefore OA \perp AP

Now
$$LM || PA \Rightarrow OQ \perp LM$$

We know that perpendicular from the centre bisects the chord.

∴ LQ=QM Similarly the result holds good for all chords parallel to

the tangent.

166 | Lifeskills' Complete NCERT Solutions Class-X Mathematics

Q.7. From an external point P, two tangents, PA and PB are drawn to a circle with centre O. At one point E on the circle tangenet is drawn which intersects PA and PB at C and D respectively. If PA =10 cm, find the perimeter of the triangle PCD.

Q.8. If AB is a chord of a circle with centre O, AOC is a diameter and AT is the tangent at A shown in the figure. Prove that \angle BAT = \angle ACB.

Ans. OT \perp AT

 $\therefore \angle CAT = 90^{\circ}$

 $\angle ABC = 90^{\circ}$...(Angle in a semicircle) Now $\angle ACB + \angle ABC + \angle CAB = 180^{\circ}$ $\Rightarrow \angle ACB + 90^{\circ} + 90^{\circ} - \angle BAT = 180^{\circ}$

 $\Rightarrow \angle ACB - \angle BAT = 0$ Hence $\angle ACB = \angle BAT.$

Q.9. The tangent at a point C of a circle and a diameter AB when extended intersect at P. If \angle PCA = 110°, find \angle CBA (see figure),

Hence $\angle CBA = 70^{\circ}$.

Q.10. To circles with centres X and Y touch externally at P. If tangents AT and BT meet the common tangent at T, then prove that AT = BT.

Ans. \therefore AT and PT are tangents from external point

·.	AT =	TP	(i)
Similarly	TP =	TB	(ii)
From (i) an	d (ii), we g	et	

Hence, AT = BT Proved.

Multiple Choice Questions

Q.1. If angle between two radii of circle is 130°m the angle between the tangents at the ends of the radii is : (a) 90° (b) 50°

70°	(d) 40°
//00	()

Ans. (b)

Q.2. If two tangents inclined at an angle of 90° , are drawn to a circle or radius 3 cm, then the length of each tangents is :

(a)
$$2 \text{ cm}$$
 (b) 3 cm
(d) 4 cm (d) 1 cm

Ans. (b)

Q.3. If the radii of two concentric circles are 6 cm and 10 cm, then the length of each chord of one circle which is tangent to the other circle is : (a) 8 cm (b) 16 cm

(c) 10 cm (d) 6 cm

Ans. (b)

- Q.4. If radii of the two conentric circles are 15 cm and 17 cm, then the length of each chord of one circle which is tangent to other is :
 - (a) 8 cm (b) 17 cm

(c) 30 cm	(d) 16 cm
-----------	-----------

Ans. (d)

Q.5. To draw a pair of tangents to a circle which are inclined to each other at an angle of 100° , it is required to draw tangents at end points of those two radii of the circle, the angle between which should be :

(a) 100°	(b) 50°
(c) 80°	(d) 200°

Ans. (c)

Q.6. TP and TQ are two tangents to a circle with centre O, such that $\angle POQ = 110^\circ$, then $\angle PTQ$ is: (b) 45° (a) 30°

(a) 30	(0) + 3
(c) 70°	(d) 110°

Ans. (c)

Q.7. Two parallel lines touch the circle at point A and B separately. If the area of the circle is 25 cm², then AB is equal to :

(a) 8 cm (b) 5 cm (c) 10 cm

(d) 25 cm

Ans. (c)

Q.8. To draw two tangents to a circle from an external point, inclined at an angle of 50°m the tangents at the ends of two radii have to be drawn, the angle between which is :

(a) 150°	(b) 40°
(c) 50°	(d) 130°
(1)	

Ans. (d)

- Q.9. A quadrilateral PQRS is drawn to circumscribe a circle. If PQ, QR, RS (in cm) are 5, 9, 8 respectively, then PS (in cm) equals: (a) 7 (b) 6
 - (c) 5 (d) 4

Ans. (d)

Q.10. If radii of two concentric circles are 4 cm and 5 cm, then the length of each chord of one circle which is tangent to the other (in cm) is :

(a) 3	(b) 6
(c) 9	(d) 1

(c)9

Ans. (b)